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EU-SILC dataset Classified households into G = 4 groups
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> Ordinal outcomes (self-evaluation by the respondent) S2eeeEnna e dann s
>HS120 — Ability to make ends meet Time Time
>HS140 — Financial burden of the total hOUSing cost Affordability of a one week holiday Afford to pay unexpected expenses Ability to make ends meet

> Categorical outcomes (Yes / No — cannot afford / No — other reason)

>HS090 — Do you have a computer?
>HS110 — Do you have a car?

o Explanatory variables:

>time (quadratic spline parametrization)

> level of urbanization (rural, town, city, Prague)

> equivalised household size

>the highest ISCED level attained within the household
> presence of a baby, a student, ...

c Research goals
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Evolution of the modelled outcomes of different type in time
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Effects of other covariates

Equivalised houshold size Presence indicators Urbanization level Highest ISCED level achieved
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Methodology - GLMM-based clustering of longitudinal mixed-type data z5- zg- ‘L ) 9= N 2 o /
c Random-effects models to capture specifics of each individual household b3S - H N J us ‘,i/' Uow

c Related outcomes joined through a general covariance matrix of combined vector of random effects

ld—
o
ld—
[
I\)—
o
N—
[
ch)—
o

student baby Rural  Town City Prague Lower Secondary Higher

c Numeric outcomes - Classical normal linear mixed-effects model (LME)
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c Binary outcomes - Logistic regression with random effects

o Ordinal outcomes - Ordinal logistic regression via cumulative probabilities
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o Categorical outcomes - Multinomial logistic regression with random effects | RANY & DAL —
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c A mixture of these models - groups differ in selected parameters 10 15 20 25 30 student baby Rural Town City Prague Lower Secondary Higher
. . . . . e . i Log(Equivalised total disposable income) Ability to make ends meet —e— Do you have a car? (Cannot vs. No)
> spline parametrization of time evolution, within-nousehold variance of numeric outcomes —e— Log(Lowest income to make ends meet) —e— Financial burden of housing cost —+— Do you have a car? (Cannot vs. Yes)
—e— Affordability of a one week holiday —o— Do you have a computer? (Cannot vs. No)
—e— Afford to pay unexpected expenses —4— Do you have a computer? (Cannot vs. Yes)

c For more details see (Vavra and Komarek, 2022)
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