
Secure Channel by SSL/TLS
A Cryptographic Maze

Serge Vaudenay

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

http://lasecwww.epfl.ch/

SV 2006 Secure Channel by SSL/TLS EPFL 1 / 123

http://lasecwww.epfl.ch/

1 Secure Channels

2 SSL/TLS

3 A Weakness in SSL/TLS

SV 2006 Secure Channel by SSL/TLS EPFL 2 / 123

1 Secure Channels

2 SSL/TLS

3 A Weakness in SSL/TLS

SV 2006 Secure Channel by SSL/TLS EPFL 3 / 123

1 Secure Channels
An Application Example
Conventional Cryptography
Asymmetric Cryptography
RSA Cryptography
ElGamal Cryptography
Public-Key Infrastructure

2 SSL/TLS

3 A Weakness in SSL/TLS

SV 2006 Secure Channel by SSL/TLS EPFL 4 / 123

Example of Critical Application

SV 2006 Secure Channel by SSL/TLS EPFL 5 / 123

Requirements

strong bidirectional authentication

confidentiality of communications

integrity of communication

need not the client part to be strongly secure

SV 2006 Secure Channel by SSL/TLS EPFL 6 / 123

Basics on Communication Security

Send message Receive message- -�
�

Adversary

Authentication : only the legitimate sender can send

Integrity : the received and sent messages must be the same

Confidentiality : only the legitimate receiver can read

SV 2006 Secure Channel by SSL/TLS EPFL 7 / 123

A Few Cryptographic Primitives

Conventional

hash function

symmetric encryption

message authentication code

Asymmetric

key agreement protocol

public-key cryptosystem

digital signature

SV 2006 Secure Channel by SSL/TLS EPFL 8 / 123

1 Secure Channels
An Application Example
Conventional Cryptography
Asymmetric Cryptography
RSA Cryptography
ElGamal Cryptography
Public-Key Infrastructure

2 SSL/TLS

3 A Weakness in SSL/TLS

SV 2006 Secure Channel by SSL/TLS EPFL 9 / 123

Confidentiality by Symmetric Encryption

Generator

6KeyKey 6 CONFIDENTIAL

-Message
Enc - - Dec -Message�

�
Adversary

SV 2006 Secure Channel by SSL/TLS EPFL 10 / 123

Security of Symmetric Encryption

Key-recovery : it is hard to recover the secret key even if we have
access to an encryption/decryption oracle

Message-recovery : after playing with an encryption/decryption
oracle, it is hard to decrypt a new challenged ciphertext

SV 2006 Secure Channel by SSL/TLS EPFL 11 / 123

Two Categories of Symmetric Encryption

stream ciphers block ciphers
RC4 DES

GSM–A5/1 3DES
Bluetooth–E0 IDEA

DVB-CSA BLOWFISH
... RC5

AES
KASUMI
SAFER

CS-Cipher
FOX

...

SV 2006 Secure Channel by SSL/TLS EPFL 12 / 123

Stream Ciphers from a High Level

plaintext stream

nonce

key

-

-
key schedule init. state- automaton -key strm

⊕ - ciphertext stream
6

SV 2006 Secure Channel by SSL/TLS EPFL 13 / 123

RC4 (Alleged)

Key

?
key set up

?
registers i and j

permutation
S[0],S[1], . . . ,S[255]

?

1: i ← i + 1
2: j ← j + S[i]
3: swap S[i] and S[j]
4: output S[S[i]+ S[j]]

�

?
output byte

SV 2006 Secure Channel by SSL/TLS EPFL 14 / 123

RC4 Key Schedule

1: j← 0
2: for i = 0 to 255 do
3: S[i]← i
4: end for
5: for i = 0 to 255 do
6: j← j + S[i]+ K [i mod ℓ]
7: swap S[i] and S[j]
8: end for
9: i← 0

10: j← 0

SV 2006 Secure Channel by SSL/TLS EPFL 15 / 123

DES Block Cipher

DES- -

6

plaintext block ciphertext block64 bits 64 bits

56 bits

secret key

DES−1� �

?

plaintext block ciphertext block64 bits 64 bits

56 bits

SV 2006 Secure Channel by SSL/TLS EPFL 16 / 123

The XOR Operation

⊕ 0 1

0 0 1
1 1 0

(X) 10010
⊕ (Y) 00111
= (Z) 10101

⊕ (Y) 00111
= (X) 10010

SV 2006 Secure Channel by SSL/TLS EPFL 17 / 123

CBC Encryption Mode

x1 x2 x3 · · · xn

y1 y2 y3 · · · yn

?
⊕

?

DES

?

-
?
⊕

?

DES

?

-
?
⊕

?

DES

?

-
?
⊕

?

DES

?

-IV

SV 2006 Secure Channel by SSL/TLS EPFL 18 / 123

CBC Decryption

x1 x2 x3 · · · xn

y1 y2 y3 · · · yn

6

⊕

6

DES−1

6

-

6

⊕

6

DES−1

6

-

6

⊕

6

DES−1

6

-

6

⊕

6

DES−1

6

-IV

SV 2006 Secure Channel by SSL/TLS EPFL 19 / 123

Note on the CBC Mode

Three possibilities for dealing with IV

Using a (non secret) constant IV

Using a secret IV

Using a random IV which is sent in clear with the ciphertext

SV 2006 Secure Channel by SSL/TLS EPFL 20 / 123

Brute Force Attack on DES

strategy preprocessing memory time
exhaustive search 0 1 256

dictionary attack 256 256 1
tradeoffs 256 237 237

→ the key of DES is too short!
→ we need some way to enlarge the key

SV 2006 Secure Channel by SSL/TLS EPFL 21 / 123

Two-Key Triple DES

X - DES - DES−1 - DES - Y

6K1 6K16K2

K = (K1,K2)

SV 2006 Secure Channel by SSL/TLS EPFL 22 / 123

Integrity by Hash Function

-Message

Hash

?

-
INTEGER

Digest

-

Hash

?

Message

?
Compare -

ok?

�
�

Adversary

SV 2006 Secure Channel by SSL/TLS EPFL 23 / 123

Security of Hash Functions

One-wayness : given y it is hard to find even one x such that
y = h(x).
→ witness for a password

Collision resistance : it is hard to find x and x ′ such that
h(x) = h(x ′) and x 6= x ′.
→ digital fingerprint of the bitstring

Randomness : given h1(x), . . . ,hn(x) it is hard to predict hn+1(x)
→ secret key generation

SV 2006 Secure Channel by SSL/TLS EPFL 24 / 123

Cryptographic Hashing

message

?

MD5 -128

“Message Digest” (MD) devised by Ronald Rivest

“Secure Hash Algorithm” (SHA) standardized by NIST

MD4 in 1990 (128-bit digest)

MD5 in 1991 (128-bit digest) published as RFC 1321 in 1992

SHA in 1993 (160-bit digest) (now obsolete)

SHA-1 in 1995 (160-bit digest)

SHA256, SHA384, SHA512 in 2002 (256-, 384-, and 512-bit
digest)

SV 2006 Secure Channel by SSL/TLS EPFL 25 / 123

Summary of Generic Attacks

if we hash onto n bits, (N = 2n)

attack complexity
exhaustive search 2n

collision attack 2
n
2

SV 2006 Secure Channel by SSL/TLS EPFL 26 / 123

Recent Attacks on Hash Functions

collision found on MD4 (Dobbertin 1996)

preimage attack on MD4 (Dobbertin 1997)

collision found on SHA0 (Joux+ 2004)

collision found on MD5 (Wang+ 2004)

theoretical attack on SHA1 (Wang+ 2005)

...research going on

SV 2006 Secure Channel by SSL/TLS EPFL 27 / 123

Authenticity by Message Authentication Code

Generator

6KeyKey 6 CONFIDENTIAL

AUTHENTICATED
INTEGER

-Message

X
MAC -

X ,c
-

X ,c
Check

-
ok?

-Message

X�
�

Adversary

SV 2006 Secure Channel by SSL/TLS EPFL 28 / 123

Security of Symmetric Encryption

Key-recovery : it is hard to recover the secret key even if we have
access to a MAC oracle

Forgery : after playing with a MAC oracle, it is hard to forge a
new authenticated message

SV 2006 Secure Channel by SSL/TLS EPFL 29 / 123

Three Categories of MAC

from stream ciphers from block ciphers from hash functions
Wegman-Carter EMAC HMAC
LFSR-Toeplitz XCBC UMAC
bucket hashing RMAC ...

square hash TMAC
... OMAC

...

SV 2006 Secure Channel by SSL/TLS EPFL 30 / 123

Hashing to Authentication: HMAC [RFC 2104]

MAC
?

trunc
?

H
?

?

H
?

?
⊕ipad
?

?

message

?
⊕opad
?

key||0 · · ·0

SV 2006 Secure Channel by SSL/TLS EPFL 31 / 123

A Typical Secure Channel Establishment

Client Server

−−−−−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−−−−−−−

secret −−−−−−−−−−−−−−−−−−−−−−−−→ secret

(key derivation)

−−−−−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−−−−−−−

(open secure channel)

SV 2006 Secure Channel by SSL/TLS EPFL 32 / 123

Authenticated Modes of Operation

Generator

6KeyKey 6 CONFIDENTIAL

AUTHENTICATED
INTEGER

-Message

-
nonce

nonce
6

Enc/MAC - - Dec/Check
-

ok?

-Message
�

�
Adversary

SV 2006 Secure Channel by SSL/TLS EPFL 33 / 123

Examples of Secure Channels

SSL/TLS

SSH

IPSEC

3GPP

WPA

Bad Examples

GSM

WEP

Bluetooth

SV 2006 Secure Channel by SSL/TLS EPFL 34 / 123

Remaining Problem: Key Setup

Agreement Agreement

6 6Key Key

-�
BIG ISSUE

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

SV 2006 Secure Channel by SSL/TLS EPFL 35 / 123

1 Secure Channels
An Application Example
Conventional Cryptography
Asymmetric Cryptography
RSA Cryptography
ElGamal Cryptography
Public-Key Infrastructure

2 SSL/TLS

3 A Weakness in SSL/TLS

SV 2006 Secure Channel by SSL/TLS EPFL 36 / 123

Public-Key Cryptosystem

Generator

66 AUTHENTICATED
INTEGER

Secret KeyPublic Key

-Message
Encrypt - - Decrypt -Message�

�
Adversary

SV 2006 Secure Channel by SSL/TLS EPFL 37 / 123

Security

Semantic security: given a public key, for any two plaintexts, we
cannot distinguish a valid encryption of either plaintext
(apply to probabilistic encryption only)

Message recovery: given a public key and the encryption of a
random plaintext, it is hard to recover the plaintext
(consequence of semantic security)

SV 2006 Secure Channel by SSL/TLS EPFL 38 / 123

Digital Signature

Generator

6 Public KeySecret Key 6AUTHENTICATED
INTEGER

-Message
Sign - - Verify

-
ok?

-
Message�

�
Adversary

SV 2006 Secure Channel by SSL/TLS EPFL 39 / 123

Security

Unforgeability: given a public key, it is hard to forge a new valid
message-signature pair

Non-repudiation: given a public key, any valid message-signature
pair must have been created by the secret key holder
(often based on unforgeability)

SV 2006 Secure Channel by SSL/TLS EPFL 40 / 123

Key Exchange Protocol

ProtoBobProtoAlice

6KeyKey 6

-� AUTHENTICATED
INTEGER

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

SV 2006 Secure Channel by SSL/TLS EPFL 41 / 123

Security

Secrecy: by looking at the communication protocol, it is
impossible to guess the exchanged key

SV 2006 Secure Channel by SSL/TLS EPFL 42 / 123

The Diffie-Hellman Key Agreement Protocol

Assume a group (Z∗p, elliptic curves, ...) generated by some g

Alice Bob

pick x at random

X ← gx X
−−−−−−−−−−→

Y
←−−−−−−−−−− pick y at random

Y ← gy

K ← Y x K ← X y

(K = gxy)

communications must authenticated and integer!

SV 2006 Secure Channel by SSL/TLS EPFL 43 / 123

If we Lack Authentication: Man-in-the-Middle Attack

Alice Eve Bob

pick x , X ← gx X
−−−−−−−−→

pick x ′, X ′← gx ′ X ′
−−−−−−−−→

Y
←−−−−−−−− pick y , Y ← gy

Y ′
←−−−−−−−− pick y ′, Y ′← gy ′

K1← (Y ′)x K1← X y ′ , K2← Y x ′ K2← (X ′)y

(K1 = gxy ′) (K2 = gx ′y)

SV 2006 Secure Channel by SSL/TLS EPFL 44 / 123

Static versus Ephemeral Diffie-Hellman

Ephemeral DH: it provides forward secrecy

“if long-term secret keys are compromised at time t, this
does not compromise a DH session key at time t ′ < t”

Static DH: X and Y are used like public keys

SV 2006 Secure Channel by SSL/TLS EPFL 45 / 123

1 Secure Channels
An Application Example
Conventional Cryptography
Asymmetric Cryptography
RSA Cryptography
ElGamal Cryptography
Public-Key Infrastructure

2 SSL/TLS

3 A Weakness in SSL/TLS

SV 2006 Secure Channel by SSL/TLS EPFL 46 / 123

Plain RSA Encryption

Generator

N = pq
ϕ = (p−1)(q−1)
1 = gcd(e,ϕ)
d = e−1 mod ϕ

6Secret key d ,NPublic key e,N 6 AUTHENTICATED
INTEGER

-Message x
Encrypt

xe mod N
- -

y Decrypt -Message

x = yd mod N

�
�

Adversary

SV 2006 Secure Channel by SSL/TLS EPFL 47 / 123

Plain RSA Signature

Generator

N ′ = p′q′

ϕ′ = (p′−1)(q′−1)
1 = gcd(e′,ϕ′)

d ′ = (e′)−1 mod ϕ′

6 Public key e′,N ′Secret key d ′,N ′ 6AUTHENTICATED
INTEGER

-Message x
Sign

xd ′ mod N ′
-

y
- Verify

-
x format?

-
x = ye′ mod N ′�

�
Adversary

SV 2006 Secure Channel by SSL/TLS EPFL 48 / 123

Special Application Attacks

short exponents

messages with known structure

related messages

related keys

...

SV 2006 Secure Channel by SSL/TLS EPFL 49 / 123

PKCS#1v1.5 Encryption

ciphertext
?

Enc
?

00 02 PS 00 M
?

random

?

message

SV 2006 Secure Channel by SSL/TLS EPFL 50 / 123

PKCS#1v1.5 Signature

signature
?

Sign
?

00 01 FF· · · FF 00 M
?

H
?

message

SV 2006 Secure Channel by SSL/TLS EPFL 51 / 123

RSA-OAEP

ciphertext
?

Enc
?

00 maskedSeed maskedDB
?

⊕� MGF �

?

⊕-MGF-

?

?

seed
H(L) 0 · · ·01 M

?

message

SV 2006 Secure Channel by SSL/TLS EPFL 52 / 123

Mask Generation Function in RSA-OAEP

The PKCS specifications further suggests an mask generation
function MGF1 which is based on a hash function. The MGF1ℓ(x)
string simply consists of the ℓ leading bytes of

H(x ||00000000)||H(x ||00000001)||H(x ||00000002)|| · · ·

in which x is concatenated to a four-byte counter.

SV 2006 Secure Channel by SSL/TLS EPFL 53 / 123

RSA-PSS

signature
?

Sign
?OR 80

bcmaskedDB H
?

⊕� MGF �

?

H
?

?

0 · · ·01 salt

H(M)0 · · ·00 salt
?

H
?

message

SV 2006 Secure Channel by SSL/TLS EPFL 54 / 123

ISO/IEC 9796 Signature

signature
?

Sign
?

Format
?

message

format is invertible

signature with message recovery

SV 2006 Secure Channel by SSL/TLS EPFL 55 / 123

1 Secure Channels
An Application Example
Conventional Cryptography
Asymmetric Cryptography
RSA Cryptography
ElGamal Cryptography
Public-Key Infrastructure

2 SSL/TLS

3 A Weakness in SSL/TLS

SV 2006 Secure Channel by SSL/TLS EPFL 56 / 123

Plain ElGamal Encryption

Generator

6xy 6 AUTHENTICATED
INTEGER

-Plaintext
m Enc -Ciphertext

(gr ,my r)
-

(u,v)
Dec -

vu−x

�
�

Adversary

y = gx

6
?

SV 2006 Secure Channel by SSL/TLS EPFL 57 / 123

Non-Deterministic Encryption

m

R

-

�

Enc

c3

c2

c1

�
-R

Dec

m

SV 2006 Secure Channel by SSL/TLS EPFL 58 / 123

ElGamal Signature

Generator

y = gx mod p

6x y6AUTHENTICATED
INTEGER

-Message

M

k ∈ Z∗p−1

r = gk mod p

s = H(M)−xr
k mod p−1

Sign -
M, r ,s

-
M, r ,s

0≤ r < p
y r r s ≡ gH(M) (mod p)

Ver
-

ok?

-Message

M�
�

Adversary

p prime
g generator of Z∗p

SV 2006 Secure Channel by SSL/TLS EPFL 59 / 123

The ElGamal Dynasty

1984 ElGamal signatures

1989 Schnorr signatures

1995 DSA: US signatures

1995 Nyberg-Rueppel signatures

1997 Pointcheval-Vaudenay signatures

1998 KCDSA: Korean signatures

1998 ECDSA

...

SV 2006 Secure Channel by SSL/TLS EPFL 60 / 123

DSA Signature

Generator

y = gx mod p

6x y6AUTHENTICATED
INTEGER

-Message

M

k ∈ Z∗q
r = gk mod p mod q

s = H(M)+xr
k mod q

Sign -
M, r ,s

-
M, r ,s

compare r and

g
H(M)

s y
r
s mod p mod q

Ver
-

ok?

-Message

M�
�

Adversary

q prime
p = aq +1 prime
g = randoma mod p > 1

SV 2006 Secure Channel by SSL/TLS EPFL 61 / 123

1 Secure Channels
An Application Example
Conventional Cryptography
Asymmetric Cryptography
RSA Cryptography
ElGamal Cryptography
Public-Key Infrastructure

2 SSL/TLS

3 A Weakness in SSL/TLS

SV 2006 Secure Channel by SSL/TLS EPFL 62 / 123

Public-Key Infrastructure

Client Server

Authority

KAC
P

�

KP

K

certificate

U
certificate

(signed Kp)
�

KP authenticated

SV 2006 Secure Channel by SSL/TLS EPFL 63 / 123

An X.509 Certificate Example: Overall Structure

Certificate:
Data:

Version: 3 (0x2)
Serial Number: 674866 (0xa4c32)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=ZA, ST=Western Cape, L=Cape Town,

O=Thawte Consulting cc, OU=Certification Services Division,
CN=Thawte Server CA/Email=server-certs@thawte.com

Validity
Not Before: Jun 2 13:10:11 2003 GMT
Not After : Jun 11 10:21:15 2005 GMT

...
X509v3 extensions:

X509v3 Extended Key Usage: TLS Web Server Authentication
X509v3 Basic Constraints: critical CA:FALSE

Signature Algorithm: md5WithRSAEncryption
8d:7b:78:60:88:c4:13:4e:94:0d:bc:3b:1b:1c:b6:c9:bc:b1:
0b:ed:7d:eb:6f:08:3a:ba:6d:21:36:93:38:36:66:7b:a7:bc:
c0:3f:c4:e0:cf:b4:02:58:be:a6:b9:1d:45:a2:c4:58:38:07:
e4:63:1a:d9:b9:8d:27:7c:93:67:31:82:6f:a3:3c:86:0c:e0:
10:71:de:f2:e9:74:af:ac:76:b4:5b:8e:48:57:9d:8f:12:f6:
72:63:8a:79:b4:74:e0:ba:ca:ac:1a:36:b4:16:38:c1:c5:d2:
73:ed:e8:64:b0:ae:9e:e2:36:d7:0c:77:92:cc:c7:c0:e0:8a:
54:24

SV 2006 Secure Channel by SSL/TLS EPFL 64 / 123

An X.509 Certificate Example: Subject

Subject: C=CH, ST=Bern, L=Bern,
O=Switch - Teleinformatikdienste fuer Lehre und Forschung,
CN=nic.switch.ch

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:d0:0e:b7:16:bf:86:59:c3:97:e6:02:33:59:90:
65:29:b0:69:73:64:83:03:1b:df:62:a8:4d:c0:4f:
3c:d9:12:6b:8c:57:95:e1:57:e8:48:a6:7f:dd:15:
8b:9d:ad:93:dc:78:af:06:1a:ce:0f:7b:cc:c4:6f:
a0:06:26:40:73:04:d3:da:7b:20:c1:15:37:8c:2f:
58:c4:d4:c1:4b:18:84:5c:54:f1:b1:a0:44:3c:e2:
0e:8a:a2:63:48:6b:34:c7:10:9d:a1:23:56:77:f5:
4e:3d:38:9a:70:5e:03:02:30:45:ee:81:e4:94:96:
47:18:9e:47:37:bb:18:f6:87

Exponent: 65537 (0x10001)

SV 2006 Secure Channel by SSL/TLS EPFL 65 / 123

1 Secure Channels

2 SSL/TLS

3 A Weakness in SSL/TLS

SV 2006 Secure Channel by SSL/TLS EPFL 66 / 123

1 Secure Channels

2 SSL/TLS
SSL Principles
TLS Secure Channel Establishment
TLS Secure Channel

3 A Weakness in SSL/TLS

SV 2006 Secure Channel by SSL/TLS EPFL 67 / 123

History

First version by Netscape in 1994

Microsoft version PCT in 1995

SSLv3 by Netscape in 1995

IETF version TLS/1.0 in 1997 [RFC2246]

IETF version TLS/1.1 in 2005 (draft) [RFC2246]

Goal: secure any communication (e.g. HTTP) based on TCP/IP

SV 2006 Secure Channel by SSL/TLS EPFL 68 / 123

Common Use Principle

client-server communications, random client, corporate server

trusted third party: certificate authority (CA)

A+I secure channel with CA to be used only once

authentication of server based on public key

authentication of client (if needed) based on password

interoperable cipher suites

SV 2006 Secure Channel by SSL/TLS EPFL 69 / 123

TLS Record Protocols

Handshake Protocol (for initiating a session)

Change Cipher Spec Protocol (for setting up cryptographic
algorithms)

Alert Protocol (for managing warnings and fatal errors)

Application Data Protocol

SV 2006 Secure Channel by SSL/TLS EPFL 70 / 123

Session State

Session identifier

Peer certificate (if any)

Cipher suite choice
Algorithm for authentication and key exchange during handshake
Cipher Spec: symmetric algorithms (encryption and MAC)

Master secret (a 48-byte symmetric key)

nonces (from the client and the server)

sequence numbers (one for each communication direction)

compression algorithm (if any)

SV 2006 Secure Channel by SSL/TLS EPFL 71 / 123

Original TLS Cipher Suites — i

CipherSuite Key Exchange Cipher Hash
TLS NULL WITH NULL NULL NULL NULL NULL
TLS RSA WITH NULL MD5 RSA NULL MD5
TLS RSA WITH NULL SHA RSA NULL SHA-1
TLS RSA EXPORT WITH RC4 40 MD5 RSA RC4 40 MD5
TLS RSA WITH RC4 128 MD5 RSA RC4 128 MD5
TLS RSA WITH RC4 128 SHA RSA RC4 128 SHA-1
TLS RSA EXPORT WITH RC2 CBC 40 MD5 RSA RC2 40 MD5
TLS RSA WITH IDEA CBC SHA RSA IDEA SHA-1
TLS RSA EXPORT WITH DES40 CBC SHA RSA DES40 SHA-1
TLS RSA WITH DES CBC SHA RSA DES SHA-1
TLS RSA WITH 3DES EDE CBC SHA RSA 3DES EDE SHA-1
TLS DH DSS EXPORT WITH DES40 CBC SHA DH DSS DES40 SHA-1
TLS DH DSS WITH DES CBC SHA DH DSS DES SHA-1
TLS DH DSS WITH 3DES EDE CBC SHA DH DSS 3DES EDE SHA-1
TLS DH RSA EXPORT WITH DES40 CBC SHA DH RSA DES40 SHA-1
TLS DH RSA WITH DES CBC SHA DH RSA DES SHA-1
TLS DH RSA WITH 3DES EDE CBC SHA DH RSA 3DES EDE SHA-1

SV 2006 Secure Channel by SSL/TLS EPFL 72 / 123

Original TLS Cipher Suites — ii

CipherSuite Key Exchange Cipher Hash
TLS DHE DSS EXPORT WITH DES40 CBC SHA DHE DSS DES40 SHA-1
TLS DHE DSS WITH DES CBC SHA DHE DSS DES SHA-1
TLS DHE DSS WITH 3DES EDE CBC SHA DHE DSS 3DES EDE SHA-1
TLS DHE RSA EXPORT WITH DES40 CBC SHA DHE RSA DES40 SHA-1
TLS DHE RSA WITH DES CBC SHA DHE RSA DES SHA-1
TLS DHE RSA WITH 3DES EDE CBC SHA DHE RSA 3DES EDE SHA-1
TLS DH anon EXPORT WITH RC4 40 MD5 DH anon RC4 40 MD5
TLS DH anon WITH RC4 128 MD5 DH anon RC4 128 MD5
TLS DH anon EXPORT WITH DES40 CBC SHA DH anon DES40 SHA-1
TLS DH anon WITH DES CBC SHA DH anon DES SHA-1
TLS DH anon WITH 3DES EDE CBC SHA DH anon 3DES EDE SHA-1

SV 2006 Secure Channel by SSL/TLS EPFL 73 / 123

1 Secure Channels

2 SSL/TLS
SSL Principles
TLS Secure Channel Establishment
TLS Secure Channel

3 A Weakness in SSL/TLS

SV 2006 Secure Channel by SSL/TLS EPFL 74 / 123

A Typical TLS Session

Client Server

ClientHello:accepted cipher suites, nonceC−−−−−−−−−−−−−−−−−−−−−−−−→
ServerHello:cipher suite, certificate, nonceS←−−−−−−−−−−−−−−−−−−−−−−−− select cipher suite

pre master secret
ClientKeyExchange :ENC(pre master secret)
−−−−−−−−−−−−−−−−−−−−−−−−→ decrypt

(key derivation)

MACC−−−−−−−−−−−−−−−−−−−−−−−−→ check

check
MACS←−−−−−−−−−−−−−−−−−−−−−−−−

(open tunnel)

[authentication?]
←−−−−−−−−−−−−−−−−−−−−−−−−

[login, password]
−−−−−−−−−−−−−−−−−−−−−−−−→ check

SV 2006 Secure Channel by SSL/TLS EPFL 75 / 123

Key Derivation in SSL/TLS

nonceC (32 bytes)
nonceS (32 bytes)

pre master secret

??

- PRF - master secret
(48 bytes)

??

- PRF

-
-
-
-
-
-

C→ S MAC key
S→ C MAC key
C→ S Enc key
S→ C Enc key
C→ S IV
S→ C IV

SV 2006 Secure Channel by SSL/TLS EPFL 76 / 123

PRF

Given a secret, a seed, and a string label we define a sequence

a0 = seed

ai = HMAChash(S,ai−1)

ri = HMAChash(S,ai ||seed)

P hash(S,seed) = r1, r2, r3, . . .

PRF(secret, label,seed) = P MD5(S1, label||seed)⊕

P SHA1(S2, label||seed)

where S1 and S2 are the two halves of secret.
(If secret has an odd length, its middle byte is both the last byte of S1
and the first byte of S2.)

SV 2006 Secure Channel by SSL/TLS EPFL 77 / 123

Using PRF

We define

h handshake = MD5(handshake)||SHA1(handshake))
MACC = PRF(master secret,”client finished”,h handshake)
MACS = PRF(master secret,”server finished”,h handshake)

master secret = PRF(pre master secret,”master secret”,nonceC ||nonceS)
key block = PRF(master secret,”key expansion”,nonceS ||nonceC)

handshake is the concatenation of all hanshake messages
MACC and MACS are of 12 bytes
key block is the concatenation of the four private keys and the two
initial vectors.

SV 2006 Secure Channel by SSL/TLS EPFL 78 / 123

RSA Key Exchange

Client Server

ClientHello:accepted cipher suites, nonceC−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ServerHello:TLS RSA cipher hash, certificate, nonceS←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pre master secret
ClientKeyExchange :ENC(pre master secret)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ decrypt

RSA encryption is PKCS#1v1.5

the RSA public key must be authenticated

SV 2006 Secure Channel by SSL/TLS EPFL 79 / 123

DH sig Key Exchange

Client Server

ClientHello:accepted cipher suites, nonceC−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ServerHello:TLS DH sig cipher hash, certificate, nonceS←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pick y
ClientKeyExchange:gy mod p

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
pre master secret = gxy mod p

the certificate is signed using sig algorithm

the certificate includes p,g,gx mod p

this is fixed Diffie-Hellman where parameters are chosen by the
server and server uses a fixed x

SV 2006 Secure Channel by SSL/TLS EPFL 80 / 123

DHE sig Key Exchange

Client Server

ClientHello:accepted cipher suites, nonceC−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ServerHello:TLS DHE sig cipher hash, certificate, nonceS←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ServerKeyExchange :p,g,gx mod p,sig(hash(p,g,gx mod p))
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− select p,g, pick x

pick y
ClientKeyExchange :gy mod p

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
pre master secret = gxy mod p

the sig public key must be authenticated in the certificate

gy mod p is not authenticated!

SV 2006 Secure Channel by SSL/TLS EPFL 81 / 123

DH anon Key Exchange

Client Server

ClientHello:accepted cipher suites, nonceC−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ServerHello:TLS DH anon cipher hash, nonceS←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ServerKeyExchange :p,g,gx mod p
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− select p,g, pick x

pick y
ClientKeyExchange :gy mod p

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
pre master secret = gxy mod p

Diffie-Hellman protocol is not authenticated!

SV 2006 Secure Channel by SSL/TLS EPFL 82 / 123

1 Secure Channels

2 SSL/TLS
SSL Principles
TLS Secure Channel Establishment
TLS Secure Channel

3 A Weakness in SSL/TLS

SV 2006 Secure Channel by SSL/TLS EPFL 83 / 123

Record Protocol

split the application data into fragments of at most 214 Bytes and
send the fragments separately.

(optional) compress the fragment

append a MAC to the fragment
The MAC is computed on a sequence number, the compression
and TLS version materials, the compressed fragment.

encrypt all this

send this after a record header (type, version, length)

SV 2006 Secure Channel by SSL/TLS EPFL 84 / 123

MAC in Record Protocol

More precisely the MAC of a fragment is computed as the HMAC with
key MAC write secret on

seq num
TLSCompressed.type,TLSCompressed.version,TLSCompressed.length
TLSCompressed.fragment

MAC write secret is the MAC key of the sender

seq num is the sequence number of the fragment

TLSCompressed.fragment is the compressed fragment

TLSCompressed.length is its actual length

TLSCompressed.type

TLSCompressed.version are some information about the TLS
protocol (namely, the compression algorithm) that is being used

SV 2006 Secure Channel by SSL/TLS EPFL 85 / 123

Secure Channel in SSL/TLS (Using CBC Encryption)

fragment

- MAC

?

?

seq num

?MAC key

?
Enc

6�
�

Adversary
-
-

IV
Enc key Dec

6

fragment

�
�

IV
Enc key

- MAC- =
6

?

seq num

? MAC key

SV 2006 Secure Channel by SSL/TLS EPFL 86 / 123

Using Block Ciphers in CBC Mode

Text - MAC -
PAD

- CBC - DEC - - VER - Text

�bad record mac

�decryption failed

S E C R E T A

C C E S S

bloc 1

bloc 28 # $

* = k % ! bloc 32 2 2

SV 2006 Secure Channel by SSL/TLS EPFL 87 / 123

Using Stream Ciphers

The RC4 stream cipher is used as a key-stream generator with
one-time pad. The internal state of the generator is kept in the
connection state so that the RC4 automaton continuously generates
keystreams in order to encrypt the fragments sequence.

SV 2006 Secure Channel by SSL/TLS EPFL 88 / 123

1 Secure Channels

2 SSL/TLS

3 A Weakness in SSL/TLS

SV 2006 Secure Channel by SSL/TLS EPFL 89 / 123

1 Secure Channels

2 SSL/TLS

3 A Weakness in SSL/TLS
Side Channel Attacks on RSA
Weakness in PKCS Encryption
Weakness in CBCPAD

SV 2006 Secure Channel by SSL/TLS EPFL 90 / 123

Exponentiation From Left to Right

a100101 = a1·25+0·24+0·23+1·22+0·21+1·20

SQ SQ SQ SQ SQ SQ- -×- - - -×- - -×-1

a

? ? ?

1 0 0 1 0 1

a = a1

a2 = a10

a22
= a100

a23+1 = a1001

a24+2 = a10010

a25+22+1 = a100101

SV 2006 Secure Channel by SSL/TLS EPFL 91 / 123

Implementation

Input : a and n, two integers of at most ℓ bits, an
integer e

Output : x = ae mod n
Complexity : O (ℓ2 log e)

1: x ← 1
2: for i = ℓ−1 to 0 do
3: x ← x× x mod n (SQ)
4: if ei = 1 then
5: x ← x×a mod n (MUL)
6: end if
7: end for

SV 2006 Secure Channel by SSL/TLS EPFL 92 / 123

Power Analysis Attack

Computing x = yd mod N is performed by a device with external
power supply by using the square-and-multiply algorithm.

The power usage tells how what kind of operation is performed

Cryptoprocessors have faster square than multiply algorithms

The power usage tells when a square and a multiply is performed

The attacker deduces d

SV 2006 Secure Channel by SSL/TLS EPFL 93 / 123

SPA

-

6

time

power

SQ MUL

1

SQ MUL

1

SQ

0

SQ

0

SQ

secret key is 1100...

SV 2006 Secure Channel by SSL/TLS EPFL 94 / 123

Other Side Channel Attacks

Differential fault analysis

Timing attack

Electromagnetic fields

Noisy machines

Cache attacks

...

SV 2006 Secure Channel by SSL/TLS EPFL 95 / 123

1 Secure Channels

2 SSL/TLS

3 A Weakness in SSL/TLS
Side Channel Attacks on RSA
Weakness in PKCS Encryption
Weakness in CBCPAD

SV 2006 Secure Channel by SSL/TLS EPFL 96 / 123

PKCS#1v1.5 Encryption

ciphertext
?

Enc
?

00 02 PS 00 M
?

random

?

message

SV 2006 Secure Channel by SSL/TLS EPFL 97 / 123

Yet Another Side Channel Attack

Bleichenbacher’s attack against PKCS#1v1.5:

Attacker intercepts y = xe mod N and aims at recovering x

Attacker plays with the server by sending fake ciphertexts y ′ of
the form

y ′ = sey mod N
Most of the time, y ′ does not decrypt well and the server issues
an error message.

If the server accepts, then (y ′)d mod n starts with 00 02, hence

2×256k−2 ≤ sx mod N < 3×256k−2

By using this oracle 1 000 000 times, Attacker can reconstruct x

SV 2006 Secure Channel by SSL/TLS EPFL 98 / 123

1 Secure Channels

2 SSL/TLS

3 A Weakness in SSL/TLS
Side Channel Attacks on RSA
Weakness in PKCS Encryption
Weakness in CBCPAD

SV 2006 Secure Channel by SSL/TLS EPFL 99 / 123

CBCPAD Encryption

P A S S W O R D

x & @ 3 P $ + c

7 7 7 7 7 7 7 7

9 w @ G = u P +

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

-

-

-

DES -

?
DES -⊕-

?
DES -⊕-

We would like to decrypt 9w@G=uP+

SV 2006 Secure Channel by SSL/TLS EPFL 100 / 123

CBCPAD Decryption

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

9 w @ G = u P +

P A S S W O R D
6?

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

-

-

-

DES−1 -

?
DES−1 -⊕-

?
DES−1 -⊕-

f 4 = S . o w t

) g $ K 9 s X d

decryption failed

t⊕D=d

SV 2006 Secure Channel by SSL/TLS EPFL 101 / 123

The Attack Overview

client server

DNS

hacker

where is server?

?

I

R
password

:
guess

?
password

9
error

SV 2006 Secure Channel by SSL/TLS EPFL 102 / 123

Application to TLS: Two Problems

Errors are sent encrypted through the Record Protocol
−→ errors are not available in clear

Both types of errors are fatal alerts
−→ after one query the session is broken
−→ if the session restarts, it uses a fresh symmetric key

SV 2006 Secure Channel by SSL/TLS EPFL 103 / 123

Transforming Peer into an Oracle

we can ask “does DES−1(y) end with byte c?”

we can ask “does DES−1(y) end with byte string u?”

we can guess a byte within 128 queries on average

we can compute DES−1(y) within 1024 queries on average

we can decrypt a message within ℓ×128 queries on average

SV 2006 Secure Channel by SSL/TLS EPFL 104 / 123

Implementation

DecryptBlock1 (y)
1: for i = 1 to b do
2: ci←DecryptByte1 (y,ci−1|| . . . ||c1)
3: end for
4: return cb|| . . . ||c1

DecryptByte1 (y,s)
1: for all possible values of byte c do
2: if Check1 (y,c||s) = 1 then
3: return c
4: end if
5: end for

Check1 (y,u)
1: let i be the length of u
2: let L be a random string of length

b− i
3: let R = (i − 1)||(i − 1)|| . . . ||(i − 1)

of length i
4: r ← L||(R⊕u)
5: build the fake ciphertext r ||y to be

sent to the oracle
6: return O (r ||y)

SV 2006 Secure Channel by SSL/TLS EPFL 105 / 123

Using an Extra Side Channel
bad record mac errors take longer time to answer than
decryption failed errors

SV 2006 Secure Channel by SSL/TLS EPFL 106 / 123

Regular Timing Attack

DecryptByte2 (y,s)
1: repeat
2: for all possible values of byte c

do
3: if Check2 (y,c||s) = 1 then
4: return c
5: end if
6: end for
7: until byte is found

Check2 (y,u)
1: make r in order to test u as in

Check1
2: build the fake ciphertext f ||r ||y to be

sent to the oracle
(f is the longest possible random
block sequence)

4: query the oracle n times and get
T1, . . . ,Tn

(answers which are larger than B
are ignored)

6: return ACCEPT(T1, . . . ,Tn)

ACCEPT:
T1 + . . .+ Tn

n
> τ′

SV 2006 Secure Channel by SSL/TLS EPFL 107 / 123

Timing Attack with a Sequential Distinguisher

Check3 (y,u)
1: make r in order to test u as in Check1
2: build the fake ciphertext f ||r ||y to be sent to the

oracle as in Ckeck2
3: j← 0
4: repeat
5: j← j + 1
6: query the oracle and get Tj

(a Tj larger than B is ignored and the query is
repeated)

8: until STOP(T1, . . . ,Tj)
9: return ACCEPT(T1, . . . ,Tj)

STOP: T1 + . . .+ Tj− j
µR +µW

2
6∈ [τ′−,τ′+]

ACCEPT: T1 + . . .+ Tj− j
µR +µW

2
> τ′+

SV 2006 Secure Channel by SSL/TLS EPFL 108 / 123

Analysis
Theorem

Assuming that the two time responses have a normal distribution with
the same standard deviation σ and expected values µR and µW , for
some choices of τ′+ and τ′−, the above distinguisher is optimal in terms
of probability of success vs complexity.

Thanks to the Wald Approximation, we can freely select ε+ and ε−,
compute the corresponding τ′+ and τ′−, complexities and probability of
success by

τ′+ ≈ σ2

µR−µW
log 1−ε−

ε+
JW ≈ −

2τ′−
µR−µW

τ′− ≈ σ2

µR−µW
log ε−

1−ε+
JR ≈

2τ′+
µR−µW

p ≈ (1− ε+)b |Z |−1
2 (1− ε−)b C = b |Z |−1

2 JW + bJR

SV 2006 Secure Channel by SSL/TLS EPFL 109 / 123

Multi-Session Attack

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆y ′

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆y

...

...

...

...

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

P A S S W O R D

-

-

-

DES−1 -

?
DES−1 -⊕-

?
DES−1 -⊕-

“does DES−1(y) end with byte string u?”
⇓

“does DES−1(y)⊕ y ′ end with byte string u?”

SV 2006 Secure Channel by SSL/TLS EPFL 110 / 123

Dictionary Attack

BAR CAR FAR FUR CAT FAT PET CUT PUT

.AR

� ? j

.UR

?

.AT

	 R

.ET

?

.UT

	 R

..R

� j

..T

) ? q

...

9 z
2 1

1 2 1 3 2

1 2 3 1 1 2 1 1 2

C0 =
b

∑
i=1

∑
ci ,...,c1

Pr[ci , . . . ,c1]N(ci . . .c1)

SV 2006 Secure Channel by SSL/TLS EPFL 111 / 123

Analysis

C ≈
2σ2

(µR−µW)2

(

C0 log C0− (C0−2b) log
C0−b

b
−C0 log log

1

p

)

τ′+ ≈
σ2

µR−µW

(

logC0 + log(C0−b)− logb− log log
1

p

)

τ′− ≈
σ2

µR−µW

(

log(C0−b)− logC0− logb + log log
1

p

)

.

Note that p = 1−e−Ω(C).

SV 2006 Secure Channel by SSL/TLS EPFL 112 / 123

Final Attack

DecryptBlock4
1: for i = 1 to b do
2: ci←DecryptByte4 (ci−1|| . . . ||c1)
3: end for
4: return cb|| . . . ||c1

DecryptByte4 (s)
1: sort all possible c characters in or-

der of decreasing likelihood.
2: repeat
3: for all possible values of charac-

ter c do
4: if Check4 (c||s) = 1 then
5: return c
6: end if
7: end for
8: until byte is found

Check4 (u)
1: j← 0
2: repeat
3: j ← j +1
4: wait for a new session and get the current

y and y ′ blocks
5: let i be the length of u
6: let L be a random string of length b− i
7: let R = (i − 1)||(i − 1)|| . . . ||(i − 1) of

length i
8: r ← (L||(R⊕u))⊕ y ′

9: build the fake ciphertext f ||r ||y to be sent to
the oracle
(f is the longest possible random block se-
quence)

11: query the oracle and get Tj

(if it is larger than B then go back to Step 4)
13: until STOP(T1, . . . ,Tj)
14: return ACCEPT(T1, . . . ,Tj)

SV 2006 Secure Channel by SSL/TLS EPFL 113 / 123

Application

We consider 4 scenarii for blocks of b = 8 characters

random characters in an alphabet of 256 letters (full byte)
−→ C0 = 1028

random characters in an alphabet of 128 letters (ASCII character)
−→ C0 = 516

random characters in an alphabet of 64 letters (alphanumerical
character)
−→ C0 = 260

block in a dictionary of D = 712′786 words
−→ C0 = 31 (note that ⌈log2 D⌉= 20...)

SV 2006 Secure Channel by SSL/TLS EPFL 114 / 123

Numerical Values

Uniform distribution, |Z |= 256, C0 = 1028
p 0.5 0.6 0.7 0.8 0.9 0.99
C 4239 4750 5353 6139 7397 11335

Uniform distribution, |Z |= 128, C0 = 516
p 0.5 0.6 0.7 0.8 0.9 0.99
C 2179 2346 2738 3132 3764 5741

Uniform distribution, |Z |= 64, C0 = 260
p 0.5 0.6 0.7 0.8 0.9 0.99
C 1140 1269 1421 1620 1938 2934

Dictionary, C0 = 31
p 0.5 0.6 0.7 0.8 0.9 0.99
C 166 181 199 223 261 380

SV 2006 Secure Channel by SSL/TLS EPFL 115 / 123

Password Interception

IMAP client: Outlook Express 6.x from Microsoft under
Windows XP

IMAP Rev 4 server

Outlook checks (by default) for messages automatically every 5
minutes each folder created on the IMAP user account

E.g. five folders (in, out, trash, read, and draft)
−→ 60 sessions every hour
Outlook sends the login and password to the IMAP server using
the following format:
XXXX LOG|IN "user|name" "p|assword"|<0x0d><0x0a><HMAC1><HMAC2>...

Here XXXX are four random digits which are incremented each
time Outlook connects to the server.

SV 2006 Secure Channel by SSL/TLS EPFL 116 / 123

Cipher Problem

Outlook uses the RC4 MD5 algorithm by default (despite
RFC2246 and RFC2595 suggest that 3DES EDE CBC SHA
should be supported by default).

We had to force the IMAP server to only offer block ciphers in
CBC mode.

Other applications (e.g. stunnel) use block ciphers by default.

SV 2006 Secure Channel by SSL/TLS EPFL 117 / 123

Format Problem

It can be the case that the last bytes of the password belong to
the first block of the MAC of the message.
Example
|0021 LOG|IN "name|" "passw|ord"<0x0d><0x0a><HMAC1><HMAC2>|...

It will not be possible to decrypt the last three characters from the
password.

SV 2006 Secure Channel by SSL/TLS EPFL 118 / 123

Conditions for a Successful Attack

A critical piece of information is repeatedly encrypted at a
predictable place.

A block cipher in CBC mode is chosen.

The attacker can sit in the middle and perform active attacks.

The attacker can distinguish time differences between two types
of errors.

Here we focused on the password access control in the IMAP protocol.
We can also consider the basic authentication in HTTP which is also
used for access control. This means that we can consider intercepting
the password for accessing to an Intranet server.

SV 2006 Secure Channel by SSL/TLS EPFL 119 / 123

Countermeasures

The attack against WTLS was published in 2002.

A countermeasure for TLS has been implemented in
OpenSSL 0.9.6d and following versions:
only the bad mac error error message is sent when an incorrect
padding or an incorrect MAC are detected.

This countermeasure is not enough because of timing attacks.

A new countermeasure was implemented in OpenSSL 0.9.6i:
we always check a MAC even if the padding is not correct.

Other possible countermeasure:
invert the padding and the MAC!

SV 2006 Secure Channel by SSL/TLS EPFL 120 / 123

Lessons

There are flaws, even in well esbablished standards

We can make timing attacks over a network

The order MAC-PAD-Encrypt should be reconsidered

SV 2006 Secure Channel by SSL/TLS EPFL 121 / 123

Further Readings

Vaudenay . A Classical Introduction to Cryptography:
Applications for Communication Security. Springer. 2005.
The lecture notes for my students

D. Bleichenbacher .
Chosen Ciphertext Attack Against Protocols Based on the RSA
Encryption Standard PKCS#1.
In Advances in Cryptology (CRYPTO’98), LNCS vol. 1462,
pp. 1–12, 1998.

B. Canvel, A. Hiltgen, S. Vaudenay, M. Vuagnoux .
Password Interception in a SSL/TLS Channel.
In Advances in Cryptology (CRYPTO’03), LNCS vol. 2729,
pp. 583–599, 2003.

SV 2006 Secure Channel by SSL/TLS EPFL 122 / 123

Q & A

	Secure Channels
	An Application Example
	Example of Critical Application
	Requirements

	Basics on Communication Security
	A Few Cryptographic Primitives

	Conventional Cryptography
	Confidentiality by Symmetric Encryption
	Security of Symmetric Encryption
	Two Categories of Symmetric Encryption
	Stream Ciphers from a High Level
	RC4 (Alleged)
	RC4 Key Schedule
	DES Block Cipher
	The XOR Operation
	CBC Encryption Mode
	CBC Decryption
	Note on the CBC Mode
	Brute Force Attack on DES
	Two-Key Triple DES

	Integrity by Hash Function
	Security of Hash Functions
	Cryptographic Hashing

	Summary of Generic Attacks
	Recent Attacks on Hash Functions

	Authenticity by Message Authentication Code
	Security of Symmetric Encryption
	Three Categories of MAC
	Hashing to Authentication: HMAC [RFC 2104]

	A Typical Secure Channel Establishment
	Authenticated Modes of Operation
	Examples of Secure Channels
	Remaining Problem: Key Setup

	Asymmetric Cryptography
	Public-Key Cryptosystem
	Security

	Digital Signature
	Security

	Key Exchange Protocol
	Security
	The Diffie-Hellman Key Agreement Protocol
	If we Lack Authentication: Man-in-the-Middle Attack
	Static versus Ephemeral Diffie-Hellman

	RSA Cryptography
	Plain RSA Encryption
	Plain RSA Signature
	Special Application Attacks

	PKCS#1v1.5 Encryption
	PKCS#1v1.5 Signature

	RSA-OAEP
	Mask Generation Function in RSA-OAEP

	RSA-PSS
	ISO/IEC 9796 Signature

	ElGamal Cryptography
	Plain ElGamal Encryption
	Non-Deterministic Encryption
	ElGamal Signature
	The ElGamal Dynasty
	DSA Signature

	Public-Key Infrastructure
	Public-Key Infrastructure
	An X.509 Certificate Example: Overall Structure
	An X.509 Certificate Example: Subject

	SSL/TLS
	SSL Principles
	History
	Common Use Principle

	TLS Record Protocols
	Session State
	Original TLS Cipher Suites --- i
	Original TLS Cipher Suites --- ii

	TLS Secure Channel Establishment
	A Typical TLS Session
	Key Derivation in SSL/TLS
	PRF
	Using PRF

	Different Key Exchange Protocols
	DH_sig Key Exchange
	DHE_sig Key Exchange
	DH_anon Key Exchange

	TLS Secure Channel
	Record Protocol
	MAC in Record Protocol
	Secure Channel in SSL/TLS (Using CBC Encryption)
	Using Block Ciphers in CBC Mode
	Using Stream Ciphers

	A Weakness in SSL/TLS
	Side Channel Attacks on RSA
	Exponentiation From Left to Right
	Implementation

	Power Analysis Attack
	SPA

	Other Side Channel Attacks

	Weakness in PKCS Encryption
	PKCS#1v1.5 Encryption
	Yet Another Side Channel Attack

	Weakness in CBCPAD
	CBCPAD Encryption
	CBCPAD Decryption
	The Attack Overview

	Application to TLS: Two Problems
	Transforming Peer into an Oracle
	Implementation
	Using an Extra Side Channel
	Regular Timing Attack
	Timing Attack with a Sequential Distinguisher
	Analysis
	Multi-Session Attack

	Dictionary Attack
	Analysis
	Final Attack
	Application
	Numerical Values

	Password Interception
	Cipher Problem
	Format Problem
	Conditions for a Successful Attack

	Countermeasures
	Lessons

	Conclusion

