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Overview

• Stream Ciphers: A short Introduction
• Stream Ciphers based on Linear Feedback 

Shift Registers 
• Cryptanalysis principles
• Correlation attacks
• Linear attacks
• Distinguishing attacks
• Algebraic attacks
• Algebraic Immunity of S-Boxes and 

Augmented functions
• Multivariate Hash Functions
• Other attacks (Historical Overview)
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Why stream ciphers?

Potential applications:

Embedded systems

RFID‘s

Components in lightweight cryptography
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Introduction
Stream cipher: 
Encrypts sequence of plaintext characters, e.g., 
from binary alphabet {0,1}.

Synchronous stream cipher: 
The output of a pseudorandom generator, the key-
stream, is used together with plaintext to produce
ciphertext.

Additive stream cipher: 
Ciphertext symbols ci are obtained from plaintext
symbols mi and keystream symbols bi by addition.
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Addition is often bitwise XOR (i.e., addition
mod 2): 

ci = mi + bi (mod 2).

Before transmission, secret key K has to be
transmitted in secure way to receiver.

Decryption: 

Achieved simply by subtracting keystream
symbols from ciphertext symbols: mi = ci + bi

(mod 2)
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Model of a binary additive stream cipher:

Keystream
Generator

K ⊕
bi

mi

ci
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Some popular stream ciphers:

• RC4, used in Netscape‘s Secure Socket
Layer (SSL) protocol

• A5, in the Global System for Mobile 
Communication (GSM)

• Bluetooth stream cipher, standard for
wireless short-range connectivity, specified
by the Bluetooth Special Interest Group
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•Are generally faster than other symmetric encryp-
tion systems like block ciphers, and are much faster
than any public key cryptosystem.

•Are more appropriate, when buffering is limited, 
or when characters must be individually processed.

•Have no error propagation.

Stream ciphers
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Prototype stream cipher: One-time-pad

Keystream is randomly chosen binary string of 
same length as plaintext, and is never used
again.

One-time-pad is „unconditionally secure“.

If keystream is reused, the one-time-pad (like
every stream cipher) is insecure.

Drawback of one-time-pad: Key as long as
plaintext; makes distribution of secret key difficult
in practice.
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In practical applications: 
Random keystream is replaced by output of an 
efficient deterministic pseudorandom generator.

Initial state is short random string K of binary digits
(e.g. of 128 bits). 
Only secret key K needs to be securely transmitted. 

Thereby provable security is lost.

For cryptographic applications, generated key-
stream should pass a whole battery of statistical
tests, e.g. NIST statistical test suite.
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Computational effort to predict the keystream for
unknown initial state:
Should be far beyond the capabilities of an adver-
sary.

Many pseudorandom generators used, e.g., for
computer simulations, wouldn‘t satisfy this
requirement.

Focus here on stream ciphers based on 
Linear Feedback Shift Registers (LFSR‘s).

Are easy to implement, at least in hardware,
and run efficiently.
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Stream Ciphers based on LFSR‘s

A LFSR of length n:

Consists of a bit vector (xn,...,x1). In one step, each bit
is shifted one position to the right, except the right-
most bit x1 which is output.

On the left, a new bit is shifted in, by a linear recur-
sion

xj = (c1xj-1 + c2xj-2 + ... + cLxj-L) mod 2,

for nj ≥
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Depending on the chosen linear recursion, 
LFSR‘s have desirable properties:

• Produce output sequences of large 
period (e.g. maximum period 2n-1 )

• Produce sequences with good statistical
properties

• Can be readily analyzed using algebraic
techniques
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Linear recursion of LFSR can also be des-
cribed by feedback polynomial: 

For an n-stage LFSR with feedback
coefficients c0, c1,...,cn , the characteristic
polynomial is defined by

f(x)=c0 + c1x + ... + cn-1x
n-1 + xn

f is primitive, if f divides x2n-1 + 1, but not

xe + 1 with e < 2n –1. (Polynomial arithmetic

over GF(2)). If f is primitive, output sequence
of LFSR has maximum period 2n - 1.
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Serious drawback of LFSR‘s for cryptography: 
Output is easily predictable, even for unknown initial
state of bit vector (xn,...,x1), and unknown recursion: 

Solve a system of linear equations in unknown state
bits (and coefficients for the recursion).

Common methods for destroying linearity properties
of LFSR‘s:

• Use nonlinear filter/combining function on outputs
of one/several LFSR‘s

• Use output of one/more LFSR‘s to control the
clock of one/more other LFSR‘s.
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state

non-linear
filter

linear
feedback

b0 , b1 , b2 , ...

Nonlinear filter generator: 

Generate key-stream bits b0, b1, b2 ,..., as some
nonlinear function f of the stages of a single LFSR.
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Vice versa:

Given any binary vector b of length 2n – 1, 
and given any maximum length LFSR of 
length n with a nonzero initial state.

Then there exists a unique filter function f
which can produce this vector b as the first
period of the output sequence of the filter
generator with this LFSR and initial state, 
and with this filter function f.
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Example of combiner generator: Geffe
generator (historical)

3 LFSR‘s X, Y , Z, with outputs xt, yt, zt.

Output bt determined as:

If yt = 1
bt = xt

else
bt = zt

Combining function: 

b = f(x,y,z) = xt*yt+(yt+1)*zt.
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Generating LFSR, A

Selection LFSR, S

Selection 
logic

Selection logic

The output of A is taken as 
a keystream output if the 
current output bit of S is 1, 
otherwise it is discarded.

The Shrinking generator

Proposed in 1993 by Coppersmith, Krawczyk and Mansour
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Shrinking generator efficient in hardware, but not
so in software.

Recommended that linear recursions of LFSR‘s A
and Sbe secret.

Shrinking generator has withstood all cryptanalytic
attempts, even if recursions are known.

Self-shrinking generator:
Requires only one LFSR. Selection rule same as 
in shrinking generator.

Uses even bits a0, a2,.. as S-bits, and odd bits as 
A-bits. A tuple (a2i, a2i+1) in output of LFSR  outputs
a2i+1 if a2 i= 1, else it outputs nothing.
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Other types of stream ciphers:

• Word-oriented stream ciphers, suitable for
software implementation (e.g. SNOW,
SOBER, SCREAM)

• Stream cipher modes of operation of block
ciphers (e.g., cipher feedback, output feed-
back mode of Triple DES or AES)
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Stream cipher with provable security:

QUAD (Berbain-Gilbert-Patarin, 2006)

Based on difficulty of solving systems of 
multivariate quadratic equations mod 2.
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Cryptanalysis principles

In cryptanalysis of stream ciphers: Common to 
assume either that
• some part of plaintext is known, (known-

plaintext attack), or

• plaintext has redundancy (e.g., has ASCII
format).

For additive stream cipher, a known part of plaintext
is equivalent to a known part of keystream.
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• Key recovery attack: Attempt to recover
secret key K out of observed keystream

• Distinguishing attack: Try to distinguish
observed keystream from being a purely
random sequence

Distinguishing attacks often weaker than key recovery
attacks. 
May still be threat, if they allow to deduce information on 
unknown plaintext out of known part of plaintext, e.g. if
period of keystream sequence is small.

Conseqence: Period needs to be large.
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Linear complexity of a binary sequence:

Length of shortest LFSR that can produce
the given sequence. 

Berlekamp-Massey algorithm: 
Efficient procedure to deliver shortest LFSR, to-
gether with initial state that can generate given
sequence.

Consequence: Linear complexity of key-
stream needs to be large.
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For LFSR-based stream ciphers, the initial
states of LFSR‘s involved are either

• derived by a key schedule mechanism out of
secret key K and an initial vector IV, or

• directly coincide with K

Divide-and-conquer:
Attempt to determine first initial states of subset of 
LFSR‘s, in order to reduce complexity of search for
right key.
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Correlation Attacks

Example: Combination generator
The outputs am of s LFSR‘s are used as input of a 
Boolean function f to produce keystream,

f(a1m,...,asm) = bm

Correlation: Prob(bm = aim ) = p,  5.0≠p

Example:  s = 3
f(x1, x2, x3) = x1x2 + x1x3 + x2x3

p = 0.75
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Statistical Model:

⊕LFSR

BAS

am

zm

bm

BAS: Binary asymmetric source, 
Prob(zm = 0) = p > 0.5
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Problem: Given N digits of b (and the struc-
ture of the LFSR, of length n)

Find correct output sequence a of LFSR

Known solution: By exhaustive search over
all initial states of LFSR find a such that

}1,|{# NjabjT
jj ≤≤==

is maximum. Complexity: O(2n)
Feasible for n up to about 50.
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Fast  correlation attacks

Fast correlation attack: Significantly faster
than exhaustive search over all initial states
of target LFSR.  

Based on using certain parity check 
equations created from feedback polynomial
of LFSR.
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Two phases

• Search for suitable parity check equations

• Equations are used in fast decoding
algorithm to recover initial state of LFSR.

Algorithms most efficient if feedback
connection has only few taps.

Closely related: Linear syndrome decoding, 
has been applied for fast correlation attacks
(Zheng-Yang, 1988) 
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Algorithm description:

Example: n =3. Recursion: xj=xj-1+ xj-3  mod 2

Squaring: Recursion xj=xj-2 + xj-6 mod 2 does also 
hold.

aj-3 + aj-1 + aj = 0
aj-2 + aj + aj+1 = 0

aj + aj+2 + aj+3 = 0

A fixed digit aj of the LFSR sequence a satisfies a 
certain number mof linear relations (involving a fixed
number t of other digit of a), obtained by shifting and 
iterated squaring of LFSR-relation.
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Substitute the digits of the known sequence b in 
these relations (some relations may hold; some
others not)

Observation:
The more relations are satisfied for a digit bj, 
the higher is the (conditional) probability that
bj = aj

Compute probability p* for bj = aj, conditioned
on the number of relations satisfied.
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Digit contained in one relation:

Assume a fixed digit a(0) = aj satisfies a linear 
relation involving t other digits of the LFSR-
sequence a ,

a(0) + a(1) + a(2) + ...+ a(t) = 0

Denote by b(0), b(1), b(2), ..., b(t) the digits in same
positions of the perturbed sequence

b(0) = a(0) + z(0)

b(1) = a(1) + z(1)

...........................
b(t) = a(t) + z(t)
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Prob(z(0) = 0) = ... = Prob(z(t) = 0) = p

s = Prob( z(1) + ... + z(t) = 0) : s = s(p,t)

s(p,t) = p*s(p,t-1) + (1- p)(1- s(p,t-1))

s(p,1) = p
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Digit contained in several relations:

Assume that a fixed digit a = aj is contained in m
relations each involving t other digits.

For a subset Sof relations denote by E(S) the event
that exactly the relations in Sare satisfied.

Prob((b=a) and E(S)) = psh(1 – s)m-h

Prob((b != a) and E(S)) = (1 – p)sm-h(1 – s)h

where h = |S|denotes the number of relations in S.
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New probability p* = Prob(b = a | E(S)):

Probability distributions for number of re-
lations satisfied: Binomial distributions

Correct digits: b = a

hmh ss
h

m
hp −−








= )1()(1

hhmhmh

hmh

sspsps

sps
p

)1()1()1(

)1(
*

−−+−
−= −−

−
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Incorrect digits: b != a

hhm ss
h

m
hp )1()(0 −








= −

Average number m of relations available:

)1(
2

log 2 +






= t
n

N
m

Example: p = 0.75, t = 2, LFSR-length n = 
100, N = 5000 output bits of b.

Then m = 12 (in the average), and 
s = 0.752 + 0.252 = 0.625.
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Example (cont.) Value of p*, if h relations are
satisfied:

0.994410

0.998011

0.999312

p*h

Two algorithms, Algorithms A and B, for „fast
correlation attacks“ (Meier-Staffelbach, J. Crypto-
logy, (1989)). Much faster than exhaustive search, 
even for long LFSR‘s (n=1000or longer). Only
efficient for low weight recursions (t < 10).
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Algorithm A 

Take the digits of b with highest (conditional) proba-
bility p* as a guess of the sequence a at the corres-
ponding positions.

Approximately n digits are required to find a by
solving linear equations.

Computational complexity: O(2cn), 0 < c < 1, i.e., 
complexity is exponential. c is a function of p, t and 
N/n.

Example: c = 0.012  if p = 0.75, t = 2,  and N/n = 
100.
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Algorithm B

1. Assign the correlation probability p to every digit
of b

2. To every digit of b assign the new probability p* .
Iterate this step a number of times.

3. Complement those digits of b with p* < pthr

(suitable threshold).
4. Stop, if b satisfies the basic relation of the LFSR,

else go to 1.

The number of iterations in 2. and the probability
shreshold in 3. have to be adequately chosen to 
obtain maximum correction effect.
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Algorithm B is essentially linear in the LFSR-length n

Successful only if t < 10.

Problem: Fast correlation attacks for arbitrary
linear relations, i.e., for arbitrary t ?

Problem can be viewed as a decoding problem.

Result: (Johansson-Jönsson, Mihaljević-Fossorier-
Imai, Joux, et. al.) Fast correlation attacks feasible
for arbitrary linear relations and LFSR-length n up to 
100.
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Fast correlation attack for arbitrary weight t:

• Call target bit a LFSR output bit to be predicted.

• Construct set of parity checks, involving k output
bits.

• Evaluate estimators and conduct majority poll 
among them to recover initial state of LFSR.

Procedure is combined with partial exhaustive
search for efficiency:
For length n LFSR, B bits are guessed through
exhaustive search, and n-B bits found using parity
checks.
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B n-B i j m

Parity check combines two bits j and m together
with linear combination of guessed bits B in order 
to predict target bit i.

Let D > n. For each of D target bits, evaluate large 
number of parity checks using noisy values bt, and 
count number of parity checks that are satisified.
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Number of parity checks satisfied: Ns

Number of parity checks not satisfied: Nu.

If difference Ns – Nu is larger than threshold, predict
xi = bi if Ns > Nu, else xi = bi + 1.

If majority polls successful for at least n-B of the D
target bits, can easily recover initial state of LFSR.

Preprocessing: Parity checks found by collision
search using Birthday paradox.
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Extensions

If recursion not of low weight, can consider
multiples of feedback polynomial that have
low weight. Apply correlation attack to 
linear recursion of sparse polynomial multi-
ple. 

Correlation attacks applicable in simple 
cases, even if feedback connections not
known
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Correlation attacks are successful if cipher allows for
good approximations of the output function by linear
functions in state bits of LFSR‘s involved. 

Impact of correlation attacks to design of stream
ciphers:

Boolean functions f used

• should be correlation immune, and 
• should have large distance to affine functions

f is correlation immune if output is uncorrelated to 
single inputs.
Distance of Boolean functions: Measured by
Hamming weight of truth tables.



48

Tradeoff between correlation immunity and 
algebraic degree of function (Siegenthaler): 
The higher the order of correlation immunity, 
the lower the degree.

In order to resist Berlekamp-Massey, degree
should be large

Nonlinearity bounds and constructions of 
interesting functions.
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Criteria found for Boolean functions also relevant 
for design of Block ciphers

Problem: Conflicting tradeoffs amongst various
design criteria

Can be avoided by introducing memory in com-
bining functions.

Example: Integer addition. Is nonlinear when
considered over GF(2). Carry bit serves as 
memory.

Bluetooth stream cipher is combiner with memory.
Nevertheless conditional correlation attack found
(LMV, Crypto 2005).
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Application of correlation attacks: TCHo
Hardware-oriented public-key cryptosystem

Security based on hardness of finding a low-
weight multiple of a given polynomial (FV, 2006, 
AFMV, 2007).

Publicly known: A LFSR with feedback 
polynomial P

Trapdoor: Low weight polynomial multiple K
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Encryption:

Plaintext x is encoded, C(x)

Ciphertext y :
Is addition (mod 2) of  C(x) + SLP + Nb

SLP : Output of LFSR

Nb : Random noise with bias b
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Decryption:

K is used to delete SLP by summing up bits of 
ciphertext y according to recursion defined by K.

Obtain noised version of a code word C(x‘).
Noise has bias bw , (w equals weight of K).

Decode C(x‘) by majority decoding, if C is
repetition code.

Get x out of x‘ by linear transformation.

Only possessor of low weight multiple can
decript, as otherwise noise too large.
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Linear Attacks

Recall: Correlation attack successful, if linear 
relations hold with nonnegligible probabilities, 
between single output bits and a subset of state
bits of driving LFSR‘s.

Linear attack: Successful if there are correlations
between linear functions of several output bits and 
linear functions of a subset of the LFSR-bits.

If there are such correlations, get a linear system of 
equations, each of which does hold with some probability.
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Linear system can be solved by methods remini-
scent to fast correlation attacks (Golić).

Methods efficient if known keystream is long enough, i.e., if
many more equations are available than number of un-
knowns.

Distinction between correlation attacks and linear 
attacks relevant, if combiner contains memory:

Consider block of m consecutive inputs
Zt = (zt, zt-1,..., zt-m+1) as a function of the corresponding
block of m consecutive inputs Xt=(Xt, Xt-1,...,Xt-m+1) and the
preceeding memory bits Ct-m+1.

Xt denotes bit vector at time t of state bits of driving LFSR‘s, 
and Ct-m+1 bit vector of M memory bits at time t-m+1.
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Assume that Xt and Ct-m+1 are balanced and mutually
independent.

Then, if m >= M, there must exist linear correlations
between the output and input bits (Golić), but they
may also exist if m<M.

Linear Cryptanalysis of Bluetooth Stream Cipher
(Golić-Bagini-Morgari)

Generator consists of 4 LFSR‘s of total length 128 
that are combined by a nonlinear function with 4 
bits of memory.

Initialization vector (IV) consists of 74 bits. 
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Combining function is modified combining function
of summation generator:

Reduces some weakness of summation generator
identified earlier.

Secret key 128 bits.

Internal state is 132 bits.

Keystream sequences produced very short, i.e., at 
most 2745 bits for each initialization vector. 
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Large class of linear correlations identified in Blue-
tooth combiner which, in spite of short keystream
sequences available: 

Enable to reconstruct the LFSR initial states, but
even the secret key from some number of IV ‘s.

Different types of linear correlations:

•Unconditioned correlations, 

•correlations conditioned on output, and 

•correlations conditioned on both, output and
assumed input.
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Distinguishing attacks

Goal of key-recovery attacks: Find secret
key faster than by exhaustive search.

Distinguishing attacks: 

Allow for distinguishing observed keystream
from random, or

make prediction about future portions of 
keystream out of known keystream segment. 
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General statistical framework:

Hypothesis testing
Need to distinguish probability distribution 
generated by output of a stream cipher from 
truly random distribution.

Specific distinguishing attacks are linear
attacks and low diffusion attacks (Golić, 
Coppersmith-Halevi-Jutla).

Linear attack: Concentrate on non-linear output 
function to look for characteristic that can be distin-
guished from random, e.g. linear approximation that 
has noticeable bias.
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Linear attacks have been applied e.g. to RC4, to 
SNOW and to SOBER.

Low diffusion on Scream-0, a simplified variant of 
Scream.

Debate about applicability of distinguishing
attacks. 

It has been argued that some distinguishing attacks
against stream ciphers are unrelated to their
security in practical use: 
Amount of data required to perform distinguishing
attack is huge compared to actual lifetime of secret
key used.
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Distinguishing attack on shrinking generator

Previous work: 

Divide-and-conquer attack (by designers)
requires exhaustive search through all possible initial
states and feedback polynomials of S. 
Thereafter linear consistency test using known
recursion of A.

Correlation attacks (Johansson, Simpson-Golić-
Dawson), are exponential in length of A.
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Generating LFSR, A

Selection LFSR, S

Selection 
logic

Selection logic

The output of A is taken as 
a keystream output if the 
current output bit of S is 1, 
otherwise it is discarded.

Shrinking generator
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Distinguishing attack (Golić): Detectable linear 
statistical weakness if feedback polynomial of A of
very low weight and moderate degree.

Attack considers shrunken linear recursions in 
single bits.

Another distinguishing attack on shrinking generator
(SG)  (Ekdahl-Meier-Johansson, 2003)

Rather than single bits, consider bit strings (blocks) 
in the a-stream, and compare with suitable blocks in 
z-stream. 
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Attack model

Generating LFSR

Selection source

Selection 
logic

Keystream

Linear recursion:

2 3
... 0,

Wn n n n n n na a a a+ + ++ + + + =

a-stream z-stream

0n ≥

A weight W feedback polynomial which is known.

The selection sequence can be any random sequence with
independent and equally distributed bit probabilities.

a-stream ,  0

z-stream ,  0
n

i

a n

z i

≥
≥
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Main observation

na
2n na + 3n na + Wn na +

… … …
a-stream:

The xor sum of these vectors (blocks) equals zero.

v1 v2 v3 vW

0j
j

v =∑

( ),j jm Maj v=

Take the majority bit of each block:

1
( 0) .

2j
j

P m = >∑

then we have for the xor sum
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General idea of the attack

Definitions: The imbalance of a block B, is defined as:  
Imb(B) = #1 - #0.

The positions

are called the shrunken tap positions.

1 1 2 1 3 1/ 2 / 2 / 2,  ,  ,  ...,  
Wi i n i n i nz z z z+ + +

Find blocks in the z-stream with high imbalance around the shrunken tap positions

with high probability

corresponding blocks in the a-stream are imbalanced

estimate the majority bits of the blocks surrounding the tap positions.
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First phase

Goal: Find suitable positions in the z-stream which have 
imbalanced blocks.

z-stream
…

B1
B2 BW

1 1i nz a=
1 2 / 2i nz + 1 / 2wi nz +

Block lengths:

BL1 = E+1, where E is an even parameter to the attack.

1 ,   2...
2

j

j

n
BL BL j W≈ + =

Whenever |Imb(Bj)|>T, j=1…Wwe have a ”hit” and invoke the second phase.

take closest odd integer.
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Second phase
Goal: Estimate the bit probability of the corresponding a-blocks, 
and thus the majority bits.

z-stream
…

S1 S2
SW

1i
z

1 2 / 2i nz +
1 / 2wi nz +

a-stream
…

1n
a

1 2n na + 1 wn na +

pj : estimated bit probability of Sj, but also an estimate of the majority bit of Sj.

1 if 1/ 2
ˆ   ,     1...

0 otherwise
j

j

p
m j W

≥
= =

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Distinguishing

Denote by good the number of times ˆ 0.j
j

m =∑

Derive final probability
good

.
hits

P =

If shrinking, we expect 0.5 ,HP ε= +

where      is a positive value depending on the number of 
hits in first phase.

Hε

Use a Maximum Likelihood (ML) test to distinguish from 
the random case where P = 0.5.
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Theoretical analysis

• Probability PM that true majority bit sum zero for uniformly distributed
bits

• PM in case of skewed distribution due to condition |imb(Bj)|>T.

• Expected in P=0.5 +

• Upper bound on required number of hits, H.

• Lower bound on expected number of hits.

• Required number of observed keystream symbols, N.

• Computational complexity

ε H ε H

)( nNO W
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Simulation results (1)
Weight 4 polynomials, T=3, E=14.

45
45
46

228

229

230
231.8227.72-13.90.059893097,6711,10000

42
48
50

228

229

230
231.22272-13.50.055422333,5847,8000

39
46
50

225

226

227
227.8223.02-11.50.03586812,1433,2500

43
46
50

223

224

225
225.4220.22-10.10.02648302,733,1000

NHεHPH

Successes 
out

of 50 runs

N used
in attack

Theoretical parametersTap positions
(exluding 0)
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Simulation results (2)

Weight 3 and 5 polynomials, T=3, E=14.

48
50

229

230230.3223.12-11.560.006873,131,219,300

36
46
50

221

222

223
223.1220.32-10.20.141417983,40000

NHεHPH

Successes 
out

of 50 runs

N used
in attack

Theoretical parametersTap positions
(exluding 0)
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Practical distinguishing attack for Shrinking
Generator with known feedback polynomial for the
generating LFSR.

Use a tap in the middle as reference and thus
increase the probability of the estimates.

Prediction of bit distribution in the last block.
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Belief: Ciphers using LFSR‘s can be made secure
against attacks by using output functions that are
correlation immune and have large distance to affine 
functions.

What are algebraic attacks?

Attacks by solving a system of algebraic
equations (CM, Eurocrypt 2003).

Algebraic Attacks
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Type of equations:

System of multivariate polynomial equations
over a finite field, e.g., GF(2).

x1 + x0x1 + x0x2 + ... = 1
x1x2 + x0x3 + x7 + ... = 0

............

Why algebraic attacks?
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Breaking a „good“ cipher should require:

„ ... as much work as solving a system of 
simultaneous equations in a large number
of unknowns of a complex type“ [Shannon, 
1949, Communication theory of secrecy
systems]

Common experience: Large systems of 
equations become intractable soon with
increasing number of unknowns (is NP 
hard problem) .
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However

Systems that are

• Overdefined, i. e. have more equations than
unknowns, or

• Sparse

are easier to solve than expected:

• Linearization
• The XL method (Shamir-Patarin-Courtois-
Klimov, Eurocrypt 2000), Gröbner bases
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Direct algebraic approach:

Derive equations in key bits k0,...,kn-1













=
=
=

−

−

−

...................................

)),...,((

)),...,((

),...,(

210
2

110

010

bkkLf

bkkLf

bkkf

n

n

n

L( ): Linear recursion. 



79

Solve this system of equations. Very
overdefined, even for moderate quantity of 
keystream, e.g., 20 Kbytes.

An obvious linearization attack:

Assumption: f is of low degree d. Then the
key is found given keystream bits and 
within computations, where is the
exponent of Gaussian reduction (     < 3).

Linearization: One new variable for each
monomial; Solve a linear system.
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Improvement

What if the degree d is too large?

Example: Toyocrypt stream cipher (submission to 
the Japanese government Cryptrec call for crypto-
graphic primitives). 

Filter generator with one LFSR of length n=128, 
output function of degree d = 63.
This output function satisfies all previously known
design criteria. 

Reduce the degree of the equations?
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Weakness of Toyocrypt

Output function f(s0,..., s127) is of degree
d = 63, but:
Is sum of only linear and quadratic terms, 
plus single monomials, each of degree 4, 17, 
and 63, respectively.

Parts of degree 4, 17and 63 are all divisible
by a common factor s23s42.

Assume f(s) = 1.  Then f(s)(s23 + 1) = s23 + 1.

Higher terms cancel out, i.e., get an equa-
tion of degree d = 3 !
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New Type of Attack

By multiplying the equations by a well chosen
polynomial, their degree can be reduced from
d = 63 to d = 3.

Toyocrypt is

• broken in 249 CPU clocks (few days on a
PC)

• with 218 keystream bits
• attack was verified experimentally.



83

Scenarios

Degree of output function f large,  f=g*h

• f*g=0 , degree of g low

• f*g=h, degrees of g and h low

If output bit bi=1, take g(s)=0, else take
equation h(s)=0
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Overview of attack

Instead of f(s) = bt with s = Lt(K), K =  key:

Solve the equations

f(s) * g(s) = bt * g(s)

with well chosen function g.

Question: Do „good“ functions g(s) exist ?
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In some cases, such g(s) ALWAYS do exist.

Theorem (Low degree relations) 
Let f be any Boolean function in k variables. 
Then there is a nonzero Boolean function g 
of degree at most k/2 such that f(x) * g(x) is
of degree at most k/2.

(Take ceilings of k/2 if k is odd)

Theorem has been motivated by cryptanalysis of 
multivariate digital signature schemes as well as by
cryptanalysis of AES block cipher.
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Proof of Theorem (sketch):
Look for Boolean function g, such that f*g = h with h = 0
(the case h non zero is similar). Assume f is balanced (i.e., 
same number of 0 and 1 in truth table)

g(x) is yet unknown Boolean function, i.e., in algebraic
normal form is sum of monomials in the xi‘s with unknown
coefficients. 

Substitute each argument x = (x1,...,xk) with f(x) = 1 in g(x).
Get linear equation in the unknown coefficients of g. If
degree of g at least k/2, number of coefficients to deter-
mine g larger than number of arguments x with f(x) = 1. 
Thus we have more unknowns than equations, and hence
always a solution.
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Consequences

• Can break any stream cipher with
linear feedback and Boolean output
function with small number k of state
bits as input, in                

• Polynomial complexity, if k considered
as small constant. 

• Already known: By linearization, such
cipher can be broken in             

• Complexity of new generic attack only
approx. square root of known attack.

ω
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Extensions

Attack is very general and can be adapted to some
stream ciphers that are not regularly clocked.

Example: LILI-128 (NESSIE proposal). Complexity
of algebraic attack is O(257).

Attack can be generalized to stream ciphers that
use combiner with memory (instead of memoryless
output function):
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Work by Armknecht and Krause: Algebraic attacks
on combiners with memory, CRYPTO 2003, e.g., on 
Bluetooth generator E0 . Complexity: O(268)

Extension to combiners with memory and several
outputs (Courtois).

Improved attacks: Fast algebraic attacks on stream
ciphers with linear feedback, CRYPTO 2003.
Much lower complexities:

O(249)E0

O(239)LILI-128

O(223)Toyocrypt
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Algebraic attacks on stream ciphers with memory: 

Idea is to look at algebraic relations that are of low
degree in input variables and involve output bits (of 
any degree), so that memory bits cancel out.

Theorem (Armknecht-Krause, Courtois) Let F be
an arbitrary fixed circuit/component with k binary
inputs, l bits of memory, and one output. Then, 
considering M = l+1 consecutive steps/states
(t,...,t+M-1), there is a multivariate relation, involving
only the input bits and the output bits for these
states, and with degree at most k(l+1)/2 in the input
variables.
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If combiner is memoryless, then l=0 : Get previous
Theorem as special case.

If number of memory bits increases, so does
increase upper bound of degree of multivariate
relations. Does not preclude existence of lower
degree relations.

Example: Bluetooth stream cipher has combining
function with k=4 inputs and l=4 bit memory. 
Theorem assures multivariate relation of degree at 
most 10, but actually, multivariate relation of 
degree 4 was found! 
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Recall: Linear complexity of keystream generator
with filter function f of degree k is often about
where n is length of LFSR. 

Data complexity of new algebraic attack on such 
generator is only about square root of that of 
Berlekamp-Massey algorithm.

Cases known, where successful algebraic attack only needs
slightly more known keystream than length of driving LFSR.

Contrast: For many designs provable resistance
against Berlekamp-Massey synthesis available, but
not yet against algebraic attacks.
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Consequences for the design of stream ciphers

• Output function f should use large subset of
state bits (unlike LILI-128).

• Function f should not be sparse.

• No multivariate equations of low degree
should exist that relate key bits and one or
more output bits. 

• Immunity against (fast) algebraic attacks: Symmetric
functions f are very vulnerable to fast algebraic
attacks (ACFGMR, Eurocrypt 2006).
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Algebraic Immunity of S-Boxes and Augmented 
Functions

Several methods known how to compute algebraic 
immunity of Boolean functions. 
Aspect less well studied:

Problem: Algebraic attacks on stream ciphers with lower 
data complexity?
(e.g., why can Gröbner bases work with very small 
known output data for a few filter generators?)
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Algebraic properties of S-boxes

S-box can be described by implicit equations, G(x,y) = 0, 
with S(x) = y. 

In algebraic attacks: Focus on low degree equations or 
sparse equations (Courtois-Pieprzyk, Armknecht).

Algebraic immunity of S-box: Maximum total degree of a 
monomial in xi and yi in G(x,y) = 0. 

In our applications: Cryptographic meaning of x and y
different: Consider degree of xi’s and yi’s in monomials in 
G(x,y) = 0 separately.
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Augmented function of stream cipher is viewed as S-
box. 

Notation: Let  F denote GF(2).

S-box S:  

with S(x) = y,  x = (x1,..xn), y = (y1,..,ym).

Component equations Si(x) = yi. 

mn FF →



97

Each monomial in G(x,y) = 0 written as xayb, for multi-indices 
a,b in Fn, where 

dx: maximum degree of x-part in monomials xayb

dy : maximum degree of y-part in monomials xayb

Is there an equation G(x,y) = 0 of degrees dx, dy?

Number of possible monomials in equation: DxDy, where

and      

Consider matrix M in GF(2) with Nr = 2n rows and Nc = DxDy

columns (Courtois): 

Each row corresponds to input x, each column to evaluated 
monomial.
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Number of implicit equations of degrees at most dx , dy is:
R = DxDy – rank(M). 

If number of columns in M is larger than number of rows, 
nontrivial linear combinations of columns (i.e., monomials) 
exist.

Hence equations G(x,y) = 0 can be expected if 

DxDy > 2n (1)

If n > 20, solving for M is impractical due to memory 
requirements.
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Simple improvement: Consider set of parameters where 
inequality (1) is not satisfied. 

Instead of full matrix M, consider smaller matrix M’ with N’r
random inputs, where N’r is small multiple of Nc. 

Nonexistence of solution: 

Solve for M’. If no solution exists, no solution exists for M
either.    

Can determine non-existence of solution: Deduce 
algebraic immunity for parameters as set.

If solutions exist for M’, they needn’t hold for original setup, 
but do hold for a fraction p of all 2n inputs to S-box.
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Conditional equations

For large S-boxes, Matrix M to solve for G(x,y) = 0 still very 
large.

Suppose m is smaller than n. 
Fix output y and determine conditional equations of degree 
dx for this y.

Number of columns in M reduces to Nc = Dx.

Number of rows equals number of preimages of y, and is 
about 2n-m (if S nearly balanced).

For fixed output vectors y, determine minimum degree dx of 
a conditional equation Gy(x) = 0 with S(x) = y. 

Bottleneck: Finding preimages of y for random S-box needs 
Dx 2m trials.
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Algebraic attacks on augmented functions

Integrate general approach of implicit equations in the 
context of stream ciphers.

New scenarios of algebraic attacks on stream ciphers.

Based on algebraic properties of augmented function.
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Stream cipher with update function L, output function f.

Augmented function Sm: 

defined by              

Sm: 

Update function L linear (e.g. in LFSR) or nonlinear (e.g. 
in eSTREAM candidate TRIVIUM)

))(()),...,((),(( 1 xLfxLfxfx m−→

mn FF →
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Recover initial state x by algebraic attack: 

Deal with multiple outputs of augmented function. 

+ : Allows to set up equations of smaller degree than for 
ordinary alg. attacks.

- : All n state variables of LFSR are involved instead of k
variables of filter function.

+ : Can adapt output size m.
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Implicit and conditional equations 

According to inequality (1):

For an augmented function  Sm: 

with m > m0, one can set up equations G(x,y) = 0 of degrees 
at most dx and dy ,dy = m, where m0 := n – log2 Dx

m0 is upper bound for m so that equation of degree dx can be 
expected. 

Tradeoff between degree dx and m:

Would like to choose both as small as possible.

mn FF →
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For efficiency, consider conditional equations Gy(x) = 0 for 
given m-bit outputs y.

Finding preimages: 

As opposed to random S-boxes, augmented function of 
some stream ciphers has special (simple) structure.

Sampling methods in time-memory-tradeoff attacks on 
stream ciphers (Biryukov-Shamir).
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1. There are many low-degree conditional equations for 
output size m of the augmented function, where m is 
smaller than m0 .

2. Finding preimages is feasible for output size m .

New scenario:
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Application: Filter generator

Data complexity of algebraic attack:

with LFSR length n and algebraic immunity d.

Experimental result: Algebraic attacks with Gröbner bases 
only need slightly more than n output bits in a few cases 
(Faugère-Ars).

Open issue to understand such behavior from Boolean filter 
function and tapping sequence.

Aim: Algebraic attack on augmented function with (very) low 
data complexity. 
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1st Step: Find preimages x for augmented function Sm for 
fixed output y = Sm(x).

Filter inversion: Use table of filter function  f  (with k inputs) 
to choose input with correct observed output bit. Repeat for 
about n/k successive output bits, until state is unique. 

Time complexity to find preimage of m > n/kbits about
2m-n/k, i.e., efficient if k is small.

Linear Sampling: In each time step, a number of linear 
conditions is imposed in input variables of f, so that f
becomes linear. The linearized filter gives one additional 
linear equation for each keystream bit until there arises a 
contradiction.
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2nd Step: Existence of equations

Experimental results for instances of the CanFil family (as 
considered by Faugère-Ars) as well as a Majority function.

All functions have k = 5 inputs, and algebraic immunity 2 or 
3.  

LFSR’s correspond to random primitive feedback 
polynomial. 

Example (CanFil5):  f is given by x2x3x4x5 + x2x3 + x1

For function f and parameters dx and m, consider aug-
mented function, y = Sm(x).
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Determine the number Ry of conditional equations

Gy(x) = 0

of degree dx for each m-bit output y.

For n = 20, and for varying m, the overall number of 
equations,                  is recorded:∑=

y yRR:
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0       0       0        2       0

1     10       1      18       1

22   437      40    148     56

9

10

11

Majority5

0       0       0       2        0

0       0       0       8        0

0       0       0     24        0

0       0       0     64        0

6       0       0    163       0

113       0       2    476       0

960     16   215  1678     29

6

7

8

9 

10 

11 

12

CanFil5

0       0       0       0       0

2136 2901 2717 2702 2456

14

15

CanFil2

0       0       0       0       0
3139 4211 3071 4601 3844

14
15

CanFil1

R for 5 setupsmFilter
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CanFil1 and CanFil2: 
Linear equations only for m>= m0, independent of setup.

Contrast: CanFil5 (and also Majority5)
Linear equations exist already for m about n/2.

Example: CanFil5, n = 20, setup 4, y = 000000of m = 6 bits. 
There are exactly 214 preimages, i.e., 214 rows, and Dx = 21
columns in matrix M. M has rank 20.
One linear equation.  

Observation 1: Number of equations only weakly depends 
on setup, but mainly depends on properties of filter 
function.

Observation 2: Experimental results are scalable, i.e., are 
likely to generalize to larger LFSR-lengths n.
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Probabilistic equations

In practical situations: n is much larger than 20. Number of 
preimages available only small multiple of Dx .

May introduce probabilistic solutions.

Example: CanFil5, n = 20, setup 4, y = 000000
Pick instead of all 214 preimages only N’ = 80 random 
preimages. 

Determine all solutions for much smaller matrix: Obtained 
always 2 – 4solutions, with correlations 
p = 0.98,..1.

Majority of outputs y different from y = 000000give similar 
picture.
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p is impressively large, so that probabilistic equations are 
useful in attacks.

Heuristic estimate for p: 

(1-p) N’r < 1 , i.e., p = 1- 1/ N’

Example: CanFil5, n = 40, m= 20, y = 0,..,0, setup 4. 
Determine 200preimages. Gives 11 linear relations. With 
2000preimages, only 3 out of 11 relations detected to be 
probabilistic.

Can find (probabilistic) equations for quite large n; e.g.,
CanFil5, n = 80, m= 40. 

Time complexity to find a linear equation using filter 
inversion: 232
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Discussion of attacks

Ordinary algebraic attack on filter generator with output 
function f : 

Let  f  have algebraic immunity d. 

Using known output, accumulate about     equations of 
degree d with initial state bits of LFSR as unknowns, so as 
to do linearization.

Each new low degree equation (found by investigating 
augmented function of  f ) can serve to reduce data 
complexity.
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Have identified functions  f which show resistance to this 
approach: 

No additional equations exist, and/or effort of finding 
preimages is too large.

Several other functions  f shown to be weak: 

Many low degree equations for augmented function of f
exist and can be determined efficiently.
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Particular case: n linear equations can be found (e.g. with 
CanFil5 or Majority functions as filters). 

Data complexity of order n

Computational complexity: depends on effort for finding 
preimages for augmented function, but can be low (e.g. for 
CanFil5 and other functions).

Probabilistic equations:

linear: powerful variant of conditional correlation attack 
(with correlations close to 1).

nonlinear (but low degree): kind of higher order correlation 
attack (Courtois)
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Application of framework: Attack on ASG

Alternating step generator (ASG) is a classical 
construction, based on 3 LFSR's.

Output bit of regularly clocked LFSRC controls which of 
LFSRX and LFSRY is clocked (stop/go LFSR's).

ASG has been target of much analysis.
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For ASG sampling is easy if output length m is about 
twice the length of stop/go LFSR's.

Another weakness: Different initial states of any of the 
stop/go LFSR's have far different probabilities to be 
accepted as a candidate which can produce a given 
output segment of length m.

Allows (probabilistic) attack which is about 7000 times 
faster than all previous attacks for many parameters 
(KFM, 2007).
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Application of algebraic attacks to multivariate 
hash functions

Merkle-Damgård construction with message blocks of 
m field elements and chaining value of n field 
elements.

Compression function 
nnm KKh →+:

defined as explicit algebraic expressions of n
component functions hi.
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Informally, a hash function h should fulfill

• Collision resistance: Finding two messages m and m*
with               such that  h(m) = h(m*) is not easier 
than about 2n/2.

• Second preimage resistance: For a given message m, 
finding a second message m* with             such that

h(m) = h(m*) is not easier than about 2n evaluations of h.

• Preimage resistance: For a given hash value v, finding a 
message m such that h(m) = v is not easier than about 
2n evaluations of h.

mm ≠*

mm ≠*
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NIST SHA-3 Project

Call for new proposals of hash functions.

Search for alternative structures to MD5, SHA-1, which
have been broken by Wang et. al.
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In multivariate hash functions, preimage resistance 
comes to the difficulty of solving a (nonlinear) system of 
multivariate equations. 

For a random system with approx. the same number of 
equations as unknowns, this is known to be a hard 
problem, even for quadratic systems (degree 2).

However, for quadratic component functions hi, can find 
collisions efficiently, by solving a linear system

h(x) - h(x-D) = 0

for an arbitrary difference  

Finding collisions in a hash function of degree d reduces 
to solving a system of degree d - 1.

0≠D
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Sparse cubic hash (degree 3), (Ding-Yang, 2007)

Cubic components hi, with

Fixed density of coefficients of 0.1%. 

Sparse components: More efficient and use less 
memory. 

No longer reduction to hard problem!

Consider security of cubic hash over GF(2), low density 
for cubic monomials only.

Algorithm for collision search faster than by birthday 
paradox (AM, 2007):

nn KKh →2:
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1. Compute quadratic system h(x)-h(x-D)

2. Remove quadratic terms to get a linear system h'(x)=0.

3. Compute the generating matrix of the corresponding 
linear code.

4. Search for a low weight code word of this code (i.e., a 
sparse solution of h(x)=0).

5. Plug solution into h(x)-h(x-D): sums of quadratic terms 
vanish with non-negligible probability: a collision may 
be found.
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Difficulty: find low-weight words in a random code

Fastest known algorithm in (Canteaut-Chabaud, 1998).

For a cubic system over GF(2) with 160 equations and 
320 unknowns, density 0.1% for cubic monomials, but 
random for lower degrees:

Ratio          time/success  approx.  252

Hence faster than by birthday paradox, with time and 
memory complexity about 280.
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Attacks on Stream Ciphers
(Historical Overview)

Design and analyis of stream ciphers: For long
time a proprietary and confidential matter.

Early research papers date from 1970‘s.

State of the art in mid 1980‘s: Book by R. 
Rueppel, Analysis and Design of Stream Ciphers.

Main emphasis in those days on criteria like large 
linear complexity and correlation immunity. 
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Tradeoff between correlation immunity and 
algebraic degree (Th. Siegenthaler, 1984)

Study of Boolean functions with good cryptographic
properties has been ongoing topic since. 

Impact of cryptanalysis of DES block cipher
(Chaum-Evertse, 1986) to design of stream ciphers: 

Alternative solution of correlation problem (MS, 
1989): 

Bent functions

Are however not exactly balanced.
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Bent functions have:

Maximum nonlinearity, i.e., largest possible
distance to all affine functions, and

Good correlation immunity properties.

Important role of functions with these criteria in 
design of AES block cipher, to counter differential
and linear cryptanalysis
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Tradeoff between correlation immunity and 
algebraic degree can be avoided if combining
function is allowed to have memory (Rueppel, 
1985)

Combiners with memory: Summation generator, 
Bluetooth, both based on integer addition

Different development, leading to cryptanalysis of 
summation generator:

Feedback with carry shift registers (FCSR‘s) 
(Klapper-Goresky, 1997)

Are equipped with auxiliary memory for storing an 
integer carry. 
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An FCSR is similar to an LFSR, except that the
contents of the tapped stages of the shift register
are added as integers to current content of the
memory, to form S. The lsb of S is then fed back to 
be the value of the first cell of the register, and the
new value of the memory is a right shift of Sby 1.

Interest for cryptanalysis: Synthesis algorithm for
FCSR‘s similar to Berlekamp-Massey for LFSR‘s.

Keystream may have high linear complexity but
may be efficiently synthesized by a relatively short
FCSR. 

This happens for many parameters of summation
generator.
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Summation generator not as secure as believed.

However, integer addition remains essential 
operation in design of stream ciphers and block 
ciphers.

Different line (unrelated to combiners with memory):

Inversion attack (Golić, 1996), on filter generators:

May work even when filter function is correlation
immune or close to Bent function,

e. g., if driving LFSR is short and tap positions are
not well chosen (i.e., don‘t constitute full positive 
difference set).



134

In same paper by Golić: Updated list of design 
criteria for filter generators, as far as known 1996.

Another general type of attack on stream ciphers:

Free binary decision diagram attack (Krause, 2002):

Exploits that many LFSR-based stream ciphers
produce keystream according to rule b = C(L(x)),
where L(x) denotes internal bitstream generated by
small number of parallel LFSR‘s, and C denotes
some nonlinear compression function.

Attack needs known keystream segment of length
which is only small multiple of bitlength of initial
state. 
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Attack yields security bounds lower than suggested
by bitlength of initial state, e.g. for

Self-shrinking generator, A5, or Bluetooth.

According to needs for applications, there has been
shift from hardware oriented stream ciphers to 
software oriented stream ciphers.

As LFSR‘s are not particularly efficient in software, 
this made different design and analysis necessary

(e.g., SNOW, or Scream: New type of analysis) 
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Resynchronization attacks

Some practical stream ciphers (e.g., Bluetooth, A5)
use reinitialization mechanism. 

This uses secret key and publicly known
initialization vector. Result is a new secret initial
state of keystream generator.

Reinitialization: Enables reuse of same secret key
with different initialization vector. Important if
synchronization is lost.
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Frequent reinitialization can increase security of 
stream cipher (only short keystream with same
initial state is exposed).

Disadvantage: Stream cipher can become
completely insecure when

reinitialization mechanism is weak (e.g., linear), or

when there exist statistical dependencies of output
streams for different initializations.
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Cryptanalysis of stream ciphers with
unknown combining function and/or unknown
feedback connections

Initial steps in this direction by Palit-Roy (1999), and 
by Canteaut-Filiol (2000)

Algebraic attacks thus far need both, known
combining function as well as known feedback
connections for being applicable.

Stream cipher with key-dependent output function: 
Turing (Rose-Hawkes, 2003).
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Open Problems

• Algebraic attacks on irregularly clocked
stream ciphers?

• Design and analysis of secure software 
and hardware oriented stream ciphers?
In particular:

• Are there efficient stream ciphers as 
secure as block ciphers?


