
Privacy in RFID

Strong Privacy needs Public-Key Cryptography

Serge Vaudenay

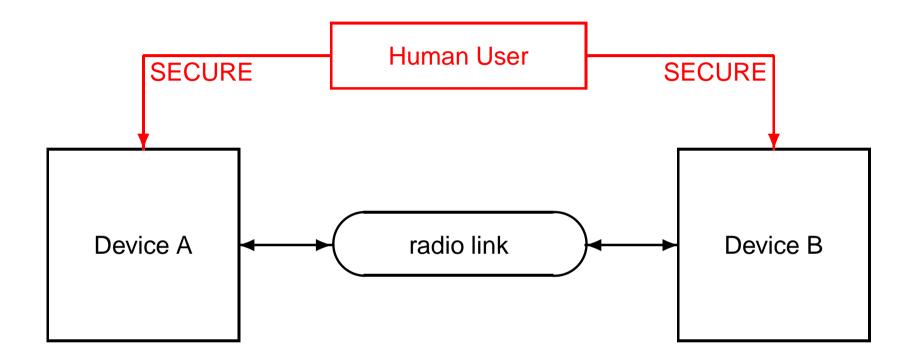
http://lasecwww.epfl.ch/

LASEC

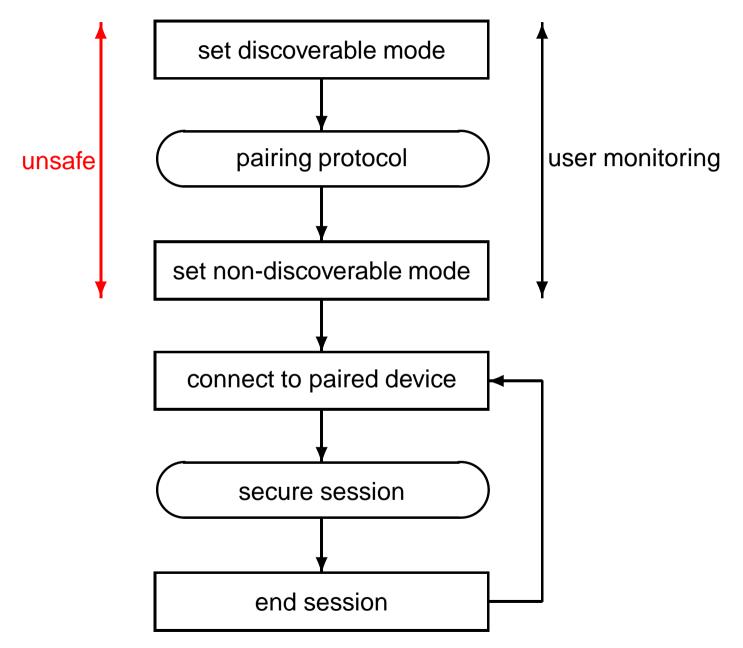
Privacy in RFID

- **2** The Passport RFID Case
- **3** Some RFID Schemes
- **Strong Privacy in RFID**

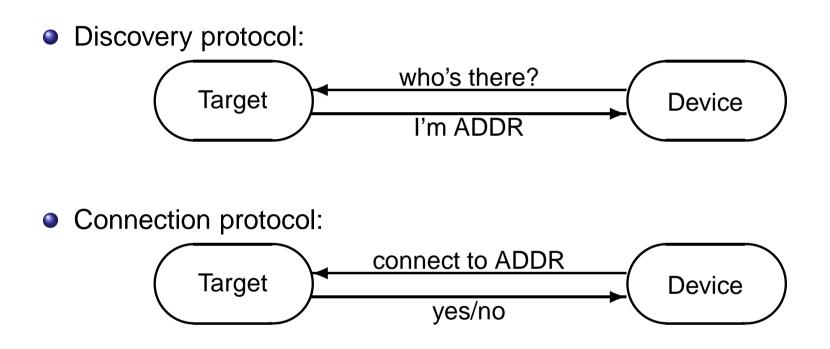
- **2** The Passport RFID Case
- **3** Some RFID Schemes
- **4** Strong Privacy in RFID


The Bluetooth Principles

- short-range wireless technology
- designed to transmit voice and data
- for a variety of mobile devices (computing, communicating, ...)
- bring together various markets

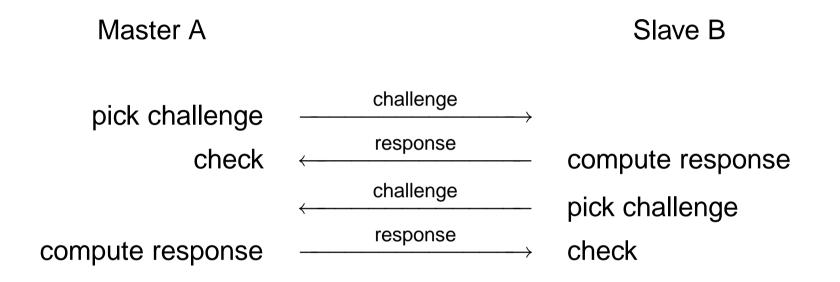

- 1Mbit/sec up to 10 meters over the 2.4-GHz radio fequency
- robustness, low complexity, low power, low cost

Bluetooth Channels



- secure channel for a PIN only
- security based on an ephemeral PIN

Privacy in Bluetooth


Discovery and Connection Protocols

Device Pairing

Peer Authentication

response = MAC(challenge)

Key Establishment (In)security

Theorem

Under some "reasonable assumptions", the pairing protocol is secure if either PIN has large entropy or the protocol is run through a private channel.

- ② a cheap pragmatic security
- pretty weak security

devastating sniffing attacks in other cases! (Jakobsson-Wetzel 2001 [JW 2001])

Bluetooth (In)security

Current (mode 3) security is rather poor:

- confidentiality
- authentication
- integrity
- freshness
- liveliness
- key establishment
- sequentiality
- privacy

- ⓒ (attacks still academic so far)
- (not academic though: by encryption)

😟 (yes, but...)

 \odot

 \bigcirc

 \odot

 \bigcirc

♡/♡ (message loss)

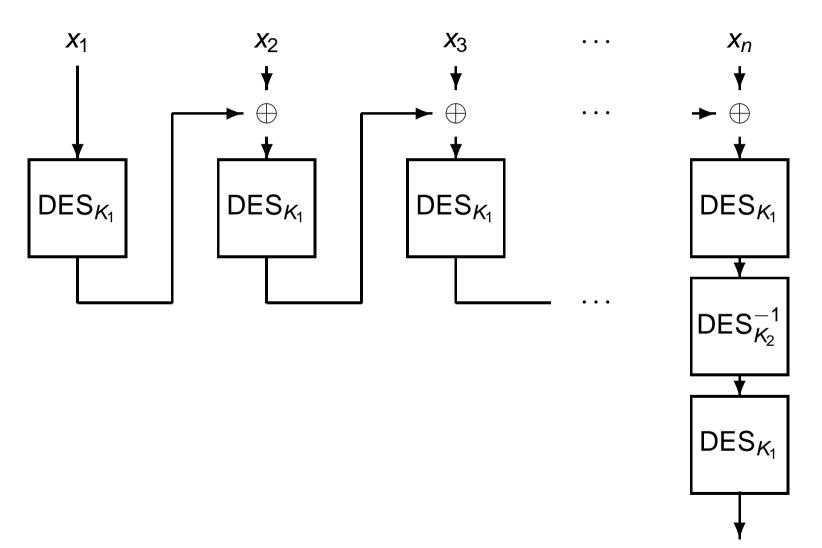
- **3** Some RFID Schemes
- **4** Strong Privacy in RFID

Machine Readable Travel Documents Offering ICC Read-Only Access

- standard by ICAO (International Civil Aviation Organization)
- purpose: put radio readable IC chip in travel documents (passport) that contain biometric (privacy-sensitive) information
- version 1.1 published in 2004 (http://www.icao.int/mrtd)

Objectives

- to enable inspecting authorities of receiving States to verify the authenticity and integrity of the data stored in the MRTD
- use contactless IC chip devices
- add digitally stored fingerprint and/or iris images in MRTD
- treat those data as privacy-sensitive
- have no centralized private key
- maintained by ICAO


Underlying Cryptography

- SHA1 and sisters
- DES, triple-DES, CBC encryption mode
- one of the ISO/IEC 9797-1 MAC (next slide)
- RSA signatures (ISO/IEC 9796, PKCS#1), DSA, ECDSA
- X.509

ISO/IEC 9797-1

(MAC algorithm 3 based on DES with padding method 2)

(concatenate message with bit 1 and enough 0 to reach a length multiple of the block size)

- each country has a certificate authority CSCA (Country Signing Certificate Authority)
- public key of CSCA KPu_{CSCA} is self-signed into C_{CSCA}
- C_{CSCA} is distributed to other countries and ICAO by diplomatic means
- each DS (Document Signer) has a public key KPu_{DS}, a secret key KPr_{DS}, and a certificate C_{DS} signed by CSCA
- revocation lists are frequently released

Traveling Document

MRTD (Machine Readable Travel Document) with ICC read-only access contain

- a logical data structure LDS (e.g. fingerprint images)
- document security object SO_D , containing the hash of LDS, signed by DS, that may contain the certificate C_{DS} by CSCA
- (for active authentication only) a public key KPu_{AA} and secret key KPr_{AA} (the hash of KPu_{AA} is also in SO_D for authentication purpose)
- an optically readable MRZ, the hash of which being also contained in SO_D for authentication purpose

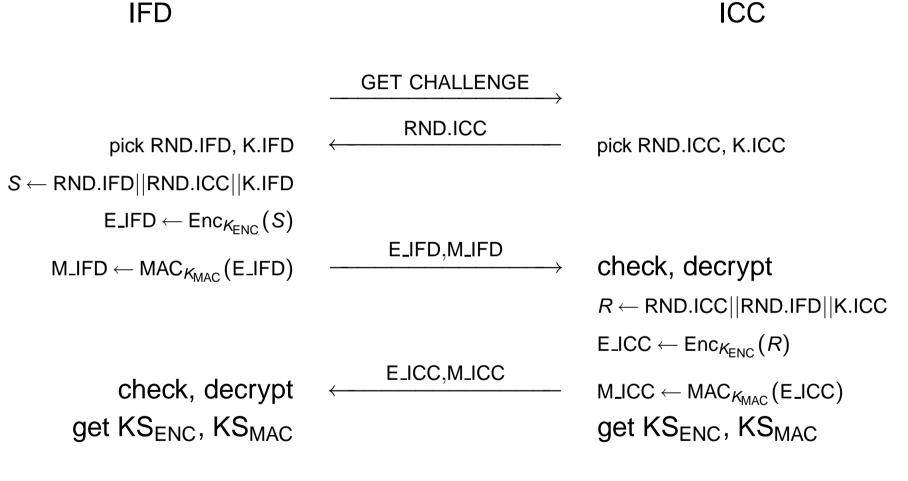
Access Control Options

- onne: anyone can query the ICC, communication in clear
- basic: uses secure channel with authenticated key establishment from MRZ
- extended: up to bilateral agreements (no standard)

Passive Authentication (No Access Control)

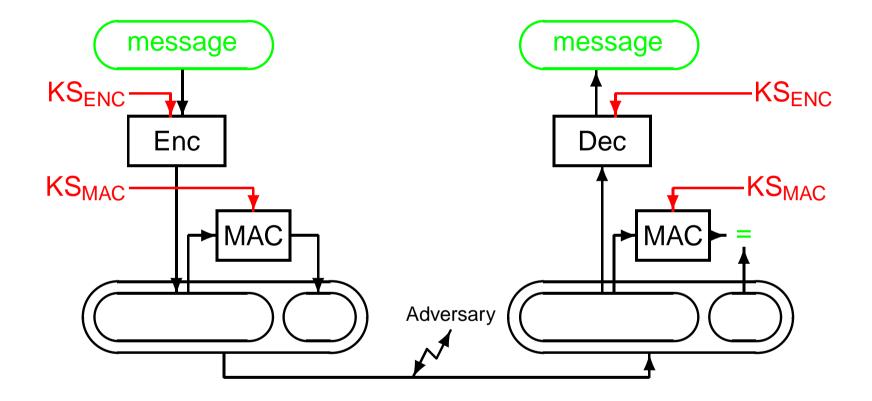
- inspection authority loads SO_D, extract the DS, gets C_{DS}, verifies it, check the signature of SO_D
- inspection authority loads LDS and check its hash in SO_D
- pro requires no processing capabilities on the MRTD side
- **con** no privacy protection

Basic Access Control


- inspection authority reads MRZ, takes the 16 first bytes of its
 SHA1 hash and uses it as a key seed to derivate symmetric keys
- inspection authority and ICC mutually authenticate and derive session keys
- inspection authority can now talk to ICC through a secure channel
- pro privacy protection
- **con** requires processing capabilities on the MRTD side

Key Derivation from MRZ (Basic Access Control)

used to derivate Enc and MAC keys at two places


- to talk to ICC (K_{ENC} and K_{MAC})
- to generate session keys (KS_{ENC} and KS_{MAC})
- set $D = K_{seed} || c$ where c = 00000001 for the encryption key and c = 00000002 for the MAC key
- compute H = SHA1(D)
- the first 8 bytes and the next 8 bytes of H are set to the 2-key triple-DES
- adjust the parity bits of the two DES keys

Authentication and Key Estab. (Basic Access Control)

(derive KS_{ENC} and KS_{MAC} from $K_{seed} = K.ICC \oplus K.IFD$)

Secure Channel (Basic Access Control)

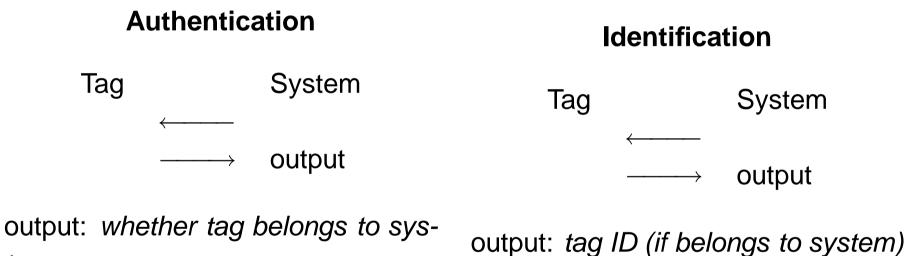
Active Authentication

- authenticate ICC knows some secret key KPr_{AA} by a challenge-response protocol
- pro prevents chip substitution
- **con** processing demanding

Active Authentication Protocol

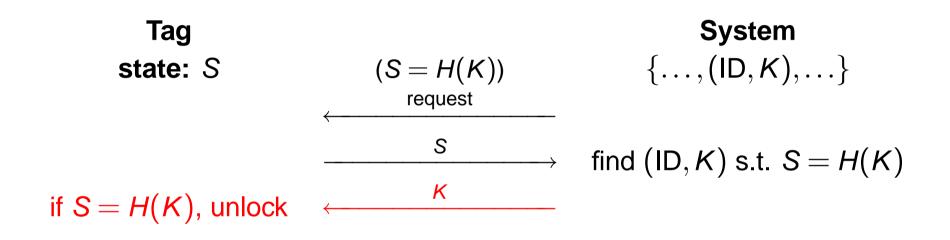
Comments (Personal Opinion)

- privacy protection is rather small
 - we can check whether an MRZ is equal to a target value Example: continuously try the MRZ of M. Leueuberger in the street until one MRTD answers
 - MRZ entropy is less than 48 bits By evesdropping RND.ICC and E_IFD of existing session we can do exhaustive search on MRZ and either decrypt the session or later ask the MRTD for privacy-sensitive information
- ICC will eventually be reverse engineered and copied
- old technology:
 - DES standard is no longer supported
 - SHA1 hash function is half broken
 - home-made secure channel
 - random key establishment based on low-entropy MRZ

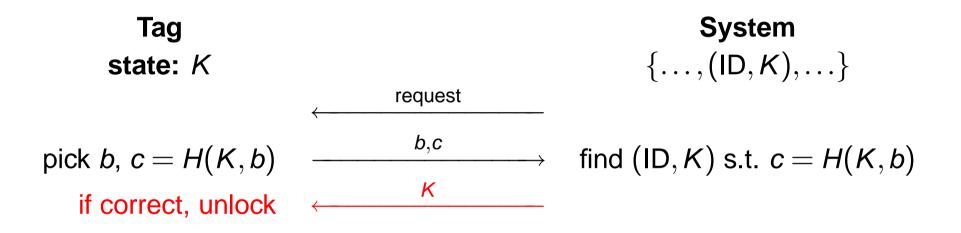

we can use much better cryptographic schemes (e.g. password-based authenticated key agreement)

- **2** The Passport RFID Case
- **3** Some RFID Schemes
- **4** Strong Privacy in RFID

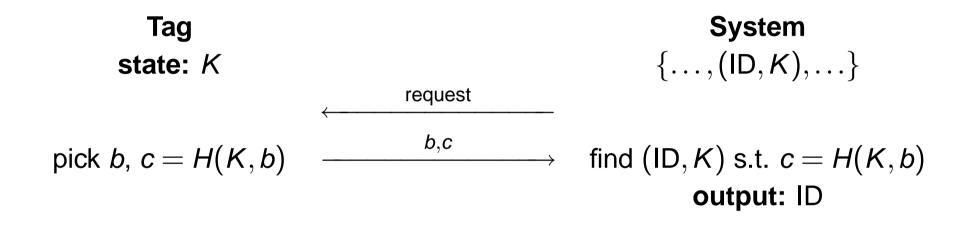
Authentication and Identification Protocols


- System init: generate key materials + reset a database
- Tag init: Tag is given an initial state and System is updated with a new tag (ID, key) entry in database

tem


- security: completeness, soundness, privacy
- side channel: authentication output is public or not

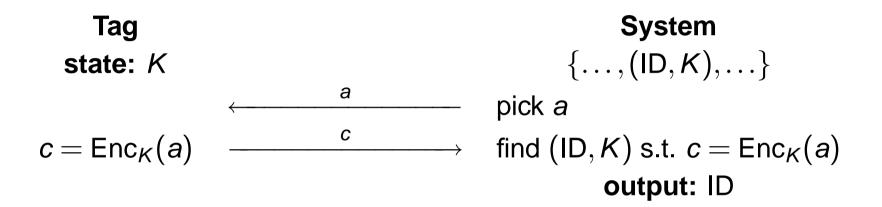
Weis-Sarma-Rivest-Engel 2003 [WSRE 2003]: The Hash-Lock Paradigm


- use one-time unlock keys and update it after unlocking
- pro simple, efficient
- **con** man-in-the-middle
- **con** privacy threat (linkability)

The Randomized Hash-Lock Paradigm

- use one-time unlock keys and update it after unlocking
- pro simple, efficient
- **con** man-in-the-middle for one-time keys
- **con** replay attack if key is not one-time

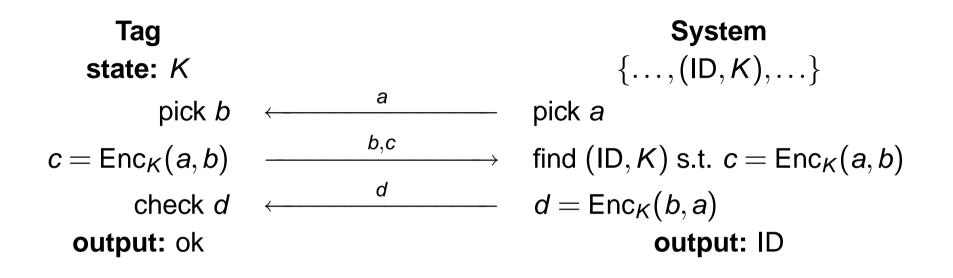
Randomized Hash-Lock Identification



pro simple, efficient
con replay attack \longrightarrow tag impersonation
con tag corruption \longrightarrow tag cloning, tag traceability

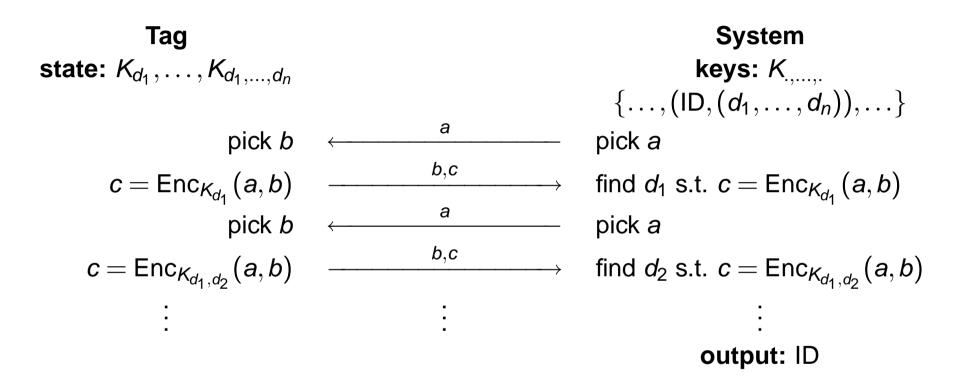
Feldhofer-Dominikus-Wolkerstorfer 2004 [FDW 2004]

- block ciphers are more efficient than hash functions in RFID tags
- use ISO/IEC 9798-2 unilateral authentication
- use ISO/IEC 9798-2 mutual authentication


ISO/IEC 9798-2 2-Pass Unilateral Authentication

pro simple, efficient **con** replay attack \longrightarrow tag traceability

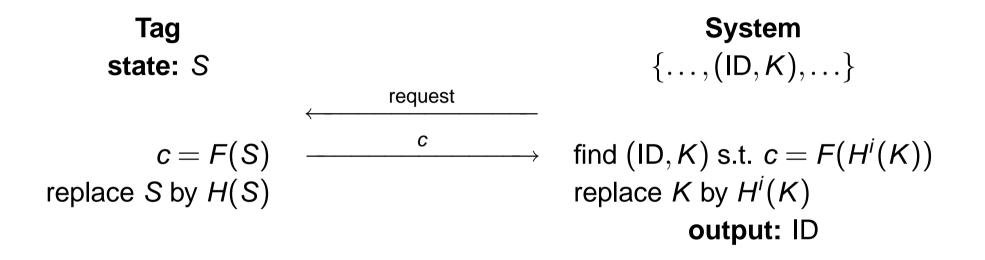
con tag corruption \longrightarrow tag cloning


ISO/IEC 9798-2 3-Pass Mutual Authentication

pro simple, efficient

- pro pretty good soundness and privacy
- **con** tag corruption \longrightarrow tag cloning

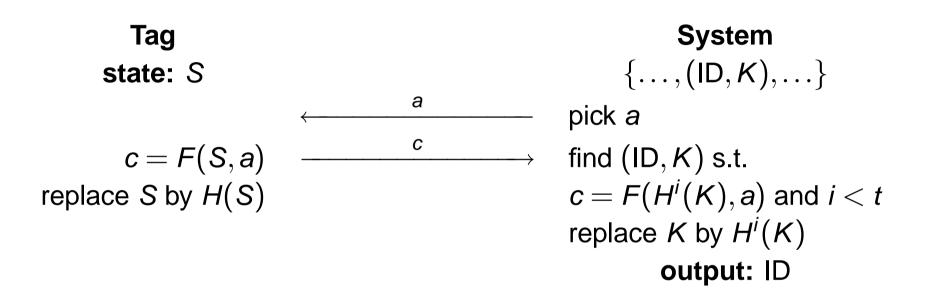
Molnar-Wagner 2004 [MW 2004]


pro improved the search complexity on the system sidecon privacy leakage

Attack by Avoine-Dysli-Oechslin 2005 [ADO 2005]

- 1: pick two tags at random associated to d_1^1, \ldots, d_n^1 and d_1^2, \ldots, d_n^2
- 2: listen to one protocol communication between one random tag T out of T^1 and T^2 and the system
- 3: get one random tag T^0 , **corrupt** it, get $K_{d_1^0}, \ldots, K_{d_1^0, \ldots, d_n^0}$
- 4: let *i* be the maximum s.t. $\forall j = 1, ..., i 1, d_i^0 = d_i^1 = d_i^2$
- 5: if $d_i^0 \not\in \{d_i^1, d_i^2\}$ then fail
- 6: if the *i*th key in the protocol transcript matches $K_{d_1^0,...,d_i^0}$, declare that $T = T^b$ s.t. $d_i^0 = d_i^b$ otherwise, declare that $T = T^b$ s.t. $d_i^0 \neq d_i^b$

The lower the branch number, the higher the success probability The higher the branch number, the higher the complexity


Ohkubo-Suzuki-Kinoshita 2003 [OSK 2003]

pro pretty good soundness and *forward* privacy

- con no complexity upper bound
- **con** man-in-the-middle attack

Modified Ohkubo-Suzuki-Kinoshita

pro simple, efficient

- pro pretty good soundness and *forward* privacy
- **con** privacy leakage from side channel

Attack by Juels-Weis 2006 [JW 2006]

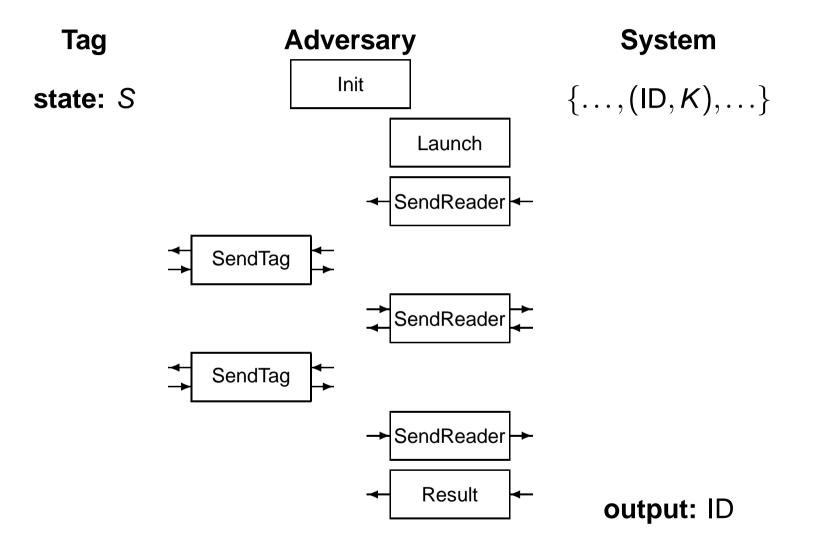
- 1: pick one tag *T* at random
- 2: simulate *t* times a reader that sends a random challenge *a*
- 3: get one tag which is T with probability $\frac{1}{2}$
- 4: execute a complete protocol between this tag and the reader
- 5: get the reader result success or failure
- 6: if the result is failure, declare that the tag is T

- **2** The Passport RFID Case
- **3** Some RFID Schemes

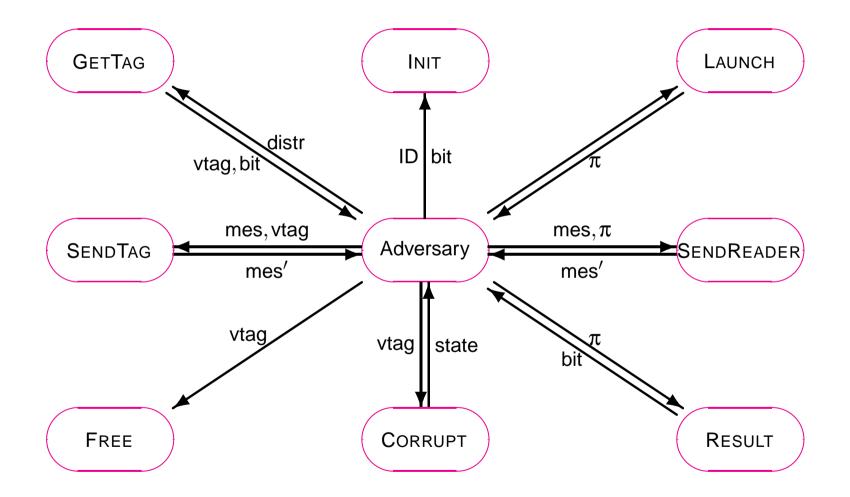
Previous Work

Challenge-response protocols: Hash Locks [WSRE 2003], using ISO/IEC 9798-2 [FDW 2004], with optimized database search [MW 2004]

Forward privacy: Ohkubo-Suzuki-Kinoshita [OSK 2003], with optimized database search [ADO 2005], Dimitriou [Dim 2005]


Privacy with corruption: Avoine-Dysli-Oechslin [ADO 2005], Avoine [Avo 2005],

Privacy with side-channels: Ohkubo-Suzuki 2005 [OS 2005], Juels-Weis [JW 2006], Burmester-van Le-Medeiros 2006 [BLM 2006]


RFID Scheme Definition

Definition An RFID scheme consists of **Reader setup algorithm** Setup $(1^s) \rightarrow (K_S, K_P)$ where K_S is safely stored in the system and K_P is publicly released; **Tag setup algorithm** Gen_{K_S,K_P}(ID) \rightarrow (K,S) where S is the initial state of the tag and (ID, K) is a new entry to be inserted in the reader database; **Identification protocol** between a tag with state S and a reader with database of (ID, K) and key pair (K_S, K_P) . The protocol output on the reader side should be ID is the tag was identified in the database or \perp otherwise.

Adversarial Model

Oracle Accesses

Weak adversary: no CORRUPT query
Forward adversary: CORRUPT queries at the end only
Destructive adversary: CORRUPT(vtag) queries followed by no queries using vtag
Strong adversary: no restriction for using CORRUPT queries

Side Channel Models

Narrow adversary: no RESULT query

(default): no restriction for using RESULT queries

Completeness

- 1: INIT(1, ..., r; r+1, ..., n)
- 2: pick $i \in \{1, \ldots, n\}$ at random
- 3: $(vtag, \cdot) \leftarrow GETTAG(i)$
- 4: EXECUTE(vtag)

Definition

An RFID scheme is complete if for any polynomially bounded *n* and any $r \le n$ the above adversary induces an unexpected output with negligible probability.

Soundness

- 1: **for** *i* = 1 to *n* **do**
- 2: **INIT**(*i*;)
- 3: $(\operatorname{vtag}_i, \cdot) \leftarrow \operatorname{GETTAG}(i)$
- 4: end for
- 5: (training phase) do any LAUNCH, SENDREADER, SENDTAG, RESULT
- 6: $\pi \leftarrow \text{Launch}$
- 7: (attack phase) do any LAUNCH, SENDREADER, SENDTAG, RESULT

Wining condition: π outputs Out = ID $\neq \perp$ for some ID value, tag with this ID was not corrupted, and tag with this ID did not complete a protocol run during the attack phase.

Definition

An RFID scheme is sound if for any polynomially bounded adversary the probability of success is negligible.

Soundness Models

- CORRUPT queries followed by nothing are useless (forward and weak adversaries are equivalent for soundness)
- once a tag is corrupted, we can fully simulate it thus assume it is never used again
 - (strong and destructive adversaries are equivalent for soundness)

$$\begin{array}{ccc} \text{strong sound} & \Rightarrow & \text{weak sound} \\ & & & \downarrow \\ \text{narrow-strong sound} \Rightarrow \text{narrow-weak sound} \end{array}$$

Privacy

Wining condition: the adversary output a predicate using equalities on vtag's and/or constant ID values such that replacing the vtag's by their identities satisfies the predicate.

Definition

An adversary \mathcal{A} for privacy is significant if there exists no blinder B such that $\Pr[\mathcal{A} \text{ succeed}] - \Pr[\mathcal{A}^B \text{ succeed}]$ is negligible.

Blinders

Definition

A blinder is an interface between the adversary and the oracles that

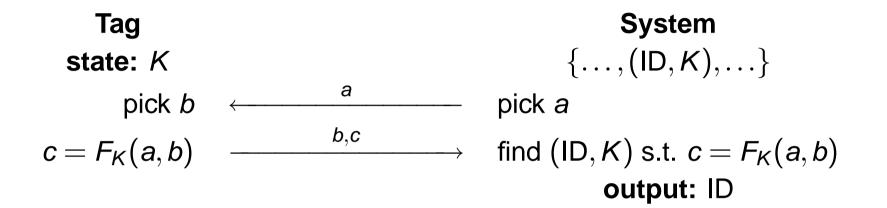
- passively looks at communications to INIT, GETTAG, FREE, and CORRUPT queries
- impersonate the oracles LAUNCH, SENDREADER, SENDTAG, and RESULT to simulate the queries.

Privacy Models

$\begin{array}{cccc} strong p. & \Rightarrow & destructive p. \Rightarrow & forward p. \Rightarrow & weak p. \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ narrow-strong p. \Rightarrow narrow-destr. p. \Rightarrow narrow-forward p. \Rightarrow narrow-weak p. \end{array}$

The Ohkubo-Suzuki 2005 Model [OS 2005]

- single tag
- single corruption (at the end)
- adversary can travel through the tag or reader time (suitable when state transition is deterministic)
- Iast interaction (for the adversary time) is either real or simulated
- \rightarrow this can reduce to a forward adversary


The Juels-Weis 2006 Model [JW 2006]

- 1: **for** *i* = 1 to *n* **do**
- 2: **INIT**(i;)
- 3: $(\operatorname{vtag}_i, \cdot) \leftarrow \operatorname{GETTAG}(i)$
- 4: end for
- 5: do any LAUNCH, SENDREADER, SENDTAG, RESULT, CORRUPT (at least two virtual tags should be left incorrupted)
- 6: select T_0, T_1 , the ID of two uncorrupted tags
- 7: FREE(vtag_{T_0}, vtag_{T_1})
- 8: $(vtag, \cdot) \leftarrow GETTAG(Pr[T_0] = Pr[T_1] = \frac{1}{2})$
- 9: do any Launch, SendReader, SendTag, Result
- 10: (forward model only) $S \leftarrow CORRUPT(vtag)$
- 11: select $b \in \{0, 1\}$
- 12: output vtag $\equiv T_b$

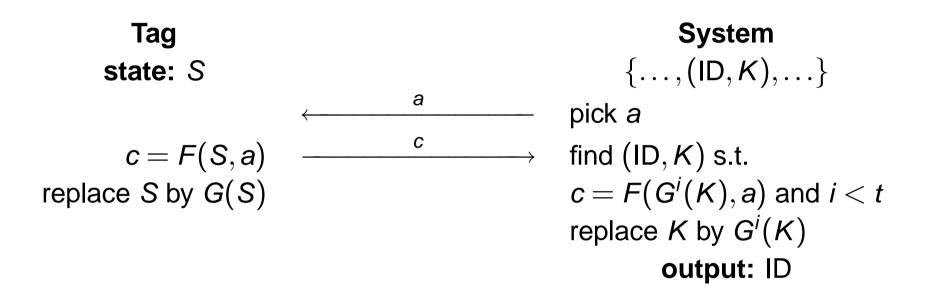
The Burmester-van Le-Medeiros 2006 Model [BLM 2006]

- destructive model
- adversaries are not allowed to produce an output involving a corrupted vtag
- \rightarrow model weaker than destructive privacy
- \rightarrow some protocol private in this model may be not even narrow-forward private

Challenge-Response RFID Scheme

Theorem

Assuming that F is a pseudorandom function, this RFID scheme is


- complete
- strong sound
- weak private

Caveat: Not Even Narrow-Forward Private

1: INIT(0, 1)2: $(vtag, \cdot) \leftarrow GETTAG(Pr[0] = Pr[1] = \frac{1}{2})$ 3: $(\cdot, (a, b, c)) \leftarrow \mathsf{EXECUTE}(\mathsf{vtag})$ 4: FREE(vtag) 5: $(vtag_0, \cdot) \leftarrow GETTAG(0)$ 6: $K \leftarrow CORRUPT(vtag_0)$ 7: if $F_{\mathcal{K}}(a,b) = c$ then 8: $\mathbf{X} \leftarrow \mathbf{0}$ 9: **else** 10: $x \leftarrow 1$ 11: end if 12: output vtag $\equiv x$

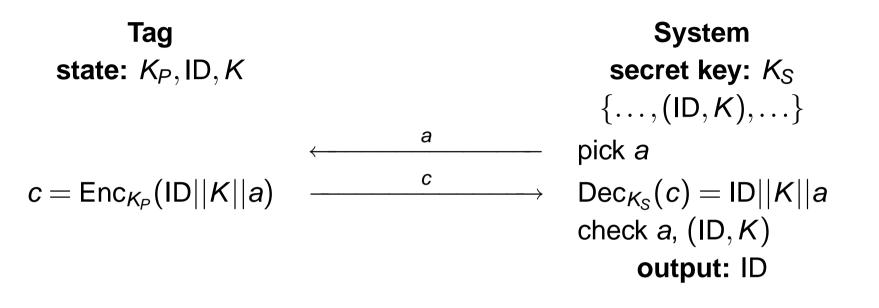
We have $\Pr[\mathcal{A} \text{ succeeds}] \approx 1$. For any blinder *B*, $\Pr[\mathcal{A}^B \text{ succeeds}] = \frac{1}{2}$. Therefore $\Pr[\mathcal{A} \text{ succeeds}] - \Pr[\mathcal{A}^B \text{ succeeds}] \approx \frac{1}{2}$.

Modified Ohkubo-Suzuki-Kinoshita

Theorem

Assuming that F and G are random oracles, this RFID scheme is

- complete
- strong sound
- narrow-destructive private


Caveat: Not Even Weak Private

(Juels-Weis [JW 2006] attack):

- 1: INIT(0,1)
- 2: $(vtag_0, \cdot) \leftarrow GETTAG(0)$
- 3: for *i* = 1 to *t* + 1 do
- 4: pick a random *x*
- 5: SENDTAG(x, vtag₀)
- 6: end for
- 7: $FREE(vtag_0)$
- 8: $(vtag, \cdot) \leftarrow GETTAG(Pr[0] = Pr[1] = \frac{1}{2})$
- 9: $(\pi, \cdot) \leftarrow \mathsf{EXECUTE}(\mathsf{vtag})$
- 10: $x \leftarrow \mathsf{RESULT}(\pi)$
- 11: output vtag $\equiv x$

We have $\Pr[\mathcal{A} \text{ succeeds}] \approx 1$. For any blinder B, $\Pr[\mathcal{A}^B \text{ succeeds}] = \frac{1}{2}$. Therefore $\Pr[\mathcal{A} \text{ succeeds}] - \Pr[\mathcal{A}^B \text{ succeeds}] \approx \frac{1}{2}$.

Public-Key-Based RFID Scheme

Theorem

Assuming that Enc/Dec is an IND-CCA public-key cryptosystem, this RFID scheme is

- complete
- strong sound
- narrow-strong and forward private

Caveat: Not Destructive Private

- 1: INIT(0;1)
- 2: $(vtag_0, \cdot) \leftarrow GETTAG(0)$
- 3: $S_0 \leftarrow CORRUPT(vtag_0)$
- 4: $(vtag_1, \cdot) \leftarrow GETTAG(1)$
- 5: $S_1 \leftarrow CORRUPT(vtag_1)$
- 6: flip a coin $b \in \{0, 1\}$
- 7: $\pi \leftarrow \text{Launch}$
- 8: simulate a tag of state S_b with reader instance π
- 9: $x \leftarrow \mathsf{RESULT}(\pi)$
- 10: **if** x = b **then**
- 11: output true
- 12: **else**
- 13: output false
- 14: **end if**

We have $\Pr[\mathcal{A} \text{ succeeds}] \approx 1$.

A blinder who computes *x* translates into an IND-CPA adversary against the public-key cryptosystem, thus $Pr[\mathcal{A}^B \text{ succeeds}] \approx \frac{1}{2}$ for any *B*.

Hence, \mathcal{A} is a significant destructive adversary.

Separation Results

Theorem

- A complete RFID scheme that is narrow-destructive private cannot be destructive private.
 - \rightarrow strong privacy is impossible for complete schemes
- A complete and narrow-strong RFID scheme can be transformed into a secure key agreement protocol

 → narrow-strong privacy needs public-key cryptography techniques
- A complete and narrow-forward stateless RFID scheme can be transformed into a secure key agreement protocol
 - \rightarrow narrow-forward privacy without public-key cryptography must be stateful

Conclusion

- We have a strong framework to treat RFID schemes
- We have several levels of privacy
- The strongest possible require public-key cryptography (an application for TCHo [FV 2006]?)
- We identified optimal solutions

Further Readings

• M. Jakobsson, S. Wetzel.

Security Weaknesses in Bluetooth. In *Topics in Cryptology (CT–RSA'01)*, LNCS vol. 2020, pp. 176–191, 2001.

• A. Juels, D. Molnar, D. Wagner.

Security and Privacy Issues in E-Passports.

In Conference on Security and Privacy for Emerging Areas in Communication Networks – SecureComm. IEEE. 2005.

• A. Juels, S. Weis.

Defining Strong Privacy for RFID. Cryptology ePrint Archive 2006-137. http://eprint.iacr.org/2006/137

• G. Avoine.

Cryptography in Radio Frequency Identification and Fair Exchange Protocols.

PhD Thesis no. 3407. EPFL. 2005.

http://library.epfl.ch/theses/?nr=3407

Q & A

References

- Avoine 2005: PhD Thesis http://library.epfl.ch/theses/?nr=3407
- Avoine-Dysli-Oechslin 2005: SAC 2005
- Burmester-van Le-Medeiros 2006: SecureComm 2006
- Dimitriou 2005: SecureComm 2005
- Feldhofer-Dominikus-Wolkerstrofer 2004: CHES 2004
- Finiasz-Vaudenay 2006: SAC 2006
- Jakobsson-Wetzel 2001: CT-RSA 2001
- Juels-Molnar-Wagner 2005: SecureComm 2005
- Juels-Weis 2006: http://eprint.iacr.org/2006/137
- Molnar-Wagner 2004: ACM CCS 2004
- Ohkubo-Suzuki 2005: Communications of the ACM 2005
- Ohkubo-Suzuki-Kinoshita 2003: RFID Privacy Workshop 2003
- Vaudenay 2006: ICISC 2006
- Weis-Sarma-Rivest-Engel 2003: SPC 2003
 SV 2006 Privacy in RFID