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Abstract: At IWSM 2019, a poster was presented (Komárek et al., 2019) showing
initial ideas towards modelling of mixed type panel or longitudinal data and usage
of the model for unsupervised classification or clustering. For this contribution,
the methodology has been enriched in several directions and applied to identify
poverty and social exclusion temporal patterns of Czech households using data
from The European Union Statistics on Income and Living Conditions database.
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1 Data and research problems

Our research is motivated by The European Union Statistics on Income
and Living Conditions database (EU-SILC) that collects annually gathered
multidimensional data from European households (and also individuals liv-
ing there). Primarily targeted income, poverty, social exclusion and living
conditions obtained via questionnaire are described and represented by out-
comes of various nature: numeric (e.g., income), binary (e.g., affordability
of week holiday) and ordinal (e.g., level of a financial burden of housing).
It is our primary aim to use such longitudinally gathered outcomes towards
segmentation of households according to typical patterns of their temporal
evolution.
To this end, we propose a statistical model capable of joint modelling of
longitudinal outcomes of various nature (numeric, binary, ordinal) while
taking potential dependencies as well longitudinal as among different out-
comes obtained at each occasion into account. Consequently, we use the
model within a Bayesian model based clustering (MBC) procedure to per-
form unsupervised classification of study units (households).
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2 Joint model for mixed type longitudinal data

In general, we have data on n units/panel members (e.g., households) at
our disposal containing R ≥ 1 longitudinally gathered outcomes (being

possibly of a mixed type). Let Yi =
(
Y>i,1, . . . , Y>i,R

)>
stand for a vector

consisting of vectors of the values Y>i,r of the rth outcome (r = 1, . . . , R)
of the ith unit (i = 1, . . . , n) obtained at ni occasions. Let Ci stand for
available covariates (the times of measurements, possibly other explanatory
variables) of i-th unit. Finally, let g(yi; Ci, θ) represent the assumed distri-
bution of the outcome vector Yi which possibly depends on the covariates
Ci and also on a vector θ of unknown parameters. This distribution is built
from the following model.
First, if the rth, r = 1, . . . , R, longitudinal outcome vector Yi,r is ordinal
or binary, we will take a natural thresholding approach and will assume that
each element of Yi,r, Yi,r,j , j = 1, . . . , ni, is determined by corresponding
element of a latent continuous variable Y ?

i,r,j , which is covered by one of
the intervals given by the set of thresholds γr. In the following, denote
these latent continuous counterparts by Y?

i,r. In case the rth longitudinal
outcome is directly observed as continuous, we set Y?

i,r = Yi,r.
Further, for each Y?

i,r, r = 1, . . . , R, a classical linear mixed model (LMM)
is assumed. That is, Y?

i,r = Xi,rβr + Zi,rBi,r + εi,r, where Xi,r and Zi,r

are model matrices derived from the covariate information Ci, βr is a vector
of unknown parameters. Further, Bi,r is a vector of random effects related
to the rth longitudinal outcome and εi,r is an error term vector for which
a classical normality assumption is exploited, i.e., εi,r ∼ Nni

(
0, (τr)−1 Ini

)
.

The residual variance (τr)−1 is unknown.
Dependencies among the R longitudinal outcomes Yi,1, . . . , Yi,R are taken
into account by considering a joint distribution for the random vector Bi =(
B>i,1, . . . , B>i,R

)>
which joins the random effect vectors from the mixed

models for all R longitudinal measurements. Namely, a multivariate normal
distribution is assumed here, i.e., Bi ∼ Nq

(
µ, Σ

)
, where both the mean

vector µ and the covariance matrix Σ are unknown parameters.
Let ζ be the set of unknown parameters of interest, i.e. ζ = {β, τ , µ, Σ},
where β and τ stand for sets of parameters βr and τr across all outcomes
r = 1, . . . , R. Then, the density of (latent) continuous outcomes of the
i-th individual is given by integration of product of a multivariate normal
density related to the LMM and a density of Nq

(
µ, Σ

)
, which is known

to lead to the density g? (y?
i ; Ci, ζ) of multivariate normal distribution. To

obtain the density of actually observed outcomes g(yi; Ci, θ) we need to
separate y?

i into numeric (N) and ordinal (O) parts (including binary):

g (yi; Ci, ζ, γ) =

∫
t
(
yO
i

∣∣∣yO,?
i ; γ

)
g? (y?

i ; Ci, ζ) dyO,?
i , (1)

where t(·|·) represents the thresholding procedure.
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3 Model based clustering

We first assume that K (the number of groups into which we intend to
classify the units) is known in advance and K ≥ 2. The classification
proceeds by using the model outlined in Section 2 within the Bayesian
model based clustering procedure. Hence, it is assumed that the overall
model, f , is given as a finite mixture of certain group-specific models fk,
k = 1, . . . , K. That is, f(yi; Ci, θ) =

∑K
k=1 wk fk(yi; Ci, ψ, ψk), where

w =
(
w1, . . . , wK

)>
are the mixture weights (proportions of the groups in

the population), ψ is a vector of unknown parameters common to all groups
and ψk, k = 1, . . . , K, are vectors of group-specific unknown parameters.
Hence the vector θ of all unknown parameters is θ ≡

{
w, ψ, ψ1, . . . , ψK

}
.

Using the notation from previous section we set the group-specific density
fk to be the density g, however, depending on parameter ζk elements of
which (βk

r , τ
k
r , µ

k, Σk) may (or may not) be group-specific, i.e. different
value of the parameter is considered to be in different groups. For example,
if we suppose that the groups differ only in the effects, then

f(yi; Ci, θ) =

K∑
k=1

wk g
(
yi; Ci, τ , Σ, γ︸ ︷︷ ︸

ψ

, βk, µk︸ ︷︷ ︸
ψk

)
.

Further, let Ui ∈
{

1, . . . , K
}

be the unobserved allocation of the ith unit
into one of the K groups. As it is usual with the mixture models, the
group-specific distribution fk(yi; Ci, ψ, ψk), k = 1, . . . , K, can be viewed
as a conditional distribution of the outcome Yi given Ui = k while the
mixture weights w determine the distribution of the allocations, i.e., P(Ui =
k) = wk, k = 1, . . . , K. Classification of the ith unit can then be based
on suitable estimates of the conditional individual allocation probabilities
pi,k(θ), k = 1, . . . , K, calculated by the Bayes rule:

pi,k(θ) = P
(
Ui = k

∣∣Yi = yi; Ci, θ
)

=
wk g

(
yi; Ci, ψ, ψk

)
f(yi; Ci, θ)

. (2)

Calculation of such probabilities requires performing the integration (1),
which is in fact the integration of multivariate normal density over an
(ni×# ordinal outcomes)-dimensional interval, bounds of which are de-
termined by the measured levels of ordinal outcomes yO

i and threshold
parameter γ. A method for computing such possibly highly dimensional
integrals needs to be chosen carefully with respect to not only the precision
but the computation time as well, since for one set of parameters θ we need
to use it at least (n×K)-times. Moreover, we can limit ourselves to first j
observations only, j = 1, . . . , ni, to capture the evolution of classification
probability as the amount of available information increases.
To infer on the model parameters and to perform related classification
a Bayesian approach was adopted and implemented in the R software in
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combination with the C language and routines from the R package mvtnorm
to calculate integrals (1). Monte Carlo Markov chain (MCMC) methods
were used to obtain a sample from posterior distribution of θ and conse-
quently also from the posterior distribution of each of classification prob-
abilities pi,k (θ). Not only their posterior means but also their credible
intervals were used for classification to quantify uncertainty in allocation
of the study units into the groups.

4 Application

The methodology was applied to Czech households from the EU-SILC data
while considering jointly a numeric outcome (disposable income), three
binary outcomes – ability to afford (1) a weekly holiday, (2) regularly meat
meals, (3) unexpected expenses, and also three ordinal outcomes – level
of possession of (1) computer, (2) car, (3) financial burden of housing.
Relevant results (sample of which is shown in Figure 1) will be presented
during the conference.
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FIGURE 1. Longitudinal profiles of numeric, binary and ordinal outcomes of
n = 1000 randomly selected Czech households. Bold curves on the left represent
the estimated conditional expectation with change point in 2009 of response
within K = 2 discovered groups. Categorical outcomes are presented by the
proportions of categories in each year separately for the two discovered groups.
Some households remain unclassified.


