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1. INTRODUCTION

1.1. Results. A matroid M on a finite set E is a nonempty collection of subsets of E, called flats
of M, that satisfies the following properties:

‚ If F1 and F2 are flats, then their intersection F1 X F2 is a flat.

‚ If F is a flat, then any element inEzF is in exactly one flat that is minimal among the flats strictly
containing F .

For notational convenience, we assume throughout that M is loopless:

‚ The empty subset of E is a flat.

We write LpMq for the lattice of all flats of M. Every maximal flag of proper flats of M has the same
cardinality rk M, called the rank of M. For any nonnegative integer k, we write LkpMq to denote
the set of rank k flats of M. A matroid can be equivalently defined in terms of its independent
sets, circuits, or the rank function. For background in matroid theory, we refer to [Oxl11] and
[Wel76].

Let Γ be a finite group acting on M. By definition, Γ permutes the elements of E in such a way
that it sends flats to flats.

Theorem 1.1. The following holds for any k ď j ď rk M´ k.

(1) The cardinality of LkpMq is at most the cardinality of LjpMq.

(2) There is an injective map ι : LkpMq Ñ LjpMq satisfying F ď ιpF q for all F P LkpMq.

(3) There is an injective map QLkpMq Ñ QLjpMq of permutation representations of Γ.1

The first two parts of Theorem 1.1 were conjectured by Dowling and Wilson [DW74, DW75],
and have come to be known as the Top-Heavy conjecture. Its best known instance is the de
Bruijn–Erdős theorem on point-line incidences in projective planes [dBE48]:

Every finite set of points E in a projective plane determines at least |E| lines, unless E is
contained in a line. In other words, if E is not contained in a line, then the number of lines
in the plane containing at least two points in E is at least |E|.

When L “ LpMq is a Boolean lattice or a projective geometry, Theorem 1.1 is a classical result;
see for example [Sta18, Corollary 4.8 and Exercise 4.4]. In these cases, the second statement of

1One might hope to combine the last two parts of Theorem 1.1 by asking the map ι to be Γ-equivariant, but this is
not possible, even if we drop the condition that F ď ιpF q. For example, when M is the uniform matroid of rank 3 on 4

elements, there is no S4-equivariant map from L1
pMq to L2

pMq.
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Theorem 1.1 implies that these lattices admit order-matchings

L0 Ñ L1 Ñ ¨ ¨ ¨ Ñ Lt rkM
2

u Ø Lr rkM
2

s Ð ¨ ¨ ¨ Ð Lrk M´1 Ð Lrk M,

and hence have the Sperner property:

The maximal number of pairwise incomparable subsets of rns is the maximum among the bi-
nomial coefficients

`

n
k

˘

. Similarly, the maximal number of pairwise incomparable subspaces
of Fnq is the maximum among the q-binomial coefficients

`

n
k

˘

q
.

Other earlier versions of Theorem 1.1, for specific classes of matroids or small values of k, can be
found in [Mot51, BK68, Gre70, Mas72, Her73, Kun79, Kun86, Kun93, Kun00]. In [HW17], Theorem
1.1 was proved for matroids realizable over some field. See Section 1.3 for an overview of that
proof. Although realizable matroids provide the primary motivation for the definition of a ma-
troid, almost all matroids are not realizable over any field. More precisely, the portion of matroids
on the ground set rns that are realizable over some field goes to zero as n goes to infinity [Nel18].

Our proof of Theorem 1.1 is closely related to Kazhdan–Lusztig theory of matroids, as devel-
oped in [EPW16]. For any flat F of M, we define the localization of M at F to be the matroid
MF on the ground set F whose flats are the flats of M contained in F . Similarly, we define the
contraction of M at F to be the matroid MF on the ground set EzF whose flats are GzF for flats G
of M containing F .2 We also consider the characteristic polynomial

χMptq–
ÿ

IĎE

p´1q|I|tcrk I ,

where crk I is the corank of I in M. According to [EPW16, Theorem 2.2], there is a unique way
to assign a polynomial PMptq to each matroid M, called the Kazhdan–Lusztig polynomial of M,
subject to the following three conditions:

(a) If the ground set is empty, then PMptq is the constant polynomial 1.

(b) For every matroid M on a nonempty ground set, the degree of PMptq is strictly less than rk M{2.

(c) For every matroid M, we have trk MPMpt
´1q “

ÿ

FPLpMq

χMF ptq ¨ PMF
ptq.

Alternatively [BV20, Theorem 2.2], one may define Kazhdan–Lusztig polynomials of matroids by
replacing the third condition above with the following condition not involving χMptq:

(c)’ For every matroid M, the polynomial ZMptq–
ÿ

FPLpMq

trkFPMF
ptq satisfies the identity

trk MZMpt
´1q “ ZMptq.

2In [EPW16], as well as several other references on Kazhdan–Lusztig polynomials of matroids, the localization is
denoted MF and the contraction is denoted MF . Our notational choice here is consistent with [AHK18] and [BHM`22].
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The polynomial ZMptq, called the Z-polynomial of M, was introduced in [PXY18] using the first
definition of PMptq, where it was shown to satisfy the displayed identity. The degree of the Z-
polynomial of M is exactly the rank of M, and its leading coefficient is 1.

Theorem 1.2. The following holds for any matroid M.

(1) The polynomial PMptq has nonnegative coefficients.

(2) The polynomial ZMptq is unimodal: The coefficient of tk in ZMptq is less than or equal to the
coefficient of tk`1 in ZMptq for all k ă rk M{2.

The first part of Theorem 1.2 was conjectured in [EPW16, Conjecture 2.3], where it was proved
for matroids realizable over some field using l-adic étale intersection cohomology theory. See
Section 1.3 for an overview of that proof. For sparse paving matroids, a combinatorial proof of the
nonnegativity was given in [LNR21].

Kazhdan–Lusztig polynomials of matroids are special cases of Kazhdan–Lusztig–Stanley poly-
nomials [Sta92, Pro18]. Several important families of Kazhdan–Lusztig–Stanley polynomials turn
out to have nonnegative coefficients, including classical Kazhdan–Lusztig polynomials associated
with Bruhat intervals [EW14] and g-polynomials of convex polytopes [Kar04, BL05]. For more on
this analogy, see Section 1.4.

For a finite group Γ acting on M, one can define the equivariant Kazhdan–Lusztig polynomial
PΓ

Mptq and the equivariant Z-polynomial ZΓ
Mptq; see Appendix A for formal definitions. These

are polynomials with coefficients in the ring of virtual representations of Γ, with the property
that taking dimensions recovers the ordinary polynomials [GPY17, PXY18]. Our proof shows the
following strengthening of Theorem 1.2.

Theorem 1.3. The following holds for any matroid M and any finite group Γ acting on M.

(1) The polynomial PΓ
Mptq has nonnegative coefficients: The coefficients of PΓ

Mptq are isomorphism
classes of honest, rather than virtual, representations of Γ.

(2) The polynomial ZΓ
Mptq is unimodal: The coefficient of tk in ZΓ

Mptq is isomorphic to a subrepre-
sentation of the coefficient of tk`1 in ZΓ

Mptq for all k ă rk M{2.

Theorem 1.3 specializes to Theorem 1.2 when we take Γ to be the trivial group. The first part of
Theorem 1.3 was conjectured in [GPY17, Conjecture 2.13], where it was proved for matroids that
are Γ-equivariantly realizable over some field.3 For uniform matroids, a combinatorial proof of
the equivariant nonnegativity was given in [GPY17, Section 3].

3It is much easier to construct matroids that are not Γ-equivariantly realizable than it is to construct matroids that
are not realizable. For example, the uniform matroid of rank 2 on 4 elements is realizable over any field with at least
three elements, but it is not S4-equivariantly realizable over any field.
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We also prove the following monotonicity result for equivariant Kazhdan–Lusztig polynomials
of matroids. The non-equivariant case (when Γ is the trivial group) is analogous to a monotonicity
result for classical Kazhdan–Lusztig polynomials in Weyl groups [Irv88], [BM01, Corollary 3.7].

Theorem 1.4. Let M be a loopless matroid acted on by a finite group Γ which fixes a nonempty
flat F P LpMq. Then the polynomial

PΓ
Mptq ´ P

Γ
MF
ptq

has coefficients which are honest, rather than virtual, representations of the stabilizer group ΓF . In
particular when Γ is the trivial group we have that the polynomial PMptq´PMF

ptq has nonnegative
coefficients.

By [GX21, Theorem 1.2], there is a unique way to assign a polynomial QMptq to each matroid M,
called the inverse Kazhdan–Lusztig polynomial of M, subject to the following three conditions:

(a) If the ground set of M is empty, then QMptq is the constant polynomial 1.

(b) For every matroid M on a nonempty ground set, the degree ofQMptq is strictly less than rk M{2.

(c) For every matroid M, we have p´tqrk MQMpt
´1q “

ÿ

FPLpMq

p´1qrk MF
QMF ptq ¨ trk MFχMF

pt´1q.

We also prove the following result conjectured in [GX21, Conjecture 4.1].

Theorem 1.5. The polynomial QMptq has nonnegative coefficients.

In fact, our proof shows that the coefficients of the equivariant inverse Kazhdan–Lusztig poly-
nomial QΓ

Mptq defined in Appendix A are isomorphism classes of honest, rather than virtual, rep-
resentations of Γ.

1.2. Proof strategy. We now provide an outline of the proofs of Theorems 1.1, 1.2, and 1.3. The
algebro-geometric motivations for these arguments will appear in Section 1.3.

For any matroid M of rank d, consider the graded Möbius algebra

HpMq–
à

FPLpMq

QyF .

The grading is defined by declaring the degree of the element yF to be rkF , the rank of F in M.
The multiplication is defined by the formula

yF yG –

$

&

%

yF_G if rkF ` rkG “ rkpF _Gq,

0 if rkF ` rkG ą rkpF _Gq,

where _ stands for the join of flats in the lattice LpMq. Let CHpMq be the augmented Chow ring
of M, introduced in [BHM`22]. We will review the definition of CHpMq in Section 2, but for now
it will suffice to know the following three things:
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‚ CHpMq contains HpMq as a graded subalgebra [BHM`22, Proposition 2.18].

‚ CHpMq is equipped with a degree isomorphism degM : CHdpMq Ñ Q [BHM`22, Definition
2.15].

‚ By the Krull–Schmidt theorem, up to isomorphism, there is a unique indecomposable graded
HpMq-module direct summand IHpMq Ď CHpMq that contains HpMq.4

In this introduction, we temporarily define the intersection cohomology of M to be the graded
HpMq-module IHpMq. This defines the intersection cohomology of M up to isomorphism of graded
HpMq-modules. In Section 3, we will construct a canonical submodule IHpMq Ď CHpMq that is
preserved by all symmetries of M. The construction of IHpMq as an explicit submodule of CHpMq,
or more generally the construction of the canonical decomposition of CHpMq as a graded HpMq-
module, will be essential in our proofs of the main results but not in their statements.

We fix any decomposition of the graded HpMq-module CHpMq as above, and consider any pos-
itive linear combination

` “
ÿ

FPL1pMq

cF yF , cF is positive for every rank 1 flat F of M.

Our central result is that IHpMq satisfies the Kähler package with respect to ` P H1pMq.

Theorem 1.6. The following holds for any matroid M of rank d.

(1) (Poincaré duality theorem) For every nonnegative k ď d{2, the bilinear pairing

IHkpMq ˆ IHd´kpMq ÝÑ Q, pη1, η2q ÞÝÑ degMpη1η2q

is non-degenerate.

(2) (Hard Lefschetz theorem) For every nonnegative k ď d{2, the multiplication map

IHkpMq ÝÑ IHd´kpMq, η ÞÝÑ `d´2kη

is an isomorphism.

(3) (Hodge–Riemann relations) For every nonnegative k ď d{2, the bilinear form

IHkpMq ˆ IHkpMq ÝÑ Q, pη1, η2q ÞÝÑ p´1qk degMp`
d´2kη1η2q

is positive definite on the kernel of multiplication by `d´2k`1.

We now show how Theorem 1.6 implies Theorem 1.1.

4For the Krull–Schmidt theorem, see, for example, [Ati56, Theorem 1]. By [CF82, Corollary 2] or [GG82, Theorem
3.2], the indecomposability in the category of graded HpMq-modules implies the indecomposability in the category of
HpMq-modules. Thus, the intersection cohomology of M is an indecomposable module over HpMq.
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Proof of Theorem 1.1, assuming Theorem 1.6. It follows from the hard Lefschetz theorem that the mul-
tiplication map `j´k : IHkpMq Ñ IHjpMq is injective for j ď d´ k. Since HpMq Ď CHpMq, we have
HpMq Ď IHpMq. After restricting the multiplication map to the HpMq-submodule HpMq Ď IHpMq,
we obtain an injection

`j´k : HkpMq ÝÑ HjpMq.

Taking ` to be the sum of all yF over the rank 1 flats F , we obtain part (3). If we write this injection
as a matrix in terms of the natural bases, the matrix is supported on the pairs satisfying F ď G.
Part (2) follows from the existence of a nonzero term in a maximal minor for this matrix. Clearly,
part (1) follows from either part (2) or part (3). �

The following propositions will be key ingredients in the proof of Theorem 1.2. We write m

for the graded maximal ideal of HpMq, write Q for the one-dimensional graded HpMq-module in
degree zero, and write IHpMq∅ for the graded vector space

IHpMq bHpMq Q – IHpMq{m IHpMq.

Proposition 1.7. For every nonempty matroid M, IHpMq∅ vanishes in degrees ě rk M{2.

Proposition 1.8. For all nonnegative k, there is a canonical graded vector space isomorphism

mk IHpMq{mk`1 IHpMq –
à

FPLkpMq

IHpMF q∅r´ks.

For the content of the word “canonical” in Proposition 1.8, we refer to the explicit construction of
the isomorphism in Section 12.3. For a geometric description in the realizable case, see Section 1.3.
When a finite group Γ acts on M, it acts on the intersection cohomology of M, and the isomorphism
is that of Γ-representations

mk IHpMq{mk`1 IHpMq –
à

FPLkpMq

|ΓF |

|Γ|
IndΓ

ΓF
IHpMF q∅r´ks,

where ΓF Ď Γ is the subgroup of elements fixing F .5

Proofs of Theorems 1.2 and 1.3, assuming Theorem 1.6 and Propositions 1.7 and 1.8. We define polyno-
mials

P̃Mptq–
ÿ

kě0

dim
´

IHkpMq∅

¯

tk and Z̃Mptq–
ÿ

kě0

dim
´

IHkpMq
¯

tk.

We argue P̃Mptq “ PMptq and Z̃Mptq “ ZMptq by induction on the rank of M. The statement is
clear when the rank is zero, so assume that M has positive rank and that the statement holds for

5One may eliminate the fraction |ΓF |{|Γ| at the cost of choosing one representative of each Γ-orbit in LkpMq.
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matroids of strictly smaller rank. Taking Poincaré polynomials of the graded vector spaces in
Proposition 1.8 and summing over all k, we get

Z̃Mptq “
ÿ

FPLpMq

trkF P̃MF
ptq.

When combined with our inductive hypothesis, the above gives

Z̃Mptq “ P̃Mptq `
ÿ

F‰∅
trkFPMF

ptq.

On the other hand, by Theorem 1.6 and Proposition 1.7, we have

Z̃Mptq “ trk MZ̃Mpt
´1q and deg P̃Mptq ă rk M{2.

The desired identities now follow from the second definition of Kazhdan–Lusztig polynomials of
matroids given above [BV20, Theorem 2.2].

The nonnegativity of the coefficients of PMptq is immediate from the fact that it is the Poincaré
polynomial of a graded vector space. The unimodality of ZMptq follows from the hard Lefschetz
theorem for IHpMq. All of the steps of this argument still hold when interpreted equivariantly with
respect to any group of symmetries of M by Lemma A.1, Definition A.3, and Corollary A.5. �

We record the numerical identities for PMptq and ZMptq obtained in the above proof.

Theorem 1.9. For any matroid M, we have

PMptq “
ÿ

kě0

dim
´

IHkpMq∅

¯

tk and ZMptq “
ÿ

kě0

dim
´

IHkpMq
¯

tk.

When a finite group Γ acts on M, the analogous identities hold for PΓ
Mptq and ZΓ

Mptq.

Remark 1.10. The explicit construction of IHpMq as a submodule of CHpMq appears in Section 3,
but the fact that it is an indecomposable summand of CHpMq is not established until much later.
It follows from Proposition 6.4, which can only be applied after we have proved Theorem 1.6. See
Remark 6.1 for why this is the case.

Remark 1.11. The astute reader will note that the only part of Theorem 1.6 that appears in the
applications is the hard Lefschetz theorem. However, we know of no way to prove the hard
Lefschetz theorem by itself. Instead, we roll all three statements up into a grand induction. See
Remark 1.15 for more on this philosophy.

Remark 1.12. We have not yet commented on our strategy for proving Theorem 1.5. This proof
will also rely on Theorem 1.6, and will proceed by interpreting QMptq as the graded multiplicity
of the trivial graded HpMq-module in a complex of HpMq-modules called the Rouquier complex.
See Sections 4.3 and 8.7 for more details.
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1.3. The realizable case. We now give the geometric motivation for the statements in Sections 1.1
and 1.2, and in particular review the proofs of Theorems 1.1 and 1.2 for realizable matroids.

Let V be a vector space of dimension d over a field F, let E be a finite set, and let σ : E Ñ V _

be a map whose image spans the dual vector space V _. The collection of subsets S Ď E for which
σ is injective on S and σpSq is a linearly independent set in V _ forms the independent sets of a
matroid M of rank d. Any matroid which arises in this way is called realizable over F, and σ

is called a realization of M over F.6 We continue to assume that M is loopless. In terms of the
realization σ, this means that the image of σ does not contain the zero vector.

For any flat F of M, let VF Ď V be the subspace perpendicular to tσpequePF , and let V F be the
quotient space V {VF . Then we have canonical maps

σF : F Ñ pV F q_ and σF : EzF Ñ pVF q
_

realizing the localization MF and the contraction MF , respectively.

Consider the linear map V Ñ FE whose e-th coordinate is given by σpeq. The assumption that
the image of σ spans V _ implies that this map is injective. The decomposition P1

F “ F\t8u gives
an embedding of FE into pP1

Fq
E , and we let Y Ď pP1

Fq
E denote the closure of the image of V . This

projective variety is called the Schubert variety of σ. The terminology is chosen to suggest that Y
has many similarities to classical Schubert varieties. It has a stratification by affine spaces, whose
strata are the orbits of the additive group V on Y , indexed by flats of M. For any flat F of M, let

UF – tp P Y | pe “ 8 if and only if e R F u.

For example, UE is the vector space V and U∅ is the point 8E . More generally, UF is isomorphic
to V F , and these subvarieties form a stratification of Y with UF contained in the closure of UG if
and only if F is contained in G [PXY18, Lemmas 7.5 and 7.6].

The Schubert variety Y is singular, and it admits a canonical resolutionX called the augmented
wonderful variety, obtained by first blowing up the point U∅, then the proper transforms of the
closures of UF for all rank 1 flats F , and so on. A different description of X as an iterated blow-up
of a projective space appears in [BHM`22, Section 2.4].

For the remainder of this section, we will assume for simplicity that F “ C; see Remark 1.13 for
a discussion of what happens over other fields. The rings and modules introduced in Section 1.2
have the following interpretations in terms of the varieties X and Y . The graded Möbius algebra
HpMq is isomorphic to the rational cohomology ring H‚pY q [HW17, Theorem 14], and the aug-
mented Chow ring CHpMq is isomorphic to the rational Chow ring of X , or equivalently to the
rational cohomology ring H‚pXq. By applying the decomposition theorem to the map from X to

6When a finite group Γ acts on M, we say that M is Γ-equivariantly realizable over F if there is a Γ-equivariant map
σ : E Ñ V _ for some representation V of Γ over F.
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Y , we find that the intersection cohomology IH‚pY q is isomorphic as a graded H‚pY q-module to
a direct summand of H‚pXq.7 A slight extension of an argument of Ginzburg [Gin91] shows that
IH‚pY q is indecomposable as an H‚pY q-module, which implies that it coincides with our module
IHpMq.8 Theorem 1.6 is a standard result in Hodge theory for singular projective varieties.

For each flat F of M, let H‚pICY,F q denote the cohomology of the stalk of the intersection co-
homology complex ICpY q at a point in UF . The restriction map on global sections from IH‚pY q

to H‚pICY,∅q descends to IH‚pY q∅, and another application of the result of [Gin91] implies that
the induced map from IH‚pY q∅ to H‚pICY,∅q is an isomorphism. A fundamental property of the
intersection cohomology sheaf ICpY q is that, if the dimension d of Y is positive, then the stalk
cohomology group H2kpICY,F q vanishes for k ě d. This proves Proposition 1.7 in the realizable
case.

Let YF be the Schubert variety associated with the realization σF of MF . We have a canonical
inclusion YF Ñ Y , which is a normally nonsingular slice to the stratum UF . Thus it induces an
isomorphism from H‚pICY,F q to H‚pICYF ,∅q, see [Pro18, Proposition 4.11]. Let jF : UF Ñ Y denote
the inclusion of the stratum UF . Our stratification of Y induces a spectral sequence with

Ep,q1 “
à

FPLppMq

Hp`q
c pj˚F ICpY qq

that converges to IH‚pY q. The summands of Ep,q1 satisfy

Hp`q
c pj˚F ICpY qq –

´

H‚pICY,F q bH‚cpUF q
¯p`q

–

´

H‚pICY,F qr´2ps
¯p`q

– Hq´ppICYF ,∅q.

Since H‚pICYF ,∅q vanishes in odd degree, our spectral sequence degenerates at theE1 page [PXY18,
Section 7]. This means that IH‚pY q vanishes in odd degree, and that the degree 2k part of the
graded vector space mp IH‚pY q{mp`1 IH‚pY q is isomorphic to

Ep,2k´p8 “ Ep,2k´p1 –
à

FPLppMq

H2pk´pqpICYF ,∅q –
à

FPLppMq

IH2pk´pqpYF q∅.

This proves Proposition 1.8 in the realizable case.

Remark 1.13. If the field F is not equal to the complex numbers, then we can mimic all of the geo-
metric arguments in this section using l-adic étale cohomology for some prime l not equal to the
characteristic of F. In this setting there is no geometric analogue of the Hodge–Riemann relations,
so Hodge theory does not give us the full Kähler package of Theorem 1.6. It is interesting to note

7All of these cohomology rings and intersection cohomology groups of varieties vanish in odd degree, and our
isomorphisms double degree. So H1

pMq – H2
pY q, CH1

pMq – H2
pXq, IH1

pMq – IH2
pY q, and so on.

8To be precise, two hypotheses of [Gin91] are not satisfied by Y : it is not the closure of a Białynicki-Birula cell for
a torus action on a smooth projective variety, and the natural torus which acts is one-dimensional, so it is not possible
to find an attracting cocharacter at each fixed point. However, each fixed point has an affine neighborhood with an
attracting action of the multiplicative group, and this is enough.
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that Theorem 1.6 gives us a truly new result for matroids that are realizable only in positive char-
acteristic. Namely, it says that there is a rational form for the l-adic étale intersection cohomology
of the Schubert variety for which the Hodge–Riemann relations hold. We suspect that IHpMq is a
Chow analogue of the intersection cohomology of Y .

Remark 1.14. If one wants to write down a maximally streamlined proof of Theorem 1.1 for realiz-
able matroids, it is not necessary to know that H‚pY q is isomorphic to the graded Möbius algebra
of M, and it is not necessary to consider the augmented wonderful variety X or the augmented
Chow ring of M. One considers IH‚pY q as a module over H‚pY q and applies the same argument
outlined in Section 1.2. The statements that IH‚pY q contains H‚pY q as a submodule, that H‚pY q has
a basis indexed by flats, and that the matrix for the multiplication by a power of an ample class in
this basis is supported on pairs F ď G follow from [BE09, Theorem 2.1, Theorem 3.1, and Lemma
5.1]. For the proof of Theorem 1.2, we need to know that the cohomology groups H‚pICY,F q van-
ish in odd degree in order to conclude that the spectral sequence degenerates. To see this, we can
either embed IH‚pY q in H‚pXq as in the text above, or we can rely on an inductive argument as in
[Pro18, Theorem 3.6].

1.4. Kazhdan–Lusztig–Stanley polynomials. In this section, we will discuss two antecedents to
our work in the context of Kazhdan–Lusztig–Stanley theory. Let P be a locally finite ranked poset.
For all x ď y P P , let rxy – rk y ´ rkx. A P -kernel is a collection of polynomials κxyptq P Zrts for
each x ď y P P satisfying the following conditions:

‚ For all x P P , κxxptq “ 1.

‚ For all x ď y P P , deg κxyptq ď rxy.

‚ For all x ă z P P ,
ÿ

xďyďz

trxyκxypt
´1qκyzptq “ 0.

Given such a collection of polynomials, Stanley [Sta92] showed that there exists a unique collection
of polynomials fxyptq P Zrts for each x ď y P P satisfying the following conditions:

‚ For all x P P , fxxptq “ 1.

‚ For all x ă y P P , deg fxyptq ă rxy{2.

‚ For all x ď z P P , trxzfxzpt´1q “
ÿ

xďyďz

κxyptqfyzptq.

The polynomials fxyptq are called Kazhdan–Lusztig–Stanley polynomials.

The first motivation for this construction comes from classical Kazhdan–Lusztig polynomials.
If we take the poset to be a Coxeter group W equipped with the Bruhat order and the W -kernel
to be the R-polynomials Rxyptq, then the polynomials fxyptq are called Kazhdan–Lusztig polyno-
mials. These polynomials were introduced by Kazhdan and Lusztig in [KL79], where they were
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conjectured to have nonnegative coefficients. This was proved for Weyl groups in [KL80] by in-
terpreting fxyptq as the Poincaré polynomial for a stalk of the intersection cohomology sheaf of
a classical Schubert variety. For arbitrary Coxeter groups, the conjecture remained open for 34

years before it was proved by Elias and Williamson [EW14], who used Soergel bimodules as a
combinatorial replacement for intersection cohomology groups of classical Schubert varieties.

The second motivation for this definition comes from convex polytopes. Let ∆ be a convex poly-
tope, and let P be the poset of faces of ∆, ordered by reverse inclusion and ranked by codimension,
with the convention that the codimension of the empty face is dim ∆ ` 1. This poset is Eulerian,
which means that the polynomials pt ´ 1qrxy form a P -kernel. The polynomial g∆ptq – f∆∅ptq is
called the g-polynomial of ∆. When ∆ is rational, this polynomial can be shown to have non-
negative coefficients by interpreting it as the Poincaré polynomial for a stalk of the intersection
cohomology sheaf of a toric variety [DL91, Fie91]. For arbitrary convex polytopes, nonnegativity
of the coefficients of the g-polynomial was proved 13 years later by Karu [Kar04], who used the
theory of combinatorial intersection cohomology of fans [BBFK02, BL03, Bra06] as a replacement
for intersection cohomology groups of toric varieties.

In our setting, we consider the ranked poset LpMq along with the LpMq-kernel consisting of the
characteristic polynomials χFGptq – χMG

F
ptq, and we find that f∅Eptq is equal to the Kazhdan–

Lusztig polynomial PMptq. When M is realizable, this polynomial can be shown to have non-
negative coefficients by interpreting it as the Poincaré polynomial for a stalk of the intersection
cohomology sheaf of the Schubert variety Y , as explained in Section 1.3. Theorem 1.2 is obtained
by using IHpMq as a replacement for the intersection cohomology group of Y .

Remark 1.15. It is reasonable to ask to what extent these three nonnegativity results can be uni-
fied. In the geometric setting (Weyl groups, rational polytopes, realizable matroids), it is possible
to write down a general theorem that has each of these results as a special case [Pro18, Theorem
3.6]. However, the problem of finding algebraic or combinatorial replacements for the intersection
cohomology groups of stratified algebraic varieties is not one for which we have a general solu-
tion. Each of the three theories described above involves numerous details that are unique to that
specific case. The one insight that we can take away is that, while the hard Lefschetz theorem is
typically the main statement needed for applications, it is always necessary to prove Poincaré du-
ality, the hard Lefschetz theorem, and the Hodge–Riemann relations together as a single package.

Remark 1.16. The analogue of Theorem 1.1 for Weyl groups appears in [BE09], and for general
Coxeter groups (using Soergel bimodules) in [MS20]. There is no analogous result for convex
polytopes because toric varieties associated with non-simple polytopes do not in general admit
stratifications by affine spaces.
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Remark 1.17. For a locally finite poset P , consider the incidence algebra

IpP q–
ź

xďyPP

Zrts, where puvqxzptq–
ÿ

xďyďz

uxyptqvyzptq for u, v P IpP q.

An element h P IpP q has an inverse, left or right, if and only if hxxptq “ ˘1 for all x P P . In this
case, the left and right inverses are unique and they coincide [Pro18, Lemma 2.1]. In terms of the
incidence algebra, the inverse Kazhdan–Lusztig polynomial of M can be interpreted as

QMptq “ p´1qrk Mf´1
∅Eptq,

where f is the Kazhdan–Lusztig polynomial viewed as an element of IpLpMqq. We note that the
analogous constructions for finite Coxeter groups and convex polytopes do not give us anything
new. Specifically, for a finite Coxeter group, we have

p´1qrxyf´1
xy ptq “ fpw0yqpw0xqptq,

where w0 PW is the longest word [Pro18, Example 2.12]. For a convex polytope, we have

p´1qdim ∆`1f´1
∆∅ptq “ g∆˚ptq,

where ∆˚ is the dual polytope of ∆ [Pro18, Example 2.14]. The explanation for these statements
is that the corresponding P -kernels are alternating [Pro18, Proposition 2.11], which means that
p´tqrxyκxypt

´1q “ κxyptq. The same is not true for characteristic polynomials, which is why inverse
Kazhdan–Lusztig polynomials of matroids are fundamentally different from ordinary Kazhdan–
Lusztig polynomials of matroids.

1.5. Outline. In Section 2, we recall the definitions of the Chow ring and the augmented Chow
ring of a matroid, then we review properties established in [BHM`22] of various pushforward and
pullback maps between these rings. In Section 3, we define the intersection cohomology modules
of matroids, explain how these modules behave under the pullback and pushforward maps, and
define the host of statements that make up our main inductive proof.

With all the key players defined, we provide Section 4 as a guide to the inductive proof of the
main theorem of the paper, Theorem 3.17. No definitions or proofs are given here, and the section
is meant only to provide intuition for the structure of the proof. This section may be skipped, but
we hope that the reader benefits from flipping back to this section to “see what the authors were
thinking” as they read the rest of the paper.

The proof of the main theorem begins in Section 5 and continues for the remainder of the pa-
per. We use Sections 5 and 6 to establish some general results about modules over the graded
Möbius algebra, and in particular about the intersection cohomology modules. The results in Sec-
tion 5 are not inductive in nature and are established outside of the inductive loop. Section 7
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studies the Poincaré pairings on various HpMq-submodules of CHpMq and how they behave un-
der linear-algebraic operations such as tensor products. Section 8 is dedicated to introducing and
studying the so-called Rouquier complexes; as in [EW14], we use these to prove a version of weak
Lefschetz, which for us is a certain vanishing condition for the socles of our intersection cohomol-
ogy modules. In Section 8.7, we explain how Theorem 3.17 can be used to deduce Theorem 1.5.
Sections 9 and 10 use the semi-small decomposition developed in [BHM`22] to perform an induc-
tion involving the deletion Mzi of a single element i from M. Section 11 explores how the hard
Lefschetz theorem and Hodge–Riemann relations behave when deforming Lefschetz operators.
Section 12 puts all of the results from the previous sections together to finish the inductive proof
of Theorem 3.17, from which Theorems 1.1, 1.2, and 1.6 follow. We also show in Section 12.4 how
Lemma 6.2 can be used to deduce Theorem 1.4. Finally, the appendix establishes the framework
needed to deduce Theorem 1.3 as well as the equivariant part of Theorem 1.1.

Acknowledgements. The authors would like to thank both the Institute for Advanced Study and
the Korea Institute for Advanced Study for their hospitality during the preparation of this paper.
We thank Matt Baker, Richard Stanley, and an anonymous referee for helpful comments.

2. THE CHOW RING AND THE AUGMENTED CHOW RING OF A MATROID

For the remainder of this paper, we write d for the rank of M and n for the cardinality of E. We
continue to assume that M is a loopless matroid on E. Under this assumption, n is positive if and
only if d is positive.

2.1. Definitions of the rings. We recall the definitions of the Chow ring of a matroid introduced
in [FY04] and the augmented Chow ring of a matroid introduced in [BHM`22]. To each matroid
M on E, we assign two polynomial rings with rational coefficients

SM – QrxF |F is a nonempty proper flat of Ms and

SM – QrxF |F is a proper flat of Ms bQryi | i is an element of Es.

Definition 2.1. The Chow ring of M is the quotient algebra

CHpMq– SM{pIM ` JMq,

where IM is the ideal generated by the linear forms
ÿ

i1PF

xF ´
ÿ

i2PF

xF , for every pair of distinct elements i1 and i2 of E,

and JM is the ideal generated by the quadratic monomials

xF1xF2 , for every pair of incomparable nonempty proper flats F1 and F2 of M.
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When d is positive, the Chow ring of M is the Chow ring of an pn´1q-dimensional smooth toric
variety defined by a pd´ 1q-dimensional fan ΠM, called the Bergman fan of M [FY04, Theorem 3].

Definition 2.2. The augmented Chow ring of M is the quotient algebra

CHpMq– SM{pIM ` JMq,

where IM is the ideal generated by the linear forms

yi ´
ÿ

iRF

xF , for every element i of E,

and JM is the ideal generated by the quadratic monomials

xF1xF2 , for every pair of incomparable proper flats F1 and F2 of M, and

yi xF , for every element i of E and every proper flat F of M not containing i.

The augmented Chow ring of M is the Chow ring of an n-dimensional smooth toric variety de-
fined by a d-dimensional fan ΠM, called the augmented Bergman fan of M [BHM`22, Proposition
2.12]. Note that the Chow ring is isomorphic to the quotient of the augmented Chow ring by the
ideal generated by all the elements yi, and that two elements yi and yj are equal if and only if i
and j are contained in the same rank 1 flat of M.

By [BHM`22, Proposition 2.18], there is a unique graded algebra homomorphism

HpMq ÝÑ CHpMq, yi ÞÝÑ yi,

where i denotes the unique rank 1 flat of M containing an element i of E, and this homomorphism
is injective. Thus, we may identify the graded Möbius algebra with the subalgebra of the aug-
mented Chow ring generated by the yis. One of the principal goals of this paper is to understand
the HpMq-module structure of CHpMq. The Chow ring CHpMq will play an important supporting
role.

The description of CHpMq in terms of ΠM reveals that CHpMq vanishes in degrees ě d. Sim-
ilarly, the description of CHpMq in terms of ΠM reveals that CHpMq vanishes in degrees ą d.
Furthermore, one can construct distinguished isomorphisms from the graded pieces CHd´1pMq

and CHdpMq to Q.

Definition 2.3. Let M be a loopless matroid of rank d.

(1) When d is positive, we define the degree map for CHpMq to be the unique linear map

degM : CHd´1pMq ÝÑ Q,
ź

FPF

xF ÞÝÑ 1,

where F is any complete flag of nonempty proper flats of M.
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(2) We define the degree map for CHpMq to be the unique linear map

degM : CHdpMq ÝÑ Q,
ź

FPF

xF ÞÝÑ 1,

where F is any complete flag of proper flats of M.

By [BHM`22, Proposition 2.8], these maps are unique, well-defined, and bijective.

2.2. The pullback and pushforward maps. In this subsection, we assume that E is nonempty.
Before recalling the definitions of the pullback and pushforward maps, we need the Chow classes
α, α, and β, defined as

α “ αM –
ÿ

G

xG P CH1pMq,

where the sum is over all proper flats G of M, and

α “ αM –
ÿ

iPG

xG P CH1pMq,

where the sum is over all nonempty proper flats G of M containing a given element i in E, and

β “ βM –
ÿ

iRG

xG P CH1pMq,

where the sum is over all nonempty proper flatsG of M not containing a given element i inE. The
linear relations defining CHpMq show that α and β do not depend on the choice of i. Note that the
natural map from CHpMq to CHpMq takes α to α and ´x∅ to β.

Let F be a proper flat of M. The following definition is motivated by the geometry of augmented
Bergman fans [BHM`22, Propositions 2.20 and 2.21].

Definition 2.4. The pullback ϕF “ ϕFM is the unique surjective graded algebra homomorphism

CHpMq ÝÑ CHpMF q b CHpMF q

that satisfies the following properties:

‚ If G is a flat properly contained in F , then ϕF pxGq “ 1b xG.

‚ If G is a flat properly containing F , then ϕF pxGq “ xGzF b 1.

‚ If G is a flat incomparable to F , then ϕF pxGq “ 0.

‚ If G is the flat F , then ϕF pxF q “ ´1b αMF ´ βMF
b 1.

The pushforward ψF “ ψFM is the unique degree one linear map

CHpMF q b CHpMF q ÝÑ CHpMq

that maps the monomial
ś

F 1 xF 1zF b
ś

F 2 xF 2 to the monomial xF
ś

F 1 xF 1
ś

F 2 xF 2 .
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Of particular importance will be the pullback ϕ∅, which is a surjective graded algebra homo-
morphism from CHpMq to CHpMq. The following results can be found in [BHM`22, Section 2].

Proposition 2.5. The pullback ϕF and the pushforward ψF have the following properties:

(1) If i is an element of F , then ϕF pyiq “ 1b yi.

(2) If i is not an element of F , then ϕF pyiq “ 0.

(3) The equality ϕF pαq “ αMF
b 1 holds.

(4) The pushforward ψF is injective.

(5) The pushforward ψF commutes with the degree maps: degMF
b degMF “ degM ˝ ψ

F .

(6) The pushforward ψF is a homomorphism of CHpMq-modules:

ηψF pξq “ ψF
`

ϕF pηqξ
˘

for any η P CHpMq and ξ P CHpMF q b CHpMF q.

We use the pullback map to make CHpMF q b CHpMF q into a module over CHpMq and HpMq.
By part (1) of the above proposition, HpMq acts only on the second tensor factor.

For later use, we record here the following immediate consequence of Proposition 2.5.

Lemma 2.6. For any η P CHpMq and ξ P CHpMF q b CHpMF q, we have

degM

`

ηψF pξq
˘

“ degMF
b degMF

`

ϕF pηqξ
˘

.

Since the pushforward ψF is injective, the statement below shows that the graded CHpMq-
module CHpMF q b CHpMF qr´1s is isomorphic to the principal ideal of xF in CHpMq.

Proposition 2.7. The composition ψF ˝ ϕF : CHpMq Ñ CHpMq is the multiplication by xF .

We next introduce the analogous maps for Chow rings (rather than augmented Chow rings).
Let F be a nonempty proper flat of M. The following definition is motivated by the geometry of
Bergman fans [BHM`22, Propositions 2.24 and 2.25].

Definition 2.8. The pullback ϕF “ ϕFM is the unique surjective graded algebra homomorphism

CHpMq ÝÑ CHpMF q b CHpMF q

that satisfies the following properties:

‚ If G is a flat properly contained in F , then ϕF pxGq “ 1b xG.

‚ If G is a flat properly containing F , then ϕF pxGq “ xGzF b 1.

‚ If G is a flat incomparable to F , then ϕF pxGq “ 0.

‚ If G is the flat F , then ϕF pxF q “ ´1b αMF ´ βMF
b 1.
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The pushforward ψF “ ψFM is the unique degree one linear map

CHpMF q b CHpMF q ÝÑ CHpMq

that maps the monomial
ś

F 1 xF 1zF b
ś

F 2 xF 2 to the monomial xF
ś

F 1 xF 1
ś

F 2 xF 2 .

The following analogue of Proposition 2.5 can be found in [BHM`22, Section 2].

Proposition 2.9. The pullback ϕF and the pushforward ψF have the following properties:

(1) We have ϕF pαq “ αMF
b 1 and ϕF pβq “ 1b βMF .

(2) The pushforward ψF is injective.

(3) The pushforward ψF commutes with the degree maps: degMF
b degMF “ degM ˝ ψ

F .

(4) The pushforward ψF is a homomorphism of CHpMq-modules:

ηψF pξq “ ψF
`

ϕF pηqξ
˘

for any η P CHpMq and ξ P CHpMF q b CHpMF q.

The following analogue of Lemma 2.6 immediately follows from Proposition 2.9.

Lemma 2.10. For any η P CHpMq and ξ P CHpMF q b CHpMF q, we have

degM

`

ηψF pξq
˘

“ degMF
b degMF

`

ϕF pηqξ
˘

.

Since the pushforward ψF is injective, the statement below shows that the graded CHpMq-
module CHpMF q b CHpMF qr´1s is isomorphic to the principal ideal of xF in CHpMq.

Proposition 2.11. The composition ψF ˝ ϕF : CHpMq Ñ CHpMq is the multiplication by xF .

Finally, we introduce a third flavor of pullback and pushforward maps, this time relating the
augmented Chow ring of M to the augmented Chow ring of MF for any flat F of M, with no
tensor products. Whereas the previous pushforward and pullback maps gave a factorization of
multiplication by a generator xF , the maps we now describe give a factorization of multiplication
by yF . The notational difference is that F is now in the subscript rather than the superscript. The
following definition can be found in [BHM`22, Propositions 2.28 and 2.29].

Definition 2.12. The pullback ϕF “ ϕM
F is the unique surjective graded algebra homomorphism

CHpMq ÝÑ CHpMF q

that satisfies the following properties:

‚ If G is a proper flat containing F , then ϕF pxGq “ xGzF .

‚ If G is a proper flat not containing F , then ϕF pxGq “ 0.
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The pushforward ψF “ ψM
F is the unique degree rkF linear map

CHpMF q ÝÑ CHpMq

that maps the monomial
ś

F 1 xF 1zF to the monomial yF
ś

F 1 xF 1 .

The next results can be found in [BHM`22, Section 2].

Proposition 2.13. The pullback ϕF and the pushforward ψF have the following properties:

(1) If i is an element of F , then ϕF pyiq “ 0.

(2) If i is not an element of F , then ϕF pyiq “ yi.

(3) The equality ϕF pαq “ αMF
holds.

(4) The pushforward ψF is injective.

(5) The pushforward ψF commutes with the degree maps: degMF
“ degM ˝ ψF .

(6) The pushforward ψF is a homomorphism of CHpMq-modules:

ηψF pξq “ ψF
`

ϕF pηqξ
˘

for any η P CHpMq and ξ P CHpMF q.

The following analogue of Lemmas 2.6 and 2.10 follows from Proposition 2.13.

Lemma 2.14. For any η P CHpMq and ξ P CHpMF q, we have

degM pη ψF pξqq “ degMF
pϕF pηqξq .

Since the pushforward ψF is injective, the statement below shows that the graded CHpMq-
module CHpMF qr´ rkF s is isomorphic to the principal ideal of yF in CHpMq.

Proposition 2.15. The composition ψF ˝ ϕF : CHpMq Ñ CHpMq is multiplication by yF .

Corollary 2.16. The homomorphism ϕF restricts to a surjection HpMq Ñ HpMF q whose kernel is
the annihilator of yF . Thus for any HpMq-module N, the submodule yFN can naturally be regarded
as an HpMF q-module.

2.3. New lemmas. Until now, everything that has appeared in Section 2 was proved in [BHM`22].
In this section, we state a few additional lemmas about the pushforward and pullback maps that
will be needed in this paper.

The following lemma will be needed for the proof of Proposition 3.5.

Lemma 2.17. Suppose that F and G are incomparable proper flats of M. Then

ϕGψF “ 0 and ϕGψF “ 0.
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Proof. We only prove the first equality. The second one follows from the same arguments. By Def-
inition 2.4 and Proposition 2.5, the pushforward ψG is injective and the pullback ϕF is surjective.
Thus, it is sufficient to show ψGϕGψFϕF “ 0. Since the compositions ψGϕG and ψFϕF are equal
to the multiplications by xG and xF respectively (Proposition 2.7), the assertion follows because
xGxF “ 0 in CHpMq. �

The next lemma will be used in the proofs of Propositions 7.3, 11.4, 11.7, and 12.2.

Lemma 2.18. Let F be a proper flat of M.

(1) For any µ, ν P CHpMF q b CHpMF q, we have

degM

`

ψF pµq ¨ ψF pνq
˘

“ ´degMF
b degMF

`

pβMF
b 1` 1b αMF qµν

˘

.

(2) When F is nonempty, for any µ, ν P CHpMF q b CHpMF q, we have

degM

`

ψF pµq ¨ ψF pνq
˘

“ ´degMF
b degMF

`

pβMF
b 1` 1b αMF qµν

˘

.

Proof. We prove only part (1); the proof of part (2) is identical. By Proposition 2.5 (5) and (6), we
have

degM

`

ψF pµq ¨ ψF pνq
˘

“ degMF
b degMF

`

ϕFψF pµq ¨ ν
˘

.

Since ϕF is surjective, there exists ν 1 P CHpMq such that ϕF pν 1q “ ν. Then,

ϕFψF pµq ¨ ν “ ϕFψF pµq ¨ ϕF pν 1q “ ϕF pψF pµq ¨ ν 1q “ ϕFψF
`

µ ¨ ϕF pν 1q
˘

“ ϕFψF pµνq.

Combining the above two equations, and applying Proposition 2.5 again, we have

degM

`

ψF pµq ¨ ψF pνq
˘

“ degMF
b degMF

`

ϕFψF pµνq
˘

“ degM

`

ψFϕFψF pµνq
˘

.

Recall that ϕF pxF q “ ´βMF
b 1´ 1b αMF , and therefore

ψFϕFψF pµνq “ xFψ
F pµνq “ ψF

`

ϕF pxF qµν
˘

“ ´ψF
`

pβMF
b 1` 1b αMF qµν

˘

.

This implies that

degM

`

ψFµ ¨ ψF ν
˘

“ ´degM

´

ψF
`

pβMF
b 1` 1b αMF qµν

˘

¯

“ ´degMF
b degMF

`

pβMF
b 1` 1b αMF qµν

˘

. �

For later use, we collect here useful commutative diagrams involving the pullback and the
pushforward maps.

Lemma 2.19. Let F be a proper flat of M.
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(1) The following diagram commutes:

CHpMF q b CHpMF q CHpMF q b CHpMF q CHpMF q b CHpMF q

CHpMq CHpMq CHpMq.

idbϕ∅
MF

ψFM ψFM

idbψ∅
MF

ψFM
ϕ∅
M ψ∅

M

(2) More generally, for any flat G ă F , the following diagram commutes:

CHpMF q b CHpMF q CHpMF q b CHpMF
Gq b CHpMGq CHpMF q b CHpMF q

CHpMq CHpMGq b CHpMGq CHpMq.

idbϕG
MF

ψFM ψ
F zG
MG

bid

idbψG
MF

ψFM

ϕGM ψGM

(3) For any nonempty flat G ă F , the following diagram commutes:

CHpMF q b CHpMF q CHpMF q b CHpMF
Gq b CHpMGq CHpMF q b CHpMF q

CHpMq CHpMGq b CHpMGq CHpMq.

idbϕG
MF

ψFM ψ
F zG
MG

bid

idbψG
MF

ψFM

ϕGM ψGM

(4) For any flat F ď G, the following diagram commutes:

CHpMGq b CHpMGq CHpMGq b CHpMG
F q CHpMGq b CHpMGq

CHpMq CHpMF q CHpMq.

ψGM

idbϕMG

F

ψ
GzF
MF

idbψMG

F

ψGM
ϕM
F ψM

F

We omit the proof, which is a straightforward computation.

2.4. Hodge theory of the Chow ring and the augmented Chow ring. Let KpMq be the open cone
in CH1pMq consisting of strictly convex piecewise linear functions on the Bergman fan ΠM, and
let KpMq of CHpMq be the open cone in CH1pMq consisting of strictly convex piecewise linear
functions on the augmented Bergman fan ΠM. See [BHM`22, Section 2] for definitions of the
Bergman fan ΠM, the augmented Bergman fan ΠM, and the convexity of piecewise linear functions
on them. Ultimately, the only properties of KpMq and KpMq that we will use in this paper is that
they are nonempty. This fact, along with Theorems 2.20 and 2.21 and Proposition 7.10, will be
used to deduce that CHpMq and CHpMq satisfy the Hancock condition of Section 7.3.

The following results are proved in [BHM`22].

Theorem 2.20. Let M be a matroid on E, and let ` be any element of KpMq.
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(1) (Poincaré duality theorem) For every nonnegative integer k ď d{2, the bilinear pairing

CHkpMq ˆ CHd´kpMq ÝÑ Q, pη1, η2q ÞÝÑ degMpη1η2q

is non-degenerate.

(2) (Hard Lefschetz theorem) For every nonnegative integer k ď d{2, the multiplication map

CHkpMq ÝÑ CHd´kpMq, η ÞÝÑ `d´2kη

is an isomorphism.

(3) (Hodge–Riemann relations) For every nonnegative integer k ď d{2, the bilinear form

CHkpMq ˆ CHkpMq ÝÑ Q, pη1, η2q ÞÝÑ p´1qk degMp`
d´2kη1η2q

is positive definite on the kernel of the multiplication by `d´2k`1.

Theorem 2.21. Let ` be any element of KpMq.

(1) (Poincaré duality theorem) For every nonnegative integer k ă d{2, the bilinear pairing

CHkpMq ˆ CHd´k´1pMq ÝÑ Q, pη1, η2q ÞÝÑ degMpη1η2q

is non-degenerate.

(2) (Hard Lefschetz theorem) For every nonnegative integer k ă d{2, the multiplication map

CHkpMq ÝÑ CHd´k´1pMq, η ÞÝÑ `d´2k´1η

is an isomorphism.

(3) (Hodge–Riemann relations) For every nonnegative integer k ă d{2, the bilinear form

CHkpMq ˆ CHkpMq ÝÑ Q, pη1, η2q ÞÝÑ p´1qkdegMp`
d´2k´1η1η2q

is positive definite on the kernel of the multiplication by `d´2k.

Theorem 2.21 was first proved as the main result of [AHK18].

3. THE INTERSECTION COHOMOLOGY OF A MATROID

The purpose of this section is to define the HpMq-module IHpMq along with various related
objects, and to state the litany of results that will be proved in our inductive argument.
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3.1. Definition of IHpMq. Before defining IHpMq, we first define an “underlined version” inside
CHpMq. Let HpMq be the unital subalgebra of CHpMq generated by β.

For any subspace V of CHpMq, we set

V K –

!

η P CHpMq | degMpvηq “ 0 for all v P V
)

.

Note that V is an HpMq-submodule if and only if V K is an HpMq-submodule.

We recursively construct subspaces IHpMq, KF pMq and JpMq of CHpMq as follows.

Definition 3.1. Let M be a loopless matroid of positive rank d.

(1) For a nonempty proper flat F of M, we define

KF pMq– ψF
`

JpMF q b CHpMF q
˘

.

Proposition 2.9 shows that this is an HpMq-submodule of CHpMq.

(2) We define the HpMq-submodule IHpMq of CHpMq by

IHpMq–

˜

ÿ

∅ăFăE
KF pMq

¸K

,

where the sum is over all nonempty proper flats F of M.

(3) We define the graded subspace JpMq of CHpMq by setting

JkpMq–

$

&

%

IHkpMq if k ď pd´ 2q{2,

β2k´d`2 IHd´k´2pMq if k ě pd´ 2q{2.

For example, when M is a rank 1 matroid, we have

IHpMq “ CHpMq “ Q and JpMq “ 0,

and when M is a rank 2 matroid, we have

IHpMq “ CHpMq “ Q‘Qβ and JpMq “ Q.

In Section 12, we will prove that IHpMq satisfies the hard Lefschetz theorem with respect to β: For
every nonnegative integer k ă d{2, the multiplication map

IHkpMq ÝÑ IHd´k´1pMq, η ÞÝÑ βd´2k´1η

is an isomorphism. Equivalently, IHpMq is the unique representation of the Lie algebra

sl2 “ SpanQ

#˜

0 1

0 0

¸

,

˜

1 0

0 ´1

¸

,

˜

0 0

1 0

¸+
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such that the first matrix acts via multiplication by β and the second matrix acts on IHkpMq via
multiplication by 2k ´ d` 1. In terms of the sl2-action, we have

JpMq “

˜

0 0

1 0

¸

¨ IHpMq.

Some further intuitive justification for this definition can be found in Section 4.1.

3.2. Definition of IHpMq. We now consider the graded algebras

HpMq– the unital subalgebra of CHpMq generated by yi for i P E, and

H˝pMq– the unital subalgebra of CHpMq generated by yi for i P E and x∅.

As mentioned before, the subalgebra HpMq can be identified with the graded Möbius algebra of
M defined in the introduction [BHM`22, Proposition 2.18]. If E is the empty set, then x∅ does not
exist, and we do not define H˝pMq. Note that since the homomorphism ϕ∅ : CHpMq Ñ CHpMq

sends ´x∅ to β, it sends H˝pMq to HpMq.

For a subspace V of CHpMq, we set

V K –

!

η P CHpMq | degMpvηq “ 0 for all v P V
)

.

If V is an HpMq-submodule or an H˝pMq-submodule, then so is V K.

Definition 3.2. Let M be a loopless matroid.

(1) For any proper flat F of M, we let

KF pMq– ψF
`

JpMF q b CHpMF q
˘

.

Proposition 2.5 shows that this is an HpMq-submodule of CHpMq, and when F is nonempty, it
is even an H˝pMq-submodule of CHpMq.

(2) We define the HpMq-submodule IHpMq of CHpMq by

IHpMq–

˜

ÿ

FăE

KF pMq

¸K

,

where the sum is over all proper flats F of M.

(3) If E is nonempty, we define the H˝pMq-submodule IH˝pMq of CHpMq by

IH˝pMq–

˜

ÿ

∅ăFăE
KF pMq

¸K

,

where the sum is over all nonempty proper flats F of M.
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3.3. Pulling and pushing the intersection cohomology modules. We now state some basic prop-
erties of the pullbacks and pushforwards for the subspaces we have defined.

Lemma 3.3. For any proper flats F ă G of M, we have

(1) ψF
`

KGzF pMF q b CHpMF q
˘

Ď KGpMq and ϕF pKGpMqq “ KGzF pMF q b CHpMF q,

(2) ψF
`

KGzF pMF q b CHpMF q
˘

Ď KGpMq and ϕF pKGpMqq “ KGzF pMF q b CHpMF q,

(3) ϕF IH˝pMq Ď IHpMF q b CHpMF q and ϕF IHpMq Ď IHpMF q b CHpMF q.

Proof. For the first part of statement (1), we use the right square of Lemma 2.19 (2):

ψF
`

KGzF pMF q b CHpMF q
˘

“ ψF
`

ψ
GzF
MF

`

JpMGq b CHpMG
F q
˘

b CHpMF q
˘

“ ψG
`

JpMGq b ψ
F
MG

`

CHpMG
F q b CHpMF q

˘˘

Ď ψG
`

JpMGq b CHpMGq
˘

“ KGpMq.

The second part follows similarly, using the left square of Lemma 2.19 (2) and the surjectivity of
ϕF

MG . Statement (2) follows by the same arguments, using Lemma 2.19 (3).

For the first part of statement (3), we need to show that, for any proper flat G of M properly
containing F , ϕF IH˝pMq is orthogonal to KGzF pMF qbCHpMF q in CHpMF qbCHpMF q. By Lemma
2.10, this is equivalent to the statement that IH˝pMq is orthogonal to ψF pKGzF pMF q b CHpMF qq

in CHpMq. But this follows from the first part of statement (1). The second part of (3) follows
similarly, using the first part of statement (2). �

Lemma 3.4. The following holds for any loopless matroid M.

(1) For any nonempty proper flat F of M, we have ϕF IH˝pMq Ď IHpMF q.

(2) For any proper flats F ď G of M, we have ϕF KGpMq “ KGzF pMF q.

Proof. To prove (1), it suffices to show that for any flat G containing F ,

ϕF IH˝pMq and KGzF pMF q are orthogonal in CHpMF q.

By Lemma 2.14 and the right commutative square of Lemma 2.19 (4), this is equivalent to the
statement that IH˝pMq and

ψF
`

KGzF pMF q
˘

“ ψFψ
GzF
MF

`

JpMGq b CHpMG
F q
˘

“ ψG
`

JpMGq b ψ
MG

F CHpMG
F q
˘

Ď KGpMq

are orthogonal in CHpMq. But this orthogonality holds by the definition of IH˝pMq. The second
statement follows similarly using the left square of Lemma 2.19 (4) and the surjectivity of ϕMG

F . �
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Proposition 3.5. The graded linear subspaces

KF pMq Ď CHpMq,

where F varies through all nonempty proper flats of M, are mutually orthogonal in CHpMq. Simi-
larly, the graded linear subspaces

KF pMq Ď CHpMq,

where F varies through all proper flats of M, are mutually orthogonal in CHpMq.

Proof. We only prove the second statement. The first statement follows from the same arguments.

LetF andG be distinct nonempty proper flats. We want to show that KF pMq “ ψF
`

JpMF q b CHpMF q
˘

is orthogonal to KGpMq in CHpMq. By Lemma 2.6, this is equivalent to showing that

ϕF KGpMq is orthogonal to JpMF q b CHpMF q in CHpMF q b CHpMF q.

If F and G are incomparable, this follows from Lemma 2.17, so we may assume without loss of
generality that F ă G. But then by Lemma 3.3 (1), we have ϕF pKGpMqq “ KGzF pMF q b CHpMF q.
Since JpMF q is contained in IHpMF q, which is orthogonal to KGzF pMF q, the result follows. �

Finally, we need one more variant of the module IHpMq, which treats one element i P E differ-
ently than the others. Let HipMq be the unital subalgebra of CHpMq generated by β and xtiu.

Convention 3.6. We take xtiu “ 0 when tiu is not a flat.

As before, V is an HipMq-submodule if and only if V K is an HipMq-submodule. Proposition 2.9
shows that KF pMq is an HipMq-submodule of CHpMq for every nonempty proper flat F different
from tiu. The following module appears in a crucial step of our inductive argument, in Section 10.
Also see Section 4.6 in our guide to the proof.

Definition 3.7. We define the HipMq-submodule IHipMq of CHpMq by

IHipMq–

¨

˝

ÿ

F‰tiu

KF pMq

˛

‚

K

,

where the sum is over all nonempty proper flats F of M different from tiu.9

9Note that IHipMq “ IHpMqwhen tiu is not a flat.
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3.4. The statements. Let N “
À

kě0 Nk be a graded Q-vector space endowed with a bilinear form

x´,´y : NˆN Ñ Q

and a linear operator L: N Ñ N of degree 1 that satisfies xLpηq, ξy “ xη,Lpξqy for all η, ξ P N.

Definition 3.8. Using the notation above, we define three properties for N.

(1) We say that N satisfies Poincaré duality of degree d if the bilinear form x´,´y is non-degenerate,
and for η P Nj and ξ P Nk, the pairing xη, ξy is nonzero only when j ` k “ d.

(2) We say that N satisfies the hard Lefschetz theorem of degree d if the linear map

Ld´2k : Nk Ñ Nd´k

is an isomorphism for all k ď d{2.

(3) We say that N satisfies the Hodge–Riemann relations of degree d if the restriction of

Nk ˆNk ÝÑ Q, pη, ξq ÞÝÑ p´1qkxLd´2kpηq, ξy

to the kernel of Ld´2k`1 : Nk Ñ Nd´k`1 is positive definite for all k ď d{2. Elements of
ker Ld´2k`1 are called primitive classes.

We now define the central statements that appear in the induction.

Our first group of statements says that the augmented Chow ring admits canonical decom-
positions into HpMq-modules, and the Chow ring admits canonical decompositions into HpMq-
modules.

Definition 3.9 (Canonical decompositions).

CDpMq: We have the direct sum decomposition

CHpMq “ IHpMq ‘
à

FăE

KF pMq,

where the sum is over all proper flats F of M.

CD˝pMq: We have the direct sum decomposition

CHpMq “ IH˝pMq ‘
à

∅ăFăE
KF pMq,

where the sum is over all nonempty proper flats F of M.

CDpMq: We have the direct sum decomposition

CHpMq “ IHpMq ‘
à

∅ăFăE
KF pMq,

where the sum is over all nonempty proper flats F of M.
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Convention 3.10. We will use a superscript to denote that the decompositions hold in certain de-
grees. For example, CDďkpMqmeans that the direct sum decomposition holds in degrees less than
or equal to k.

Remark 3.11. Let V and W be finite-dimensional Q-vector spaces with subspaces V1 Ď V and
W1 Ď W . Given a non-degenerate pairing V ˆW Ñ Q, we can define the orthogonal subspaces
WK

1 Ď V and V K1 ĎW . It is straightforward to check thatW “W1‘V
K

1 if and only if V “ V1‘W
K
1 .

Applying this fact repeatedly, we have

CDkpMq ðñ CDd´kpMq, CDpMq ðñ CDď
d
2 pMq, and CD˝pMq ðñ CD

ď d
2

˝ pMq.

Similarly, we have CDpMq ðñ CDď
d´1
2 pMq.

Definition 3.12 (Poincaré dualities).

PDpMq: The graded vector space IHpMq satisfies Poincaré duality of degree d with respect to the
Poincaré pairing on CHpMq.

PD˝pMq: The graded vector space IH˝pMq satisfies Poincaré duality of degree d with respect to
the Poincaré pairing on CHpMq.

PDpMq: The graded vector space IHpMq satisfies Poincaré duality of degree d´ 1 with respect to
the Poincaré pairing on CHpMq.

Remark 3.13. Let V be a finite-dimensional Q-vector space equipped with a non-degenerate sym-
metric bilinear form, and let W Ď V be a subspace. Then the restriction of the form to W is
non-degenerate if and only if V “W ‘WK. In light of Remark 3.11, this implies that

CDkpMq ðñ PDkpMq, CDk˝pMq ðñ PDk˝pMq, and CDkpMq ðñ PDkpMq.

Let R be a graded Q-algebra that is generated in positive degree, and let m Ď R denote the
unique graded maximal ideal. For any graded R-module N, the socle of N is the graded submod-
ule

socpNq– tn P N | m ¨ n “ 0u.

The next conditions assert that the socles of the intersection cohomology modules defined in Sec-
tion 3.1 vanish in low degrees. As before, the symbol d stands for the rank of the matroid M.

Definition 3.14 (No socle conditions).

NSpMq: The socle of the HpMq-module IHpMq vanishes in degrees less than or equal to d{2.

NS˝pMq: The socle of the H˝pMq-module IH˝pMq vanishes in degrees less than or equal to d{2.

NSpMq: The socle of the HpMq-module IHpMq vanishes in degrees less than or equal to pd´ 2q{2.
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In particular, for even d, the no socle condition for IHpMq says that the socle of the HpMq-module
IHpMq is concentrated in degrees strictly larger than the middle degree d{2. On the other hand,
for an odd number d, the socle of the HpMq-module IHpMq may be nonzero in the middle degree
pd´ 1q{2.

Recall that we have Poincaré pairings on CHpMq and CHpMq defined by

xη, ξyCHpMq – degMpη ξq and xη, ξyCHpMq – degMpη ξq.

Moreover, with respect to the above bilinear forms, CHpMq satisfies Poincaré duality of degree d
and CHpMq satisfies Poincaré duality of degree d´ 1, by Theorems 2.20 and 2.21.

Definition 3.15 (Hard Lefschetz theorems).

HLpMq: For any positive linear combination y “
ř

jPE cjyj , the graded vector space IHpMq satis-
fies the hard Lefschetz theorem of degree d with respect to multiplication by y.

HL˝pMq: For any positive linear combination y “
ř

jPE cjyj , there is a positive ε such that the
graded vector space IH˝pMq satisfies the hard Lefschetz theorem of degree d with respect to mul-
tiplication by y ´ εx∅.

HLipMq: For any positive linear combination y1 “
ř

jPEzi cjyj , the graded vector space IHpMq

satisfies the hard Lefschetz theorem of degree d with respect to multiplication by y1.

HLpMq: The graded vector space IHpMq satisfies the hard Lefschetz theorem of degree d´ 1 with
respect to multiplication by β.

HLipMq: The graded vector space IHipMq satisfies the hard Lefschetz theorem of degree d´1 with
respect to multiplication by β´xtiu. Here we recall our convention that xtiu “ 0 if tiu is not a flat.

Definition 3.16 (Hodge–Riemann relations).

HRpMq: For any positive linear combination y “
ř

jPE cjyj , the graded vector space IHpMq satis-
fies the Hodge–Riemann relations of degree dwith respect to the Poincaré pairing on CHpMq and
the multiplication by y.

HR˝pMq: For any positive linear combination y “
ř

jPE cjyj , there is a positive ε such that the
graded vector space IH˝pMq satisfies the Hodge–Riemann relations of degree d with respect to
the Poincaré pairing on CHpMq and the multiplication by y ´ εx∅.

HRipMq: For any positive linear combination y1 “
ř

jPEzi cjyj , the graded vector space IHpMq

satisfies the Hodge–Riemann relations of degree dwith respect to the Poincaré pairing on CHpMq

and the multiplication by y1.

HRpMq: The graded vector space IHpMq satisfies the Hodge–Riemann relations of degree d ´ 1

with respect to the Poincaré pairing on CHpMq and the multiplication by β.
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HRipMq: The graded vector space IHipMq satisfies the Hodge–Riemann relations of degree d ´ 1

with respect to the Poincaré pairing on CHpMq and the multiplication by β ´ xtiu.

As before, we will use a superscript to denote that the conditions hold in certain degrees. For ex-
ample, PDkpMqmeans the Poincaré pairing on CHpMq induces a non-degenerate pairing between
IHkpMq and IHd´kpMq, and HLkpMqmeans the hard Lefschetz map from IHkpMq to IHd´kpMq is an
isomorphism.

Now we state the main result of this paper, which will be proved using induction on the cardi-
nality of the ground set E.

Theorem 3.17. Let M be a loopless matroid on E. If E is nonempty, the following statements hold:

CDpMq, NSpMq, PDpMq, HLpMq, HRpMq,

CD˝pMq, NS˝pMq, PD˝pMq, HL˝pMq, HR˝pMq,

CDpMq, NSpMq, PDpMq, HLpMq, HRpMq.

As intermediate steps in the induction, we will also prove the statements HLipMq, HRipMq,
HLipMq, and HRipMq. However, we will not use these statements in our applications, and we
do not need them in the main inductive hypothesis.

Remark 3.18. If E is the empty set, the statements CDpMq, PDpMq, HLpMq, and HRpMq hold tauto-
logically. The statement NSpMq fails, as we have HpMq “ CHpMq “ IHpMq “ Q, so the socle is
nonvanishing in degree 0. This is directly related to the fact that the Kazhdan–Lusztig polynomial
of the rank zero matroid has larger than expected degree. The remaining statements do not make
sense because IH˝pMq and IHpMq are not defined when E is empty.

4. GUIDE TO THE PROOF

The proof of our main result, Theorem 3.17, is a complex induction involving all of the state-
ments introduced in the previous section. A more or less complete diagram of the steps of the
induction appears in Figure 1. The purpose of this section is to highlight the main steps in the
proof, to explain what these steps mean in the geometric setting when M is realizable, and to
make some comparisons with the structure of the proofs of Karu [Kar04] and Elias–Williamson
[EW14].

We hope that readers will benefit from flipping back to this section frequently as they read the
rest of the paper. However, this section is not needed for establishing the results in this paper;
it is included only to communicate the overall structure and geometric insight behind the main
ingredients of the proof. It may be skipped in full by readers who would like to stick to a purely
formal treatment.
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NSă
d´2
2 pMq

PD˝pMq, CD˝pMq
PDpMq, CDpMq

HLipMq,HRipMq

HLă
d´2
2 pMq CDă

d
2 pMq, PDă

d
2 pMq NSă

d
2 pMq

HRă
d´2
2 pMq HLipMq,HR

ă d
2

i pMq HLpMq

HRă
d
2 pMq HL˝pMq

HR
ă d

2
˝ pMq HR˝pMq

NSpMq NS˝pMq

HLpMq CDpMq, PDpMq NSpMq

HRpMq HRpMq

All statements for matroids on fewer elements

7.4

10.6
10.14

8.11

12.1

12.2 7.8

11.4
9.9
9.11 12.3

11.7

11.1 11.6

7.15

12.4

12.5

12.6

12.2 7.8

11.4 7.16

FIGURE 1. Diagram of the proof
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4.1. Canonical decomposition. As discussed in Section 1.3, when the matroid M is realizable,
CHpMq is the cohomology ring of a resolutionX of the Schubert variety Y . Applying the Beilinson–
Bernstein–Deligne–Gabber decomposition theorem to the map π : X Ñ Y gives a decomposition
of π˚QX

as a direct sum of shifted intersection complexes on Y . Since π is constructible for the
stratification of Y by affine spaces UF , these intersection complexes are all of the form IC‚pUF ;Qq
extended by zero to Y . Furthermore, the closure UF is isomorphic to the Schubert variety Y F

associated with the realization σF of the matroid MF . Taking cohomology, CHpMq – H‚pπ˚QX
q

is a direct sum of graded HpMq-submodules, each isomorphic to a shift of IHpMF q for some flat
F .10 As was noted in Section 1.3, an argument of Ginzburg [Gin91] implies that these modules are
indecomposable, so the summands and their multiplicities are well-defined by Krull–Schmidt.

In our proof, we obtain such a decomposition as a consequence of the coarser decomposition
CDpMq (Definition 3.9). The summand in CDpMq indexed by the proper flat F is isomorphic as
an HpMq-module to a direct sum of shifts of copies of CHpMF q, so it can be further decomposed
using the same formula. Iterating this, one can obtain a decomposition of CHpMq into shifted
copies of IHpMF q for various flats F . We prove that these modules IHpMF q are indecomposable in
Proposition 6.4.

The decomposition CDpMq has several properties which make proving it easier than proving the
full decomposition into indecomposable modules directly. First, the summands KF pMq in CDpMq

are canonical, since the definition of JpMq does not involve any choices (Definition 3.1). Second,
these summands are orthogonal to each other with respect to the Poincaré pairing on CHpMq

(Proposition 3.5), and we define IHpMq to be the perpendicular space to them (Definition 3.2).

The problem then is to show that the terms actually do form a direct sum. Note that, because
the Poincaré pairing on CHpMq is nondegenerate, to prove CDpMq it is enough to show that the
restriction of the pairing to each summand KF pMq is non-degenerate. In Corollary 7.4, we use
the formal properties of our push/pull operators to show that this holds when F is a nonempty
proper flat. This is possible because the matroid MF has a smaller ground set than M, and so our
inductive assumption says that all of our results hold for MF . Similarly, the pairing on CHpMq

restricts to a non-degenerate pairing on the summands of the decomposition CDpMq. Thus at the
very beginning of our induction we are able to deduce CD˝pMq and CDpMq. The Poincaré duality
statements PD˝pMq and PDpMq then follow, as noted in Remark 3.13.

In order to prove CDpMq, we need to show that the pairing on IHpMq restricts to a nondegenerate
pairing on the subspace JpMq. We show in Proposition 12.2 that this is a consequence of the hard
Lefschetz property HLpMq for IHpMq. The idea is the following. Let k ď d{2, and take elements
ν in Jk´1pMq “ IHk´1pMq and µ in Jd´k´1pMq “ βd´2kIHk´1pMq. (The degrees are chosen so that
ψ∅pµq and ψ∅pνq are in complementary degrees.) Then the adjointness of the operators ψ∅ and

10The surjection HpMq Ñ HpMF
q defined by setting yG “ 0 unless G ď F makes IHpMF

q an HpMq-module.
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ϕ∅ implies that the pairing of ψ∅pµq and ψ∅pνq is

degMpψ
∅pµq ¨ ψ∅pνqq “ ´degMpβµ ¨ νq. (1)

The nondegeneracy of this pairing then follows because HLpMq and PDpMq imply that the pairing
of IHk´1pMq and βd´2k`1IHk´1pMq “ IHd´kpMq is nondegenerate.

4.2. Geometric interpretation. Let us explain the geometry behind these definitions and state-
ments when M is realizable as in Section 1.3. Recall that the augmented wonderful variety X is
obtained from the Schubert variety Y by blowing up the proper transforms of the closures UF of
strata UF in order of increasing dimension, and in particular the exceptional divisor has a compo-
nent DF for any proper flat F . The divisor D∅ is the fiber of the resolution π : X Ñ Y over the
point stratum U∅; it is the wonderful variety of [DCP95], and we denote it here by X∅. Its coho-
mology ring is identified with CHpMq, and the restriction H‚pXq Ñ H‚pD∅q is identified with the
pullback ϕ∅ : CHpMq Ñ CHpMq of Definition 2.4, while the Gysin pushforward H‚pX∅q Ñ H‚pXq

is identified with ψ∅. (In this section, all cohomology and intersection cohomology groups are
taken with Q coefficients.)

More generally, for an arbitrary proper flat F , the map ψF of Definition 2.4 is the Gysin push-
forward for the divisor DF , and the map ϕF is restriction to DF . The divisor DF is isomorphic to
the product XF ˆX

F , where XF is the fiber of the resolution XF of the Schubert variety YF over
the point stratum, and XF is the resolution of UF . This gives the tensor product decomposition

H‚pDF q “ H‚pXF q bQ H‚pXF q “ CHpMF q bQ CHpMF q

on the domain of ψF .

The resolution π : X Ñ Y factors as X p
ÝÑ Y˝

q
ÝÑ Y , where q is the blow-up of Y at the

point stratum U∅. The cohomology class of the exceptional divisor pulls back to the element x∅
in CHpMq, and the cohomology ring of Y˝ is the ring H˝pMq obtained by adjoining x∅ to HpMq.
There is a natural stratification Y˝ “

š

∅ăF U
F
˝ , and the stratum closure UF˝ is isomorphic to the

blow-up of UF at the point stratum. Applying the BBDG decomposition theorem to p : X Ñ Y˝

gives an isomorphism between p˚QX
and a direct sum of shifts of intersection complexes IC‚pUF˝ q,

and taking cohomology gives a (non-canonical) expression of CHpMq as a direct sum of shifts of
modules IH˝pM

F q. Our decomposition CD˝pMq is then a (canonical) coarsening of this direct sum
decomposition. In particular, IH˝pMq is isomorphic to the intersection cohomology of Y˝ as a
module over H˝pMq “ H‚pY˝q.

Applying the decomposition theorem to q : Y˝ Ñ Y gives an isomorphism

q˚ IC‚pY˝q – IC‚pY q ‘
à

kPZ
i˚QU∅rks

‘mk ,
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where i : U∅ Ñ Y denotes the inclusion and mk P Zě0. We can understand the multiplicities mk

of these skyscraper summands inside q˚ ICpY˝q in the following way. We have a bilinear pairing

Hompi˚QU∅rks, q˚ IC‚pY˝qq ˆHompq˚ IC‚pY˝q, i˚QU∅rksq Ñ Hompi˚QU∅rks, i˚QU∅rksq – Q

given by composition, and mk is the rank of this pairing. A discussion of this fact can be found
for instance in [JMW14, Section 3], see particularly Proposition 3.2. (Note that there it is assumed
that the blow-up results in a smooth variety, but the argument still applies to the pushforward of
the IC complex when the blow-up is singular.)

This pairing can be identified explicitly as follows. By adjunction and base change we have

Hompi˚QU∅rks, q˚ IC‚pY˝qq – H´kpi!q˚ IC‚pY˝qq “ IH´kpY˝, Y˝zY q – IH´k´2pY q,

where Y “ π´1
˝ pU

∅q is the exceptional fiber of the blow-up q. The last isomorphism holds because
a neighborhood of Y in Y˝ is isomorphic to a line bundle L over Y . Similarly, we have

Hompq˚ IC‚pY˝q, i˚QU∅rksq – H´kpi˚q˚ ICpY˝qq
˚ – IH´kpY q˚,

and the pairing is induced by the natural restriction map

IH´kpY˝, Y˝zY q Ñ IH´kpY q,

which makes sense because the inclusion of Y into Y˝ is normally nonsingular, so IC‚pY˝q|Y –

IC‚pY q. With the identifications above, this map is identified with multiplication by the first
Chern class c1pLq on IH‚pY q. But IH‚pY q is isomorphic to the module IHpMq, and c1pLq acts as
multiplication by ϕ∅px∅q “ ´β, so our pairing is identified with the pairing (1).

The variety Y can be viewed as a “local” counterpart to Y , since the singularity of Y at the
point stratum is the affine cone over the projective variety Y . One of the reasons for the complex-
ity of our inductive argument is the need to prove statements in both the “local” and “global”
setting: we prove a canonical decomposition CDpMq of CHpMq analogous to CDpMq, we prove the
Hodge–Riemann relations HRpMq for IHpMq, and so on. This is in contrast to Karu’s proof for the
combinatorial intersection cohomology of fans [Kar04], where an important role is played by the
fact that any affine toric variety is a (weighted) cone over a projective toric variety of dimension
one less.

4.3. Rouquier complexes. As an intermediate step to proving HLpMq, we prove the weaker state-
ment NSpMq (Definition 3.14). When d is even, the statement that there is no socle in degree exactly
pd´2q{2 is equivalent to hard Lefschetz in that degree, since IH

d´2
2 pMq and IH

d
2 pMq have the same

dimension by Poincaré duality. The no socle condition in this middle degree requires a more elab-
orate argument (discussed in Section 4.7), and our first step is to prove that IHpMq has no socle in
degrees strictly less than pd´ 2q{2 (Proposition 8.11).
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We do this by constructing a map of graded HpMq-modules of the form

IHpMq Ñ
à

F

IHpMF q‘mF

„

1´ crkF

2



, (2)

where F runs over nonempty flats of odd corank, and tmF u are some nonnegative integers. We
show that this map is injective except in the top degree d´ 1, so except in that degree the socle of
IHpMq is contained in the socle of the right hand side. Because the maximal flatE has even corank,
all of the matroids MF on the right side have smaller ground sets, so we can assume NSpMF q holds
by induction. This means that the socle of the summand indexed by F vanishes in degrees less
than or equal to

rkF ´ 2

2
`

crkF ´ 1

2
“
d´ 3

2
,

and so we can conclude that NSă
d´2
2 pMq holds.

The map (2) arises by taking the stalk at the flat ∅ of the first differential of a complex C̄‚˝pMq of
graded H˝pMq-modules, which we call the reduced Rouquier complex. It has the form

IH˝pMq Ñ
à

F

IH˝pM
F q‘mF

„

1´ crkF

2



Ñ
à

G

IH˝pM
Gq‘nG

„

2´ crkG

2



Ñ ¨ ¨ ¨ (3)

where the sums are over nonempty flats F , G, etc. for which the indicated shifts are nonpositive
integers, and the first term IH˝pMq is placed in cohomological degree 0.

We find the complex C̄‚˝pMq as a minimal subcomplex of a larger but combinatorially simpler
complex C‚˝pMq defined as follows. We put C0

˝pMq– CHpMq, and for positive k, we put

Ck
˝pMq–

à

∅ăF1ă¨¨¨ăFiăE

xF1 ¨ ¨ ¨xFi CHpMqrks. (4)

The entries of the differential are multiplication by monomials xF , up to sign. This complex will
contain a number of acyclic two-step complexes ¨ ¨ ¨ Ñ 0 Ñ N

„
Ñ N Ñ 0 Ñ ¨ ¨ ¨ as direct sum-

mands, and taking a complementary summand to all of them gives the complex C̄‚˝pMq. It is
well-defined up to isomorphism of complexes of graded H˝pMq-modules.

The modules Ck
˝pMq are isomorphic to direct sums of graded H˝pMq-modules of the form CHpMF qr`s

(Lemma 8.7). We call H˝pMq-modules of this form, and more generally direct summands of such
modules, pure H˝pMq-modules, in analogy with pure mixed Hodge modules and pure l-adic com-
plexes in algebraic geometry. Using the canonical decompositions CD˝pMGq for all nonempty flats
G, we show that an H˝pMq-module is pure if and only if it is a direct sum of modules of the form
IH˝pM

Gqr`s (Corollary 6.6). An important step to proving this is showing that IH˝pM
F q is inde-

composable as an H˝pMq-module (Proposition 6.4).

The fact that the summands in the minimal complex C̄‚˝pMq appear with shifts as in (3) follows
from the fact that the complex C‚˝pMq is ˝-perverse (Definition 8.1). This condition is an algebraic
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analogue of perversity for constructible complexes on Y˝, and it is defined in terms of stalk and
costalk functors

p qF , p qrF s : HpMq-mod Ñ Q-mod

for F P LpMq (Definition 5.5). A pure module N has a filtration whose subquotients give all
costalks NrF s and another filtration whose subquotients are the stalks NF , up to a shift (Proposition
5.11).

Applying these functors to a complex C‚ of pure graded H˝pMq-modules gives complexes of
graded vector spaces C‚F , C‚

rF s. The complex C‚ is said to be ˝-perverse if, for every nonempty flat
F , the cohomology HipC‚F q vanishes in all grading degrees j for which i`2j ą crkF and HipC‚

rF sq

vanishes in all degrees j with i` 2j ă crkF .

Our main result about perverse complexes is Theorem 8.6, which says that if C‚ is a complex
of pure H˝pMq-modules which is ˝-perverse and minimal, meaning that it does not contain any
acyclic direct summands, then for a direct summand IH˝pM

F qrks of Ci, the shift must be k “
pi´crkF q{2. This result is a version of the “diagonal miracle” for complexes of Soergel bimodules
appearing in the work of Elias and Williamson [EW14, Section 6.5] [EMTW20, Theorem 19.47].
Proving Theorem 8.6 requires estimates on the vanishing of stalks and costalks of IH˝pM

F q at
nonempty flats G ă F (Proposition 6.3). These estimates in particular imply that any complex of
the form (3) is ˝-perverse, even if all differentials are zero.

We show by directly computing the stalks and costalks that C‚˝pMq is ˝-perverse (Proposition
8.8). Since the complex C̄‚˝pMq is obtained by splitting off acyclic direct summands of C‚˝pMq, it
has the same stalk and costalk cohomology, and so is also perverse. Theorem 8.6 then shows that
C̄‚˝pMq has the form (3), except for showing that the first term is isomorphic to IH˝pMq, which
requires a small additional argument.

Remark 4.1. We also construct a “non-reduced” Rouquier complex C̄‚pMq, which is a complex of
graded HpMq-modules which are pure, meaning that they are isomorphic to direct sums of direct
summands of modules CHpMF qrks. This complex has a form analogous to (3), but with summands
IHpMF qrks in place of IH˝pM

F qrks, and including summands for the flat F “ ∅. The argument to
construct it is essentially the same as for C̄‚˝pMq, except that the indecomposability of IHpMq and
the stalk and costalk estimates at the empty flat ∅ require the statements CDpMq and NSpMq, which
are not established until the end of our induction loop. As a result, this complex does not play a
role in our main induction. We include it because it is more natural than IH˝pMq, and because it can
be used to prove that the inverse Kazhdan–Lusztig polynomial of M has nonnegative coefficients
(Theorem 1.5 and Proposition 8.20).

Remark 4.2. The natural setting for studying these complexes would be KbpPurepH˝pMqqq and
KbpPurepHpMqqq, the homotopy categories of bounded complexes of pure H˝pMq-modules or
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HpMq-modules. These will be mixed triangulated categories equipped with t-structures whose
hearts are the categories of perverse and ˝-perverse complexes, and in the realizable case they
should be mixed versions of the derived categories of sheaves on Y and Y˝, respectively, con-
structible with respect to the stratification by UF (respectively UF˝ ). This is analogous to the use of
the homotopy categories of Soergel bimodules or parity sheaves on flag varieties to model mixed
sheaves with modular coefficients in the works of Achar–Riche and Makisumi [AR16, Mak17].

However, developing this formalism would add an additional layer of homological algebra
machinery to this paper, and since the key properties of the t-structure rely on results (Propositions
6.3 and 6.4) which are only known to hold as a result of the main induction, doing so would not
offer any significant simplifications. So we have elected not to pursue this approach here.

Remark 4.3. When M is realizable, the complexes C̄‚pMq and C̄‚˝pMq can be viewed as representing
certain “Verma-type” perverse sheaves on the varieties Y and Y˝, respectively. We discuss the case
of C̄‚pMq; the complex C̄‚˝pMq can be understood similarly.

Consider the proper pushforward j!QUE
of the constant sheaf along the inclusion j : UE Ñ Y

of the open stratum into Y . Since UE is affine, this is a perverse sheaf, up to a shift in degree. It
is naturally a mixed sheaf, using either Saito’s mixed Hodge modules or mixed l-adic sheaves, so
it carries a weight filtration whose graded pieces are semisimple perverse sheaves. The modules
C̄jpMq are the cohomologies of these graded pieces, and the differentials are induced by the Ext1

classes between successive pieces.

The quasi-isomorphic complex C‚pMq has a similar description in terms of the resolution p : X Ñ

Y . The map p restricts to an isomorphism from U – p´1pUE˝ q to UE , so we have j!QUE
“

p!pjU q!QU
, where j : U Ñ X is the inclusion. The complement XzU is a divisor with normal

crossings, with one component for each proper flat, and the nonempty intersections of these divi-
sors are indexed by chains of flats. The i-th graded piece of the weight filtration of the perverse
sheaf pjU q!QU

is (up to a shift) the direct sum of constant sheaves on all i-fold intersections of
divisors. Then CipMq is the cohomology of this graded piece as a module over H‚pY ;Qq “ HpMq.

4.4. Hard Lefschetz for IHpMq. The proof of the statement HLpMq (Definition 3.15) follows a stan-
dard argument similar to one which appears in [Kar04] and [EW14], using restriction to divisors
to deduce the hard Lefschetz theorem from the Hodge–Riemann relations for smaller matroids
(Proposition 12.3). The key fact is that multiplication by yF factors as the composition of the maps
ϕF and ψF (Proposition 2.15). We take a class ` “

ř

FPL1pMq cF yF in H1pMqwith all cF positive, as
in the statement of Theorem 1.6. If we have a class η P IHkpMq for k ă d{2 for which `d´2kη “ 0,
applying ϕF for any F P L1pMq gives

ϕF p`q
d´2k ¨ ϕF pηq “ 0.
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Since rk MF “ d ´ 1, this says that ϕF pηq is a primitive class in IHkpMF q with respect to the
class `1 – ϕF p`q. This class satisfies the hypotheses of Theorem 1.6 for the matroid MF , so we
can assume inductively that the Hodge–Riemann relations hold for `1. By Proposition 2.13 and
Lemma 3.4 (1), we have

0 “ degMp`
d´2kη2q “

ÿ

F

cF degMF
pp`1qd´2k´1ϕF pηq

2q.

Since the cF are all positive, the Hodge–Riemann relations for MF imply that all of the sum-
mands have the same sign, and so they all must vanish. Since the Hodge–Riemann forms are
non-degenerate, we must have ϕF pηq “ 0 for every F , and so η is annihilated by every yF . In
other words, η is in the socle of the HpMq-module IHpMq. However, we show in Proposition 7.8
that the socle of IHpMq vanishes in any degree less than or equal to d{2 for which the canonical
decomposition CDpMq holds. At this point in the induction, we only know that this decomposition
holds outside of the middle degree d{2, but this is enough to conclude HLpMq.

4.5. Deletion induction for IHpMq. An important step of our argument is deducing the Hodge–
Riemann relations HRpMq and HRpMq (Definition 3.16), except possibly in the middle degree
(postponed until Section 4.7), by inductively using the Hodge–Riemann relations for matroids
on smaller sets. The arguments for IHpMq and IHpMq are somewhat parallel, but the case of IHpMq

is simpler, so we begin with it even though it appears later in the structure of the whole proof.

This step uses the relation between M and the deletion Mzi. This is a matroid on the set Ezi
whose independent sets are the independent sets of M which do not contain i. We assume that
i is not a coloop of M, which means that there is at least one basis which does not contain i, and
so M and Mzi have the same rank. If all elements of E are coloops, then M is a Boolean matroid.
This is the base case of our induction; we prove Theorem 3.17 in this case by a direct calculation
in Section 12.2. For simplicity, we assume in this section and in Section 4.6 that all of the rank one
flats are singletons, and in particular that tiu is a flat.

There is a homomorphism θi : CHpMziq Ñ CHpMq which takes yj to yj for each j ‰ i, and so
it sends HpMziq injectively to HpMq (Section 9.1). This map plays a major role in the semi-small
decomposition of CHpMq obtained in [BHM`22]. In Section 9, we prove the following result about
the pullback θ˚i IHpMq of our intersection cohomology module by this homomorphism (modulo a
technical issue described in Remark 4.4 below).

Theorem. When considered as a complex of pure graded HpMziq-modules placed in degree 0, the
module θ˚i IHpMq is perverse. As a consequence, θ˚i IHpMq is isomorphic to a direct sum of graded
HpMq-modules of the form

IHppMziqGqr´pcrkGq{2s, (˚)

where G is a flat of Mzi of even corank.
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Remark 4.4. At the stage of the induction at which this argument appears, we only know the
canonical decomposition CDpMq holds in degrees outside of the middle degree when d is even. So
we actually prove the theorem above for a modified module ĂIHpMq, defined in Section 9.3, which
we can prove is a direct summand of CHpMq (Lemma 9.5). It equals IHpMq except in the middle

degree d{2, where it equals IH
d
2
˝ pMq. Because of this, the argument below only gives the Hodge–

Riemann relations for IHpMq in degrees strictly less than d{2. We need a separate argument later
to handle the middle degree, which we highlight in Section 4.7. The theorem as stated is true, but
it can only be proved after the entire induction is finished.

To prove that θ˚i IHpMq is a pure HpMziq-module, we use the fact, proved in [BHM`22], that
θ˚i CHpMq is a direct sum of CHpMziq-modules of the form CHppMziqF qrks for various flats F P

LpMziq and k P Z. The proof that it is perverse relies on Proposition 9.4, which says that the stalk
pθ˚i NqF of the pullback of a pure HpMq-module N at a flat F P LpMziq is isomorphic to the direct
sum of the stalks of N at the flats F , F Y i P LpMq with certain shifts (if either F or F Y i are not
flats of M, their contribution is zero). Combined with the degree restrictions on the stalks of IHpMq

given by Proposition 6.3, the stalk conditions for perversity of θ˚i IHpMq follow. Since stalks and
costalks are interchanged by duality (Lemma 5.8) and PDpMq implies that IHpMq is self-dual, we
also get the costalk conditions.

Because Mzi has a smaller ground set than M, we can inductively assume that all of our state-
ments hold for all of the matroids pMziqG in the theorem. In particular, IHppMziqGq satisfies hard
Lefschetz and the Hodge–Riemann relations for any positive linear combination `1 “

ř

j‰i cjyj P

HpMziq. The shift by ´pcrkGq{2 in the summand (˚) ensures that each summand is centered at
the same middle degree as IHpMq, so our theorem shows that IHpMq satisfies hard Lefschetz for
the class `1. That is, HLipMq holds (Proposition 9.9). By keeping careful track of how the Poincaré
pairing restricts to the summand (˚) (Lemma 9.10), we can also deduce that the Hodge–Riemann

inequalities hold for `1. That is, the statement HR
ă d

2
i pMq also holds (Corollary 9.11).

Next we use a standard deformation argument to pass from the special class `1 to a class ` “

`1 ` ciyi with positive ci. We have already shown HLpMq, HLipMq, and HR
ă d

2
i pMq; that is, IHpMq

satisfies hard Lefschetz for both ` and `1, and the Hodge–Riemann relations hold for `1. But for
a continuous family of classes all of which satisfy hard Lefschetz, the signature of the associated
pairings cannot change, so the Hodge–Riemann relations for `1 imply them for `. Hence, we have
deduced the statement HRă

d
2 pMq (Proposition 11.1).

Remark 4.5. When M is realizable, the theorem above follows from a study of the properties of a
map q : Y Ñ Y 1, obtained as the restriction of the projection pP1qE Ñ pP1qEzi to Y . The image Y 1 “
qpY q is again an arrangement Schubert variety as considered in Section 1.3, given by restricting
the map σ : E Ñ V _ to Ezi. The map is compatible with the stratifications: we have qpUF q “ UF zi
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for each F P LpMq. It is also clear that the fibers of q are either points or rational curves P1. An
easy computation with stalks shows that q˚ ICpY q is perverse, and by the decomposition theorem,
it is semisimple. These two properties together give the theorem. We point to [BV20, Section 1.1]
for more geometric insight in this direction.

The map q : Y Ñ Y 1 resembles a map which naturally appears in the inductive computation
of intersection cohomology of Schubert varieties. Let G Ą B Ą T be a reductive algebraic group
along with a choice of Borel subgroup and maximal torus, and letW be the associated Weyl group.
For any y PW , the intersection cohomology complex of the Schubert varietyXy – ByB{B Ă G{B

corresponds to the Kazhdan–Lusztig basis element Cy in the Hecke algebra of G. If s is a simple
reflection and ys ą y, then the map

Xy ˚Xs – ByB ˆB BsB{B Ñ BysB{B “ Xys

induced by multiplication has fibers that are either points or rational curves, and the source is a
P1-bundle over Xy. The pushforward of ICpXy ˚Xsq along this map is perverse, and it is isomor-
phic to a direct sum of ICpXysq and the IC complexes of smaller Schubert varieties, all with the
appropriate perverse shifts. This is reflected in the fact that in the formula

CyCs “ Cys `
ÿ

xăy
xsăx

µpx, yqCx

(see, for example, [Spr82, Section 1.5, Formula (2)]) the coefficients µpx, yq are integers, not more
general Laurent polynomials.

Despite these similarities, the roles of the source and target in the two situations are different.
In our case, the base Y 1 is a simpler variety which we can assume inductively that we already
understand. In contrast, the Schubert variety map uses inductive knowledge about Xy to deduce
results about the base Xys.

4.6. Deletion induction for IHpMq. In Section 10, we use a similar argument to deduce hard Lef-
schetz and the Hodge–Riemann relations for IHpMq from the same statements for matroids on
smaller ground sets. There is one significant difficulty, however. We would like to decompose
IHpMq as a direct sum of terms of the form

IHppMziqGqr´pcrkGq{2s, (5)

but these are not modules over the same ring. The operators βM and βMzi which act on these
spaces are the images of ´x∅ in CHpMq and CHpMziq, respectively. However, the natural map
CHpMq Ñ CHpMziq sends x∅ to x∅ ` xtiu, so βMzi is sent to βM ´ xtiu. But xtiu does not act
on IHpMq, so we must consider the larger space IHipMq (Definition 3.7). It is this space that we
decompose into a sum of terms of the form (5) (Corollary 10.5).
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As a result, we can use the inductive assumptions for matroids pMziqG to show that hard Lef-
schetz and Hodge–Riemann hold for the action of βM´xtiu on IHipMq (Corollaries 10.6 and 10.14).
This statement, combined with NSpMq, implies hard Lefschetz for βM on IHpMq (Proposition 12.1).
By deforming βM ´ xtiu to βM, we get the Hodge–Riemann relations as well (Proposition 11.4).
However, as noted in Section 4.3, in our first pass we only prove NSpMq strictly below the critical
degree pd´ 2q{2, so we only get hard Lefschetz and Hodge–Riemann in that range as well. When
d is even, we need an additional chain of arguments to finish the proof in this degree.

4.7. The middle degree. Finally, we are left with the problem of proving the Hodge–Riemann
relations in the middle degree IH

d
2 pMq. Although the space of primitive classes depends on the

choice of an ample class `, if we already know the Hodge–Riemann relations in degrees below d{2,
then showing them in middle degree is equivalent to showing that the signature of the Poincaré
pairing on the whole space IH

d
2 pMq is

ř

kě0p´1qk dim IHkpMq (Proposition 7.10).

We say that a graded vector space with non-degenerate pairing that satisfies this condition
on the pairing in middle degree is Hancock (that is, “has a nice signature”). This condition is
preserved by taking tensor products and orthogonal direct sums (Lemma 7.11). In [BHM`22],
we showed that CHpMq satisfies Hodge–Riemann, so in particular it is Hancock. The fact that
IHpMq satisfies hard Lefschetz and Hodge–Riemann implies that JpMq does too, so we can deduce
that each summand KF pMq in the decomposition CDpMq is Hancock (Corollary 7.14). If every
term but one in an orthogonal direct sum decomposition is Hancock, and the whole space is as
well, then the remaining summand is Hancock (Lemma 7.12). Thus, once we have the canonical
decomposition CDpMq, we can deduce that IHpMq is Hancock and thus satisfies Hodge–Riemann
in middle degree (Proposition 7.16).

At this point, our induction still has a gap because we have not proved the decomposition
CDpMq in the middle degree d{2. To fix this, we first work with IH˝pMq, which we do know
is a direct summand of CHpMq. Following the argument of the previous paragraph shows that
IH˝pMq satisfies the Hodge–Riemann relations in all degrees (Propositions 7.15 and 11.7), and this
implies that IH˝pMq has no socle in degrees less than or equal to d{2 as an H˝pMq-module (Propo-
sition 12.4). Because IHpMq is the quotient of IH˝pMq by the action of the generators of HpMq,
this implies the full condition NSpMq, including in the missing degree pd´ 2q{2 (Proposition 12.5).
But the lack of socle in IH

d´2
2 pMq is equivalent to hard Lefschetz in that degree (Proposition 12.6),

which gives the final ingredient needed to close the induction loop and prove the full canonical
decomposition CDpMq (Proposition 12.2).
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5. MODULES OVER THE GRADED MÖBIUS ALGEBRA

In this section we study some basic constructions involving graded modules over the graded
Möbius algebra HpMq. This section is entirely independent of Section 3.

5.1. Annihilators. We begin with a general lemma about annihilators of ideals in Poincaré duality
algebras.

Lemma 5.1. LetR be a finite-dimensional commutative algebra equipped with a degree map with
respect to which R satisfies Poincaré duality as in Theorems 2.20 (1) and 2.21 (1). Let I, J Ď R be
ideals. Let AnnpIq denote the annihilator of I in R. The following identities hold:

(1) If J “ AnnpIq, then I “ AnnpJq;

(2) AnnpI ` Jq “ AnnpIq XAnnpJq;

(3) AnnpI X Jq “ AnnpIq `AnnpJq.

Proof. For the first item, notice that AnnpIq “ IK, where the perp is taken with respect to the
Poincaré duality pairing of R. Since pIKqK “ I , the first assertion follows. The second item is
obvious. For the third item, we use the first and second items to conclude

AnnpI X Jq “ Ann
´

Ann
`

AnnpIq
˘

XAnn
`

AnnpJq
˘

¯

“ Ann
´

Ann
`

AnnpIq `AnnpJq
˘

¯

“ AnnpIq `AnnpJq. �

Lemma 5.2. The ideals xx∅y and xyi | i P Ey are mutual annihilators inside of CHpMq.

Proof. By Proposition 2.5 and Proposition 2.7, the annihilator of x∅ is equal to the kernel of ϕ∅,
which is equal to xyi | i P Ey. The opposite statement follows from Theorem 2.20 (1) and Lemma
5.1 (1). �

An upwardly closed subset Σ Ď LpMq is called an order filter. For any flat F of M, we will
denote the order filters tG | G ě F u and tG | G ą F u by ΣěF and ΣąF , respectively.

Definition 5.3. For any order filter Σ, we define an ideal of the graded Möbius algebra

ΥΣ – SpanQtyG | G P Σu Ď HpMq.

Note that y∅ “ 1 and ΥLpMq “ HpMq. We will write

ΥěF – ΥΣěF and ΥąF – ΥΣąF .

The following lemma generalizes Lemma 5.2.
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Lemma 5.4. For any order filter Σ, the ideals CHpMq ¨ ΥΣ and CHpMq ¨ txF | F R Σu are mutual
annihilators in CHpMq.

Proof. By Lemma 5.1 (1), it is sufficient to prove that CHpMq ¨ ΥΣ is the annihilator of the set
txF | F R Σu. If F R Σ and G P Σ, then G ę F , and hence

yGxF “ 0.

This proves that CHpMq ¨ ΥΣ annihilates txF | F R Σu. For the opposite inclusion, we use down-
ward induction on the cardinality of Σ.

The base case Σ “ LpMq is trivial. Now suppose that Σ is a proper order filter and that the
statement is true for all order filters strictly containing Σ. Let η be an element of CHpMq satisfying
ηxF “ 0 for all F R Σ. We need to show that η is in the ideal ΥΣ ¨ CHpMq.

Let H be a maximal flat not in Σ. Then ηxH “ 0, and applying our inductive hypothesis to the
order filter ΣY tHu, we find that

η P ΥΣYtHu ¨ CHpMq “ yH CHpMq `ΥΣ ¨ CHpMq.

Now, for some ξ, ξF P CHpMq, we may write

η “ yHξ `
ÿ

FPΣ

yF ξF .

Since H R Σ, we have xHyF “ 0 for all F P Σ, and hence

0 “ xHη “ xHyHξ `
ÿ

FPΣ

xHyF ξF “ xHyHξ “ xHψHϕHpξq “ ψH
`

x∅ϕHpξq
˘

.

Since ψH is injective, we have x∅ϕHpξq “ 0 P CHpMHq. By Lemma 5.2, it follows that ϕHpξq is in
the ideal xyKzH | K ą Hy Ď CHpMHq. Applying ψH , we see that yHξ “ ψHϕHpξq is in the ideal
xyK | K ą Hy Ď CHpMq. By the maximality of H , any flat K strictly containing H is in Σ. Thus,
yH is in ΥΣ ¨ CHpMq, and we conclude that η is in ΥΣ ¨ CHpMq. �

5.2. Stalks and costalks. For an order filter Σ and a graded HpMq-module N, we define

NΣ – ΥΣ ¨N and NΣ – tn P N | ΥΣ ¨ n “ 0u.

We will write

NěF – NΣěF and NěF – NΣěF ,

and similarly for the order filter ΣąF . Clearly, if Σ1 Ď Σ, then NΣ1 Ď NΣ and NΣ Ď NΣ1 .

Definition 5.5. We define the stalk of N at F to be the quotient

NF –
NěF rrkF s

NąF rrkF s
.
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Dually, we define the costalk of N at F to be the quotient

NrF s –
NąF

NěF
.

The stalk and costalk of N are again HpMq-modules, but all of the generators act trivially, so we
will generally consider them as functors from graded HpMq-modules to graded Q-modules.

The following lemma is immediate from the definitions.

Lemma 5.6. For any graded HpMq-module N, we have Nr∅s “ socpNq. If N is a direct summand of
CHpMq, then we have a canonical isomorphism N∅ – ϕ∅pNq Ď CHpMq.

The stalk or costalk functors at a flat F can be described in terms of the stalk or costalk functors
at the empty flat for the contraction matroid MF , by the following result. Recall that by Corollary
2.16 the submodule yFN can naturally be regarded as an HpMF q-module.

Lemma 5.7. For any graded HpMq-module N, we have canonical isomorphisms

NF – pyFNrrkF sq∅ and NrF s – pyFNrrkF sqr∅s,

where the stalk and costalk are taken for the flat ∅ P LpMF q.

Proof. The first statement follows from

NF “
NěF rrkF s

NąF rrkF s
“
pyFNqě∅rrkF s

pyFNqą∅rrkF s
– pyFNq∅rrkF s – pyFNrrkF sq∅.

The second statement follows from

NrF s “
NąF

NěF
– yFNąF rrkF s “ pyFNqą∅rrkF s “ pyFNqr∅srrkF s – pyFNrrkF sqr∅s. �

For any graded HpMq-module N, we write N˚ for HomQpN,Qq. Note that N˚ has a natural
graded HpMq-module structure.

Lemma 5.8. For any graded HpMq-module N and any flat F , we have a canonical isomorphism of
graded HpMq-modules

pNF q
˚ – pN˚qrF s.

Proof. We first prove the lemma when F “ ∅. The module pN∅q
˚ is equal to the submodule of N˚

consisting of functions that vanish on Ną∅, which is the same as pN˚qr∅s.

Now consider an arbitrary flat F . By Lemma 5.7 and the case that we just proved, we have

pNF q
˚ –

`

pyFNrrkF sq∅
˘˚
–

`

pyFNrrkF sq˚
˘

r∅s – pyFNq˚r´ rkF sr∅s.

Since multiplication by yF is an HpMq-module homomorphism of degree rkF , we have

pyFNq˚r´ rkF s – yF pN
˚qrrkF s.
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Therefore, we have
pNF q

˚ –
`

yF pN
˚qrrkF s

˘

r∅s – pN
˚qrF s,

where the second isomorphism follows from Lemma 5.7. �

5.3. Pure modules. In this section we introduce a special class of graded HpMq-modules called
pure modules, which in a sense are the main objects of study in this paper. In particular, once the
big induction is complete, our main result Theorem 3.17 implies that IHpMq is pure.

Definition 5.9. We say that a graded HpMq-module (respectively a graded H˝pMq-module) is pure
if it is isomorphic to a direct sum of direct summands of graded HpMq-modules (respectively of
graded H˝pMq-modules) of the form CHpMF qrks, where F P LpMq and k P Z.

Remark 5.10. It is clear that a pure H˝pMq-module is also pure when considered as an HpMq-
module, but a pure HpMq-module need not even admit a structure as an H˝pMq-module.

It would be interesting to have an intrinsic characterization of the class of pure HpMq-modules
solely in terms of the graded Möbius algebra HpMq, rather than finding them inside the much
more complicated algebra CHpMq. We do not currently know of such a characterization. But we
will prove a number of results that say that pure modules have pleasant properties not shared by
general graded HpMq-modules. The first of these results is the following proposition, which says
that a pure module N has a filtration whose successive quotients give its stalks at all of the flats,
and another filtration that gives the costalks. It is the main ingredient in the proof of Proposition
1.8 from the introduction.

Fix an ordering F1, . . . , Fr of LpMq refining the natural partial order, so that for any k, the set

Σk – tFk, . . . , Fru

is an order filter. Note that we have natural inclusions ΥěFk Ď ΥΣk and ΥąFk Ď ΥΣk`1
.

Proposition 5.11. Let N be a pure graded HpMq-module.

(1) For all k, the above inclusions induce an isomorphism

NFk “
NěFkrrkFks

NąFkrrkFks
–
ÝÑ

NΣkrrkFks

NΣk`1
rrkFks

.

(2) For all k, the above inclusions induce an isomorphism

NΣk`1

NΣk

–
ÝÑ

NąFk

NěFk
“ NrFks.

Proof. The desired properties are preserved under taking direct sums, passing to direct sum-
mands, and shifting degree, so we may assume that N “ CHpMF q for some flat F . If F ğ Fk,
then the source and target of both maps are zero, so both statements are trivial. Thus we may
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assume that F ě Fk. Notice that if we replace M by MF and each order filter of LpMq by its in-
tersection with LpMF q, none of the modules in the formulas change. So without loss of generality,
we can also assume that F “ E, that is, MF “ M.

Since CHpMqΣk “ CHpMqěFk ` CHpMqΣk`1
, the first map is surjective. To show that the first

map is injective, notice that

CHpMqěFk X CHpMqΣk`1
“ CHpMq ¨ΥěFk X CHpMq ¨ΥΣk`1

“ AnntxG | G ğ Fku XAnntxG | G R Σk`1u

“ AnntxG | G ą Fku

“ CHpMq ¨ΥąFk

“ CHpMqąFk ,

where the second and fourth equalities follow from Lemma 5.4 and the third equality follows from
the fact that tG | G ą Fku “ Σk`1 X tG | G ě Fku. Thus, the first map is an isomorphism.

Since CHpMqΣk`1XCHpMqěFk “ CHpMqΣk , the second map is injective. To show that the second
map is surjective, notice that

CHpMqΣk`1 ` CHpMqěFk “ Ann ΥΣk`1
`Ann ΥěFk

“ CHpMq ¨ txG | G R Σk`1u ` CHpMq ¨ txG | G ğ Fku

“ CHpMq ¨ txG | G ą Fku

“ Ann ΥąFk

“ CHpMqąFk ,

where the second and fourth equalities follow from Lemma 5.4 and the third equality follows from
the fact that Σk “ Σk`1 Y tG | G ě Fku. Thus, the second map is an isomorphism. �

Remark 5.12. The argument for (1) can be generalized slightly to show that for any pure module
N, the assignment Σ ÞÑ NΣ is a sheaf on the finite topological space LpMq, where the topology has
order filters as open sets. However, the stalk of this sheaf at a flat F is NěF rather than the stalk
NF , because ΣěF is the smallest open set containing F . In contrast, the costalk NrF s does have a
sheaf-theoretic interpretation: it is the space of sections on ΣěF supported on F .

Remark 5.13. To see examples of modules for which the conclusions of Proposition 5.11 fail, let
M be the Boolean matroid of rank two on the set E “ t1, 2u. We indicate subsets of E by con-
catenation, and we order the flats of LpMq by ∅, 1, 2, 12. Let N be the ideal in HpMq generated
by y1 and y2, or in other words the space spanned by y1, y2, and y12. Then we have NΣ1 “ N,
NΣ2 “ NΣ3 “ Qy12, and NΣ4 “ 0, so NΣ2{NΣ3 “ 0, but the stalk N1 is one-dimensional. Thus part
(1) of the proposition fails for N. Part (2) will fail for the dual module N˚ – HpMq{y12 HpMq.
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5.4. Orlik–Solomon algebra. Our second result about pure modules is Proposition 5.14, which
gives a chain complex to compute the costalk Nr∅s (and then, using Lemma 5.7, it can be used
for any costalk). It is only used once, in Section 8.4. By definition the costalk is the kernel of the
homomorphism11

N Ñ
à

aPL1pMq

yaN

given by multiplication by each generator ya P H1pMq. Proposition 5.14 says that if N is pure, this
can be extended to the right to give a complex which is exact in all but the first place, whose k-th
step is a direct sum of submodules yFN for rkpF q “ k. This complex can be viewed as performing a
sort of inclusion-exclusion computation, but because the lattice LpMq is not Eulerian, the module
yFN may have to appear with multiplicity greater than one. More precisely, the multiplicity is
|µp∅, F q|, where µ is the Möbius function of LpMq. The appropriate vector space we need with
this dimension is the dual of a piece of the Orlik–Solomon algebra of M, so we first recall a few
facts about this algebra. We refer to [OT92, Section 3.1] for more details.

Let E1 be the vector space over Q with basis teiuiPE , and let E be the exterior algebra generated
by E1. Define a degree ´1 linear map BE : E Ñ E by setting BE1 “ 0, BEei “ 1, and

BEpei1 ¨ ¨ ¨ eilq “
l
ÿ

k“1

p´1qkei1 ¨ ¨ ¨xeik ¨ ¨ ¨ eil for any i1, . . . , il P E.

For any subset S “ ti1, . . . , ilu Ď E, we denote ei1 ¨ ¨ ¨ eil by eS . The Orlik–Solomon algebra of M,
denoted by OSpMq, is the quotient of E by the ideal generated by BEeS for all dependent sets S of
M. The differential BE descends to a differential B on OSpMq, and the complex pOSpMq, Bq is acyclic
whenever the rank of M is positive.

For any flat F of M, we define a graded subspace EF of E generated by those monomials eS for
all subsets S Ď E with closure F . Then we have a direct sum decomposition

E “
à

FPLpMq

EF ,

which induces a direct sum decomposition

OSpMq “
à

FPLpMq

OSF pMq.

Moreover, the natural ring map OSpMF q Ñ OSpMq induces an isomorphism of vector spaces

OSrkF pMF q – OSF pMq.

11Recall that if a rank one flat a is not a singleton, we have ya “ yi for any i P a which is not a loop.
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5.5. A complex to compute costalks. Let N be a graded HpMq-module. For all 0 ď k ď d “ rk M,
let

Nk
! –

à

FPLkpMq

OSF pMq
˚ b yFN.

Note that OSF pMq sits entirely in degree rkF and OSF pMq
˚ sits in degree ´ rkF . In particular,

tensoring with OSF pMq
˚ and multiplying by yF has no net effect on degrees.

We define a differential δk : Nk
! Ñ Nk`1

! as follows. If F P LkpMq and G P Lk`1pMq, then the
pF,Gq-component of δk is zero unless F ă G. If F ă G, choose i P GzF so that yG “ yiyF .
Then the pF,Gq-component of δk is given on the first tensor factor by the pF,Gq-component of
B˚ : OSF pMq

˚ Ñ OSGpMq
˚ and on the second tensor factor by multiplication by yi.

Proposition 5.14. If N is pure, then H0pN‚! q – Nr∅s and HmpN‚! q “ 0 for all m ą 0.

Proof. Choose a total order on LpMq and define order filters Σk as in Section 5.3. Consider the
filtration

0 “ pNΣ1q‚! Ď ¨ ¨ ¨ Ď pN
Σrq‚! Ď pN

Σr`1q‚! “ N‚!

obtained by applying the functor p¨q‚! to the filtration 0 “ NΣ1 Ď ¨ ¨ ¨ Ď NΣr Ď NΣr`1 “ N.

We claim that the quotient complex
pNΣk`1q‚!

pNΣkq‚!
(6)

is acyclic when k ‰ 1, and when k “ 1 it is quasi-isomorphic to the module Nr∅s concentrated
in cohomological degree zero. Given the claim, the desired result then follows from the spectral
sequence relating the cohomology of a filtered complex to the cohomology of its associated graded
complexes.

To show the above claim, we consider the short exact sequence

0 Ñ NΣkYΣěF Ñ NΣk ¨yF
ÝÑ yFNΣk Ñ 0,

for any k and any flat F . This sequence includes into the same sequence with k replaced by k ` 1,
and we have

NΣk XNΣk`1YΣěF “ NΣkYΣěF ,

so we obtain a short exact sequence

0 Ñ
NΣk`1YΣěF

NΣkYΣěF
Ñ

NΣk`1

NΣk
Ñ

yFNΣk`1

yFNΣk
Ñ 0.

By Proposition 5.11 (2), the middle term of this sequence is isomorphic to NrFks. If F ď Fk`1, then
Σk`1 Y ΣěF “ Σk Y ΣěF , and the first term in our sequence is therefore zero. On the other hand,
if F ę Fk`1, then Proposition 5.11 (2) implies that the first term of our sequence is NrFks, and
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therefore that the first map in our sequence is an isomorphism. Putting these two observations
together, we conclude that

yFNΣk`1

yFNΣk
–

$

&

%

NrFks if F ď Fk`1,

0 otherwise.

It follows that there is an isomorphism of complexes

pNΣk`1q‚!

pNΣkq‚!
– OSpMFkq˚ bNrFks,

where the right-hand side has the differential B˚ b idNrFks
. Therefore, the complex (6) is acyclic

unless rk MFk “ 0. This happens only when k “ 1, in which case the quotient complex has only
the module NrF1s “ Nr∅s in cohomological degree zero. �

6. INTERSECTION COHOMOLOGY AS A MODULE OVER THE GRADED MÖBIUS ALGEBRA

In this section, we apply some of the constructions from Section 5 to the intersection cohomol-
ogy module IHpMq Ď CHpMq. In particular, we study its stalks and costalks, and prove that under
suitable hypotheses it is indecomposable as an HpMq-module. We also study the H˝pMq-module
IH˝pMq similarly.

For most of the remainder of the paper, we will prove very few absolute statements. Most of
what we prove will be of the form “If X holds, then so does Y.” At the end, we will use all of these
results in a modular way to complete our inductive proof of Theorem 3.17.

Remark 6.1. The main results of this section are Propositions 6.3 and 6.4, and Corollary 6.6. Each
of these results has two parts, the first pertaining to the module IHpMq and the second pertaining
to the module IH˝pMq. We note that only the second parts of these three results will be used in our
large induction. The first parts require that we know CDpMq, and will only be applied after the
induction is complete. This was alluded to earlier in Remark 1.10.

Recall that by Corollary 2.16, yFN is an HpMF q-module for any HpMq-module N and any flat F .

6.1. Stalks and costalks of the intersection cohomology modules.

Lemma 6.2. Let F be a nonempty flat such that CDpMF q holds.

(1) If CDkpMq holds, then ϕF pIH
kpMqq “ IHkpMF q. If this holds for all k, then we have a graded

HpMF q-module isomorphism yF IHpMq – IHpMF qr´ rkF s.

(2) If CDk˝pMq holds, then ϕF pIH
k
˝pMqq “ IHkpMF q. If this holds for all k, then we have a graded

HpMF q-module isomorphism yF IH˝pMq – IHpMF qr´ rkF s.
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Proof. We prove statement (1); the proof of (2) is identical. For notational convenience, we will
assume that CDkpMq holds for all k, but in fact the argument makes sense one degree at a time.

For any nonempty proper flatG of M, we applyϕF to the direct summand KGpMq. By [BHM`22,
Proposition 2.28], if G ğ F , then ϕF KGpMq “ 0. Thus applying Lemma 3.4 (2) gives

ϕF

´

à

GăE

KGpMq
¯

“
à

FďGăE

KGzF pMF q.

By Lemma 3.4 (1), we also have ϕF pIHpMqq Ď ϕF pIH˝pMqq Ď IHpMF q. Therefore, the map ϕF
is compatible with the canonical decompositions in the sense that it maps IHpMq to IHpMF q and
it maps the sum of the smaller summands to the sum of the smaller summands. Since ϕF is
surjective, it must restrict to a surjective map from IHpMq to IHpMF q, so ϕF pIHpMqq “ IHpMF q.
Applying the injective map ψF to this equality, we obtain the second part of statement (1). �

Proposition 6.3. Suppose that F is a proper flat for which CDpMF q, PDpMF q, and NSpMF q hold.

(1) If CDpMq holds, then the costalk IHpMqrF s vanishes in degrees less than or equal to pcrkF q{2

and the stalk IHpMqF vanishes in degrees greater than or equal to pcrkF q{2.

(2) If F ‰ ∅ and CD˝pMq holds, then the costalk IH˝pMqrF s vanishes in degrees less than or equal
to pcrkF q{2 and the stalk IH˝pMqF vanishes in degrees greater than or equal to pcrkF q{2.

Proof. For any nonempty proper flat F , it follows from Lemmas 5.7 and 6.2 (2) that

IH˝pMqrF s –
`

yF IH˝pMqrrkF s
˘

r∅s – IHpMF qr∅s.

Thus, NSpMF q implies that IH˝pMqrF s vanishes in degrees less than or equal to pcrkF q{2. Similarly,
we have

IH˝pMqF –
`

yF IH˝pMqrrkF s
˘

∅ – IHpMF q∅.

By PDpMF q, there is a natural isomorphism IHpMF q
˚ – IHpMF qrcrkF s of HpMq-modules. Then

by Lemma 5.8, we have

IHpMF q∅ –
`

pIHpMF q
˚qr∅s

˘˚
–

`

IHpMF qr∅srcrkF s
˘˚
.

By NSpMF q, it follows that IHpMF qr∅s vanishes in degrees less than or equal to pcrkF q{2, and
hence IHpMF qr∅srcrkF s vanishes in degrees less than or equal to ´pcrkF q{2. Thus, IH˝pMqF –

IHpMF qr∅srcrkF s˚ vanishes in degrees greater than or equal to pcrkF q{2.

This concludes the proof of statement (2). WhenF is a nonempty flat, the proof of (1) is identical.
When F “ ∅, NSpMq implies that IHpMqr∅s vanishes in degrees less than or equal to d{2. By
PDpMq, IHpMq∅ vanishes in degrees greater than or equal to d{2. �
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6.2. Indecomposability of IHpMq and IH˝pMq and pure modules. The next result concerns the en-
domorphisms and indecomposability of the graded HpMq-module IHpMq and the graded H˝pMq-
module IH˝pMq.

Proposition 6.4. Let M be a loopless matroid with ground set E.

(1) Suppose that CDpMF q, PDpMF q, and NSpMF q hold for all proper flats F . Any endomorphism
of the graded HpMq-module IHpMq that induces the zero map on the stalk IHpMqE is in fact
the zero endomorphism of IHpMq. In particular, IHpMq has only scalar endomorphisms, and
is therefore indecomposable as an HpMq-module.

(2) Suppose that E is nonempty, CD˝pMq holds, and CDpMF q, PDpMF q, and NSpMF q hold for
all nonempty proper flats F . Any endomorphism of the graded H˝pMq-module IH˝pMq that
induces an automorphism of the stalk IH˝pMqE is in fact an automorphism of IH˝pMq. In
particular, IH˝pMq is indecomposable as an H˝pMq-module.

Proof. For statement (1), we proceed by induction on the cardinality of the ground set E. When
E is empty or consists of a singleton, the proposition is trivial. Let f be an endomorphism of
IHpMq that induces the zero map on IHpMqE . For each rank one flat G, Lemma 6.2 (1) implies
that yG IHpMq – IHpMGqr´1s. Since f restricts to an endomorphism of the graded HpMGq-module
IHpMGq that induces the zero map on the stalk IHpMGqEzG – IHpMqE , the inductive hypothesis
implies that f restricts to zero on each submodule yG IHpMq. Thus, the map f : IHpMq Ñ IHpMq

factors through the quotient module IHpMq∅ of IHpMq and has image contained in the submodule
IHpMqr∅s of IHpMq. But then it must be the zero map by Proposition 6.3 (1). The conclusion that
IHpMq has only scalar endomorphisms follows from the fact that IHpMqE – Q is one-dimensional.

Next, we prove statement (2). Suppose that f is an endomorphism, but not an automor-
phism, of IH˝pMq that induces an automorphism of the stalk IH˝pMqE . Since IH˝pMqE – Q is
one-dimensional, the induced automorphism of f on the stalk IH˝pMqE must be a nonzero scalar
multiple, which we denote by c.

By Lemma 6.2 (2), we have yF IH˝pMq – IHpMF qr´ rkF s for any nonempty flat F . By state-
ment (1), the restriction of f to IH˝pMqą∅ “

ř

F‰∅ yF IH˝pMq is equal to multiplication by c.
Choose a nonzero homogeneous element η of minimal degree in the kernel of f . For any nonempty
flat F , we have

cyF η “ fpyF ηq “ yF fpηq “ yF ¨ 0 “ 0.

Thus, yF η “ 0 for any nonempty flat F . By Lemma 5.2, this implies that η is a multiple of x∅ in
CHpMq. By CD˝pMq, IH˝pMq is a direct summand of CHpMq as an H˝pMq-module. Hence, η “ x∅ξ

for some ξ P IH˝pMq. We have

0 “ fpηq “ fpx∅ξq “ x∅fpξq.
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Thus fpξq is in the intersection of the annihilator of x∅ and IH˝pMq, which is equal to IH˝pMqą∅.

Let ξ1 “ fpξq{c. Since ξ1 P IH˝pMqą∅, we have fpξ1q “ cξ1 “ fpξq, and hence fpξ ´ ξ1q “ 0. Since

0 ‰ η “ x∅ξ “ x∅pξ ´ ξ
1q,

we have ξ ´ ξ1 ‰ 0. This contradicts the minimality of the degree of η. �

Remark 6.5. It is also true that the only endomorphisms of IH˝pMq as a graded H˝pMq-module are
multiplication by scalars. We will prove this later, as Lemma 10.10. Although the statement would
fit as part of Proposition 6.4, the proof needs some results from the next section, so we postpone it
until the section where it is used.

Using Proposition 6.4, we get the following basic characterization of pure HpMq-modules and
pure H˝pMq-modules.

Corollary 6.6. Let M be a loopless matroid with ground set E.

(1) Suppose that CDpMG
F q, PDpM

G
F q, and NSpMG

F q hold for all flats F ă G. Then a graded HpMq-
module is pure if and only if it is isomorphic to a direct sum of modules of the form IHpMGqrks

for G P LpMq and k P Z.

(2) Suppose that E is nonempty, CD˝pMGq holds for all nonempty flats G, and CDpMG
F q, PDpM

G
F q,

and NSpMG
F q hold for all flats ∅ ă F ă G. Then a graded H˝pMq-module is pure if and only

if it is isomorphic to a direct sum of modules of the form IH˝pM
F qrks for F P LpMqzt∅u and

k P Z.

Proof. To prove (1), note that the decomposition CDpMq expresses CHpMq as a direct sum of IHpMq

and HpMq-submodules isomorphic to CHpMGqrks. So using the decompositions CDpMGq induc-
tively, we can write CHpMq as a direct sum of modules of the form IHpMGqrks. Proposition 6.4
then shows that these summands are all indecomposable as HpMq-modules. The result follows.
Statement (2) follows similarly. �

7. THE SUBMODULES INDEXED BY FLATS

In order to define the modules IHpMq Ď IH˝pMq Ď CHpMq and IHpMq Ď CHpMq, we made use
of the submodules

KF pMq “ ψF
`

JpMF q b CHpMF q
˘

Ď CHpMq

for all proper flats F , and the submodules

KF pMq “ ψF
`

JpMF q b CHpMF q
˘

Ď CHpMq
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for all nonempty proper flats F . The purpose of this section is to understand the relationship
between the intrinsic Poincaré pairings on these pieces and the pairings induced by the inclusions
into the Chow ring and augmented Chow ring of M.

7.1. The Poincaré pairing on KF pMq. Suppose that

N “
à

0ďi,jďd

Ni,j

is a finite-dimensional bigraded Q-vector space. Suppose that N is equipped with a bilinear pair-
ing x´,´y such that, if µ P Ni,j and ν P Nk,l, then xµ, νy ‰ 0 only when i` j ` k ` l “ d. Suppose
that r P N. We say that the pairing is adapted to r if it satisfies the following properties:

(1) dim Ni,j “ dim Nr´i,d´r´j for any 0 ď i ď r and 0 ď j ď d´ r;

(2) if µ P Ni,j , ν P Nk,l, and i` k ă r, then xµ, νy “ 0.

We define the r-reduction of the original pairing to be the new pairing x´,´yr defined by

xµ, νyr –
ÿ

i,j,k,l
i`k“r

xµij , νkly,

where µij is the projection of µ to Ni,j , and similarly for νkl.

Lemma 7.1. Suppose that the bilinear form x´,´y is adapted to r. Then x´,´yr is non-degenerate
if and only if x´,´y is non-degenerate.

Proof. This translates to the statement that if a matrix is block upper triangular and its block diag-
onal part is nonsingular, then the original matrix is nonsingular. �

The following lemma is an immediate consequence of the definitions.

Lemma 7.2. Suppose that PDpMq, HLpMq, and HRpMq all hold. Then JpMqr´1s satisfies Poincaré
duality, hard Lefschetz, and Hodge–Riemann, all of degree d, with respect to the hard Lefschetz
operator

Ld´2k : JpMqr´1sk “ Jk´1pMq Ñ Jd´k´1pMq “ JpMqr´1sd´k, η ÞÑ βd´2kη

and the Poincaré pairing

xη, ξy “ ´degMpβ η ξq.

Let F be a proper flat. To understand the pairing on KF pMq, we will apply Lemma 7.1 to the
bigraded vector space JpMF qr´1s b CHpMF q. This vector space has two natural bilinear pairings.
The first, which we denote x¨ , ¨yF , is the tensor product of the Poincaré pairings on JpMF qr´1s
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and CHpMF q. The second, which we denote x¨ , ¨yCHpMq, is the restriction of the Poincaré pairing
on CHpMq via the inclusion

JpMF qr´1s b CHpMF q Ñ CHpMq

induced by ψF , which matches the total grading on the source with the grading on the target.
Similarly, the bigraded vector space JpMF qr´1s b CHpMF q has two natural bilinear pairings. The
first, which we denote x¨ , ¨yF , is the tensor product of the Poincaré pairings on JpMF qr´1s and
CHpMF q. The second, which we denote x¨ , ¨yCHpMq, is the restriction of the Poincaré pairing on
CHpMq via the inclusion

JpMF qr´1s b CHpMF q Ñ CHpMq

induced by ψF .

Proposition 7.3. Let r “ crkF .

(1) The pairing x¨ , ¨yF on JpMF qr´1s bCHpMF q is adapted to r, and its r-reduction is equal to the
pairing x¨ , ¨yCHpMq.

(2) The pairing x¨ , ¨yF on JpMF qr´1s bCHpMF q is adapted to r, and its r-reduction is equal to the
pairing x¨ , ¨yCHpMq.

Proof. We prove only part (1); the proof of part (2) is identical. The first condition for adaptedness
follows from the Poincaré duality statements of Lemma 7.2 and Theorem 2.20. For the second
condition, let

µ P JpMF qr´1si b CHjpMF q “ Ji´1pMF q b CHjpMF q

and

ν P JpMF qr´1sk b CHlpMF q “ Jk´1pMF q b CHlpMF q.

By Lemma 2.18 (1), we have

xµ, νyCHpMq “ degM

`

ψF pµq ¨ ψF pνq
˘

“ ´degMF
b degMF

`

pβMF
b 1` 1b αMF qµν

˘

.

If i` k ă r, then

pβMF
b 1` 1b αMF qµν P CHăcrkpF q´1pMF q b CHpMF q

and hence xµ, νyCHpMq “ 0. This proves that the first pairing is adapted to r. If i` k “ r, then

p1b αMF qµν P CHr´2pMF q b CHpMF q,

hence we have

xµ, νyCHpMq “ ´degMF
b degMF

`

pβMF
b 1qµν

˘

“ xµ, νyF .

This completes the proof. �
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7.2. Beginning the induction: the coarse canonical decomposition. In this section, we use Propo-
sition 7.3 and the assumption that Theorem 3.17 holds for smaller matroids to show that the de-
composition CD˝pMq holds. We then show that CD˝pMq implies some useful relations between our
modules IH˝pMq and IHpMq under the push and pull operators ψ∅, ϕ∅.

Assume throughout the section that E is nonempty.

Corollary 7.4. Assume that all of the statements of Theorem 3.17 hold for MF for every nonempty
proper flat F . Then the statements PD˝pMq, PDpMq, CD˝pMq, and CDpMq hold.

Proof. By Proposition 3.5, the subspaces KF pMq are mutually orthogonal as F varies through all
nonempty proper flats of M. By Lemmas 7.1 and 7.2, Proposition 7.3, and Theorem 2.20 (1), the re-
striction of the Poincaré pairing on KF pMq “ ψF

`

JpMF q b CHpMF q
˘

Ď CHpMq is non-degenerate.
These statements imply that the sum of these subspaces of CHpMq is a direct sum and the restric-
tion of the Poincaré pairing to this direct sum is non-degenerate. Since IH˝pMq is defined to be the
orthogonal complement of the above direct sum, we have an orthogonal decomposition

CHpMq “ IH˝pMq ‘
à

∅ăFăE
KF pMq

and the restriction of the Poincaré pairing to IH˝pMq is also non-degenerate. Thus, PD˝pMq and
CD˝pMq hold. The statements PDpMq and CDpMq follow from the same arguments. �

Proposition 7.5. If CD˝pMq holds, then xx∅y X IH˝pMq “ x∅ IH˝pMq.

Proof. By CD˝pMq, we have

xx∅y X IH˝pMq “ x∅ CHpMq X IH˝pMq

“

´

x∅ IH˝pMq ‘
à

∅ăFăE
x∅ KF pMq

¯

X IH˝pMq “ x∅ IH˝pMq. �

Corollary 7.6. If CD˝pMq holds, then ϕ∅pIH˝pMqq “ IHpMq.

Proof. Let G be a nonempty proper flat of M. By Lemma 3.3 (1), we have

ψ∅KGpMq Ď KGpMq.

Therefore, IH˝pMq is orthogonal to ψ∅KGpMqwith respect to the Poincaré pairing on CHpMq. Then
Proposition 2.5 (5) and (6) implies that ϕ∅pIH˝pMqq is orthogonal to KGpMq with respect to the
Poincaré pairing on CHpMq. Thus ϕ∅pIH˝pMqq Ď IHpMq.

On the other hand, Lemma 3.3 (1) also gives

ϕ∅ KGpMq “ KGpMq
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for any nonempty proper flat G. Hence IHpMq is orthogonal to ϕ∅ KGpMq with respect to the
Poincaré pairing on CHpMq, or equivalently (by Lemma 2.6) ψ∅pIHpMqq is orthogonal to KGpMq

with respect to the Poincaré pairing on CHpMq. Thus ψ∅pIHpMqq Ď IH˝pMq.

By the definition of ψ∅, we have ψ∅pIHpMqq Ď xx∅y. Then by Proposition 7.5, we have

ψ∅pIHpMqq Ď IH˝pMq X xx∅y “ x∅ ¨ IH˝pMq “ ψ∅ϕ∅pIH˝pMqq .

By the injectivity of ψ∅, it follows that IHpMq Ď ϕ∅ pIH˝pMqq. �

Corollary 7.7. If CD˝pMq holds, then xx∅y X IH˝pMq “ ψ∅pIHpMqq.

Proof. By Corollary 7.6 and Proposition 2.7, we have

ψ∅pIHpMqq “ ψ∅ϕ∅pIH˝pMqq “ x∅ ¨ IH˝pMq.

The statement then follows from Proposition 7.5. �

Proposition 7.8. If CD˝pMq holds, then for any k ď d{2 we have

CDkpMq ùñ NSkpMq.

Proof. Suppose that η P IHkpMq and yiη “ 0 for all i P E. By Lemma 5.2, η is a multiple of x∅.
Thus, Corollary 7.7 implies that

η P ψ∅`IHk´1pMq
˘

“ ψ∅`Jk´1pMq
˘

.

However, CDkpMq implies that IHkpMq X ψ∅`Jk´1pMq
˘

“ 0. Therefore, we have η “ 0. �

7.3. The Hancock condition. Let N “
À

kě0 Nk be a finite-dimensional graded Q-vector space
equipped with a symmetric bilinear form. Let

PNptq–
ÿ

kě0

tk dim Nk

be the Poincaré polynomial of N. We say that N is Hancock if the signature of the bilinear form (the
number of positive eigenvalues minus the number of negative eigenvalues) is equal to PNp´1q.

Remark 7.9. If the symmetric bilinear form on N satisfies Poincaré duality of degree d, then its
signature is equal to the signature of its restriction to the degree d{2 piece. In particular, if d is odd,
then the signature is necessarily zero, as is PNp´1q. Thus when d is odd, the Hancock condition
follows automatically from Poincaré duality.

The motivation for the Hancock condition is the following proposition.
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Proposition 7.10. Suppose that L: N Ñ N is a linear operator of degree 1 with respect to which
N satisfies the hard Lefschetz theorem of degree d. Suppose that d is even and that N satisfies the
Hodge–Riemann relations of degree d in all but the middle degree. Then N satisfies the Hodge–
Riemann relations in middle degree if and only if N is Hancock.

Proof. The hard Lefschetz theorem implies that

Nd{2 “

d{2
à

k“0

Lpd{2q´k kerpLd´2k`1q.

For all k ď d{2, the Hodge–Riemann relations in degree k are equivalent to the statement that the
signature of the restriction of the bilinear form to Lpd{2q´k kerpLd´2k`1q is equal to p´1qkpdim Nk ´

dim Nk´1q. If we assume the Hodge–Riemann relations in all but one degree, this means that the
Hodge–Riemann relations in the missing degree are equivalent to the statement that the signature
of the bilinear form is equal to

d{2
ÿ

k“0

p´1qkpdim Nk ´ dim Nk´1q.

By hard Lefschetz and the fact that d is even,

´p´1qk dim Nk´1 “ p´1qd´k`1 dim Nd´k`1,

thus the expected signature is

d{2
ÿ

k“0

´

p´1qk dim Nk ` p´1qd´k`1 dim Nd´k`1
¯

“ PNp´1q.

This completes the proof. �

Lemma 7.11. If N and N1 are both Hancock, then so are N‘N1 and NbN1.

Proof. This follows from the fact that signature and Poincaré polynomial are both additive with
respect to direct sum and multiplicative with respect to tensor product. �

Lemma 7.12. Suppose that N is Hancock and N “ N0‘N1‘¨ ¨ ¨‘Nl is an orthogonal decomposition.
If N1, . . . ,Nl are all Hancock, then so is N0.

Proof. This follows from the fact that the signature and the Poincaré polynomial are both additive
with respect to the orthogonal decomposition. �

Now suppose that N has a bigrading N “ ‘i,jě0Ni,j refining the given single grading, in the
sense that Nk “ ‘i`j“kN

i,j .
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Lemma 7.13. A graded bilinear form that is adapted to r is Hancock if and only if its r-reduction
is Hancock.

Proof. This follows from the fact that the matrix of the bilinear form and its block diagonal part
with respect to the decomposition induced by the bigrading have the same multiset of eigenval-
ues. �

Corollary 7.14. Let F be a nonempty proper flat of M such that PDpMF q, HLpMF q, and HRpMF q

hold. The graded subspace KF pMq is Hancock with respect to the Poincaré pairing on CHpMq, and
the graded subspace KF pMq is Hancock with respect to the Poincaré pairing on CHpMq.

Proof. We prove the first statement; the proof of the second is the same. Let r “ crkF . By
Proposition 7.3 and Lemma 7.13, this is equivalent to the statement that the graded vector space
JpMF qr´1sbCHpMF q is Hancock with respect to the pairing x¨ , ¨yF . By Lemma 7.11, it is sufficient
to prove that CHpMF q and JpMF qr´1s are both Hancock. The first assertion follows from Theorem
2.20 and Proposition 7.10. The second assertion follows from Lemma 7.2 and Proposition 7.10. �

Proposition 7.15. Assume that PDpMF q, HLpMF q, and HRpMF q hold for all nonempty proper flats
F of M. Then

CD˝pMq, HL˝pMq, and HR
ă d

2
˝ pMq ùñ HR˝pMq.

Proof. Proposition 7.10 tells us that we need to show that IH˝pMq is Hancock. By Corollary 7.14,
KF pMq is Hancock for all nonempty proper flats F of M. Theorem 2.20 and Proposition 7.10 tell
us that CHpMq is Hancock, thus the subspace IH˝pMq is Hancock by CD˝pMq, Proposition 3.5, and
Lemma 7.12. �

Proposition 7.16. Suppose that E is nonempty and the following statements hold:

CDpMq, HLpMq, HRă
d
2 pMq, HL˝pMq, HR˝pMq, PDpMq, HLpMq, and HRpMq.

Then HRpMq also holds.

Proof. By Proposition 7.10, it suffices to show that IHpMq is Hancock. By CDpMq, we have

IH˝pMq “ IHpMq ‘ ψ∅pJpMqq .

Since PD˝pMq, HL˝pMq, and HR˝pMq hold, Proposition 7.10 implies that IH˝pMq is Hancock. By
PDpMq, HLpMq, and HRpMq, Lemma 7.2 and Proposition 7.10 combine to tell us that ψ∅pJpMqq is
Hancock. Finally, IHpMq is Hancock by Lemma 7.12. �
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8. ROUQUIER COMPLEXES

The main result of this section is Proposition 8.11, which deduces the no socle condition NSă
d´2
2 pMq

in all except the degree closest to the middle, assuming CD˝pMq and all our statements for ma-
troids on fewer elements. The tool we use to prove this is the Rouquier complex, a complex of
pure graded H˝pMq-modules which plays a role analogous to the Rouquier complex of Soergel
bimodules in [EW14].

Let C‚ be a complex of pure graded HpMq-modules. Applying the stalk and costalk functors to
each step of this complex gives complexes C‚F , C‚

rF s of graded Q-modules.

Definition 8.1. We say that a complex C‚ of pure graded HpMq-modules is perverse if, for all flats
F P LpMq, we have

(a) For all i, the cohomology of the stalk complex HipC‚F q vanishes in degrees j for which
i` 2j ą crkF , and

(b) for all i, the cohomology of the costalk complex HipC‚
rF sq vanishes in degrees j for which

i` 2j ă crkF .

If C‚ is a complex of pure graded H˝pMq-modules, we say that it is ˝-perverse if the above condi-
tions hold for all nonempty flats F .

Remark 8.2. In the realizable case, the homotopy category KbpPurepMqq of complexes of pure
HpMq-modules is a “mixed” analogue of the derived category of sheaves on Y constructible with
respect to the stratification by cells UF . From that point of view, the perverse complexes form the
heart of a t-structure on KbpPurepMqq, and many of the structures and results in geometric repre-
sentation theory that hold for mixed perverse sheaves on flag varieties will have analogs in this
setting. But for the purposes of this paper we only need to construct one particular complex, so
we do not pursue this formalism here.

Remark 8.3. We are using a somewhat nonstandard convention on shifts and grading. To match
with the standard definitions of perverse sheaves in topology, it would make more sense to put
the generators xF , yi in degree two, so that HpMq and CHpMq have even gradings, and adjust the
shifts in the definition of perversity so that IHpMF qrrkF s placed in cohomological degree 0 would
be perverse.

8.1. Minimal subcomplexes and perversity. We begin with a standard lemma in homological
algebra.

Lemma 8.4. Suppose that pC‚, Bq is a complex in some abelian category and we have direct sum
decompositions of two consecutive objects

Ck “ Pk ‘Qk and Ck`1 “ Pk`1 ‘Qk`1
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for some k with the property that the composition

Pk ãÑ Ck Bk

ÝÑ Ck`1 � Pk`1

is an isomorphism. Then pC‚, Bq has as a direct summand a two-step acyclic complex whose k-th
and pk ` 1q-st graded pieces are isomorphic to Pk.

Proof. First, we can replace Pk`1 by the image of Pk in Ck`1. It is easy to check that the direct sum
decomposition still holds, and now the differential sends Pk to Pk`1 isomorphically. Next, replace
Qk by the kernel of the composition Ck Ñ Ck`1 � Pk`1. It is again easy to check that our direct
sum decomposition still holds and that the differential sends Qk to Qk`1. Now the differential
Bk´1 : Ck´1 Ñ Ck has image contained in ker Bk, which is contained in Qk, and Bk`1pPk`1q “

Bk`1BkPk “ 0. So we obtain the desired direct sum of complexes. �

If C‚ is a complex of graded HpMq-modules (or graded H˝pMq-modules), we can split off as
many two-term acyclic complexes as possible until there do not exist k, Pk ‰ 0, Pk`1, Qk, and
Qk`1 such that the hypotheses of Lemma 8.4 hold. We call the resulting subcomplex C̄‚ Ď C‚ a
minimal subcomplex of C‚. Since C‚ is the direct sum of C̄‚ and an acyclic complex, C‚ and C̄‚

have the same stalks and costalks. In particular, if C‚ is perverse or ˝-perverse, so is C̄‚.

Remark 8.5. Even though the subcomplex C̄‚ of C‚ depends on the choices of splitting, its isomor-
phism class as a complex of HpMq-modules (or H˝pMq-modules) is uniquely determined. In fact,
the category of bounded complexes of finitely generated HpMq-modules is an abelian category in
which every element has finite length. By the Krull–Schmidt theorem, the complex C‚ admits a
decomposition into a direct sum of indecomposable complexes of HpMq-modules, and the sum-
mands are uniquely determined up to isomorphisms. Removing all two-term acyclic summands,
we obtain C̄‚.

For the next result and several additional results in this section, we will use the following condi-
tions as hypotheses. The first condition implies that the conclusions of Proposition 6.3, Proposition
6.4, and Corollary 6.6 hold for any module IHpMGq, and the second condition does the same for
modules IH˝pM

Gq.

Condition A. CDpMG
F q, PDpM

G
F q, and NSpMG

F q hold for all flats F ă G.

Condition B. E is nonempty, CD˝pMGq holds for all nonempty flatsG, and CDpMG
F q, PDpM

G
F q, and

NSpMG
F q hold for all flats ∅ ă F ă G.

Note that condition A, and any results which rely on it, will only be known once the main induc-
tion loop is finished, while condition B holds at the beginning of our induction by Corollary 7.4.
Under these hypotheses we have the following characterization of minimal perverse complexes
of HpMq-modules and minimal ˝-perverse complexes of H˝pMq-modules.
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Theorem 8.6. Let C‚ be a minimal complex of pure HpMq-modules (resp. a minimal complex of
pure H˝pMq-modules) and assume that condition A (resp. condition B) holds. Then the following
are equivalent:

(a) Each Ci is isomorphic to a direct sum of modules of the form

IHpMF qrks (resp. IH˝pM
F qrks),

where F P LpMq (resp. F P LpMqz∅) and k “ pi´ crkF q{2.
(b) Each module Ci is perverse (resp. ˝-perverse) when considered as a complex placed in

degree i.
(c) The complex C‚ is perverse (resp. ˝-perverse).

Proof. Suppose that C‚ is a complex of pure HpMq-modules and condition A holds; the other case
is proved in the same way.

Suppose that property (a) holds, and let IHpMF qrks be a direct summand of Ci, so k “ pi ´

crkF q{2. We have pIHpMF qrksqF “ pIHpMF qrksqrF s – Qrks, which is only nonzero in degree
j “ ´k. Since i` 2j “ crkF , the conditions of Definition 8.1 hold for F . If G is a flat and G ď F ,
the stalk and costalk at G vanish, so the conditions hold automatically. So suppose G ă F . Then
by Proposition 6.3, the costalk pIHpMF qrksqrGs vanishes in degrees less than or equal to

prkF ´ rkGq{2´ k “ prkF ´ rkG` crkF ´ iq{2 “ pcrkG´ iq{2,

and the stalk at G vanishes in degrees greater than or equal to pcrkG ´ iq{2. Thus statement (b)
of the theorem holds. Note that we have shown a stronger statement for all flats G ‰ F : for this
summand, the strict inequalities in Definition 8.1 can be replaced by non-strict inequalities.

If statement (b) holds, it means that the complex pC‚, B “ 0q with zero differential is perverse.
Since setting the differentials to zero can only make the cohomology larger, this immediately im-
plies statement (c).

Finally, let us suppose (c) holds, so that C‚ is minimal and perverse. By Corollary 6.6, each
Ci is isomorphic to a direct sum of modules of the form IHpMF qrks, so we need to show that this
module can only appear in Ci with shift k “ pi´crkF q{2. We prove this by induction on crkF . As
the base case we take crkF “ ´1; there are no such flats, so the statement is trivial. Now suppose
that crkF ě 0 and the statement holds for all flats of smaller corank.

Let us suppose that k ą pi´crkF q{2, and so k ě pi`1´crkF q{2. Then the fact that IHpMF qF –

Q implies that C̄i
F is nonzero in degree j “ ´k. Since i ` 2j ą crkF , the assumption that C‚ is

perverse implies that the cohomology HipC‚F q is zero in degree j, so either Ci´1
F or Ci`1

F must be
nonzero in degree j. Suppose IHpMGqr`s is a direct summand of Ci`a, a “ ˘1, whose stalk at
F is nonzero in degree j. We must have G ě F ; if G ą F , then by our inductive hypothesis
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` “ pi`a´crkGq{2. But then Proposition 6.3 implies that the stalk at F of this summand vanishes
in degrees greater than or equal to

prkG´ rkF q{2´ ` “ pcrkF ´ pi` aqq{2 ě j.

In particular the stalk vanishes in degree j, contrary to assumption. So we must have G “ F .
But then in order for the map between the summands IHpMGqr`sF and IHpMF qrksF to be nonzero
we must have ` “ k, and by Proposition 6.4 the map must be an isomorphism, contradicting the
minimality of our complex C‚. So k ď pi´ crkF q{2.

On the other hand, suppose that k ă pi ´ crkF q{2, so k ď pi ´ 1 ´ crkF q{2. Now the costalk
Ci
rF s is nonzero in degree j “ ´k, and since i ` 2j ă crkF , either Ci´1

rF s or Ci`1
rF s must be nonzero

in degree j. Take a summand IHpMGqr`s of Ci`a, where a “ ˘1, and assume that G ą F . Then as
before we have ` “ pi ` a ´ crkGq{2, so by Proposition 6.3 the costalk of this summand vanishes
in degrees less than or equal to

prkG´ rkF q{2´ ` “ pcrkF ´ pi` aqq{2 ď j.

This is impossible, so we must have G “ F , which gives the same contradiction as before. Thus
we have k “ pi´ crkF q{2, as desired. �

8.2. The big complexes. Our Rouquier complexes will be defined as minimal subcomplexes of
larger complexes C‚pMq, C‚˝pMq which we define in this section. Consider the graded CHpMq-
module

CipMq–
à

∅ďF1ă¨¨¨ăFiăE

xF1 ¨ ¨ ¨xFi CHpMqris

for i ą 0 and C0pMq– CHpMq, along with the module homomorphism

Bi : CipMq Ñ Ci`1pMq

defined component-wise by multiplication by a variable:

xF1 ¨ ¨ ¨yxFj ¨ ¨ ¨xFi`1 CHpMqris
p´1qjxFj
ÝÝÝÝÝÝÑ xF1 ¨ ¨ ¨xFi`1 CHpMqri` 1s.

It is straightforward to check that Bi`1 ˝ Bi “ 0, and hence pC‚pMq, Bq is a complex of graded
CHpMq-modules.

If E is nonempty, we define C‚˝pMq to be the quotient of C‚pMq by the subcomplex consisting of
terms with F1 “ ∅. In other words, it is defined by

Ci
˝pMq–

à

∅ăF1ă¨¨¨ăFiăE

xF1 ¨ ¨ ¨xFi CHpMqris,

for i ą 0 and C0
˝pMq – CHpMq. The differential of C‚˝pMq is given by the same formula as in

C‚pMq.
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Both C‚pMq and C‚˝pMq are complexes of CHpMq-modules, but we will consider C‚pMq as a
complex of HpMq-modules and C‚˝pMq as a complex of H˝pMq-modules by restriction.

Lemma 8.7. For all i ą 0 and proper flats F1 ă ¨ ¨ ¨ ă Fi, xF1 ¨ ¨ ¨xFi CHpMqris is isomorphic as
an HpMq-module to a direct sum of shifted copies of CHpMF1q, and if F1 ‰ ∅, this isomorphism
can be taken to be an isomorphism of H˝pMq-modules. In particular, for all i, CipMq is a pure
HpMq-module and Ci

˝pMq is a pure H˝pMq-module.

Proof. By [BHM`22, Proposition 2.23], for any proper flat F the map ψF gives an isomorphism

CHpMF q b CHpMF q – xF CHpMqr1s. (7)

This is an isomorphism of HpMq-modules, where the module structure on the left side is given
by letting the generators yi act on CHpMF q trivially and on CHpMF q by multiplication by yi if
i P F and by zero if i R F . In other words, the action on CHpMF q is via the homomorphism
HpMq Ñ HpMF q obtained by restricting ϕF . Furthermore, for any flat G ă F , multiplication by xG
on the right side of (7) is given by multiplication by 1b xG on the left side.

Applying the isomorphism (7) repeatedly, we have an isomorphism of HpMq-modules

xF1 ¨ ¨ ¨xFi CHpMqris – CHpMFiq b CHpMFi
Fi´1

q b ¨ ¨ ¨ b CHpMF2
F1
q b CHpMF1q,

and if F1 ‰ ∅, it is even an isomorphism of H˝pMq-modules. �

Let C̄‚pMq and C̄‚˝pMq be minimal subcomplexes of C‚pMq and C‚˝pMq, respectively. These com-
plexes are well-defined up to isomorphism; we call them the Rouquier complex and reduced
Rouquier complex of M, respectively.

8.3. Proving NSă
d´2
2 pMq. The main result of this section is Proposition 8.11 below, which pro-

vides one of the first key steps of our main induction loop. We deduce it from the following three
important properties of the reduced Rouquier complex C̄‚˝pMq, which we prove in the follow-
ing sections. Two of these propositions also include corresponding statements about C‚pMq and
C̄‚pMq; we do not need them for our main induction, but we use them later in Section 8.7 to prove
the nonnegativity of inverse Kazhdan–Lusztig polynomials of matroids.

Proposition 8.8. The complexes C‚pMq and C‚˝pMq are perverse, hence so are C̄‚pMq and C̄‚˝pMq.

Proposition 8.9. Suppose that E ‰ ∅, so rk M ą 0. Then for every i, the graded H˝pMq-module
HipC̄‚˝pMq∅q – HipC‚˝pMq∅q is concentrated in degree d´ 1´ i.

Proposition 8.10.

(1) Suppose that condition A holds for M. Then C̄0pMq – IHpMq.

(2) Suppose that condition B holds for M. Then C̄0
˝pMq – IH˝pMq.
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Assuming these for the moment, we can now prove NSă
d´2
2 pMq.

Proposition 8.11. Suppose that condition B holds for M, and NSpMF q holds for all proper nonempty
flats F . Then NSă

d´2
2 pMq holds.

Proof. Consider the stalk complex C̄‚˝pMq∅. Lemma 5.6, Corollary 7.6, and Proposition 8.10 (2)
together imply that

C̄0
˝pMq∅ – IH˝pMq∅ – IHpMq,

and Proposition 8.8 and Theorem 8.6 imply that C̄1
˝pMq∅ is a direct sum of modules of the form

IH˝pM
F qrks∅ – IHpMF qrks,

where F is nonempty and k “ p1´crkF q{2 ď 0, which implies in particular that F ‰ E. Applying
Proposition 8.9 with i “ 0 we see that the kernel of the map

B0
∅ : C̄0

˝pMq∅ Ñ C̄1
˝pMq∅

is concentrated in degree d´1 ą pd´2q{2. Thus, it suffices to show that each summand IHpMF qrks

of C̄1
˝pMq has no socle in degrees less than pd´ 2q{2.

The hypothesis NSpMF q implies that the socle of IHpMF q vanishes in degrees less than or equal
to prkF ´ 2q{2, and therefore the socle of IHpMF qrks vanishes in degrees less than or equal to

rkF ´ 2

2
´

1´ crkF

2
“
d´ 3

2
“
d´ 2

2
´

1

2
.

We can therefore conclude NSă
d´2
2 pMq. �

8.4. Perversity of C‚pMq and C‚˝pMq. Next we turn to proving Proposition 8.8. By Lemma 8.7
C‚pMq is a complex of pure HpMq-modules and C‚˝pMq is a complex of pure H˝pMq-modules, so
what remains is to prove the vanishing of the cohomology of the stalk and costalk complexes in
the appropriate degrees. Our first lemma will allow us to reduce these questions to studying stalks
and costalks at the empty flat.

Lemma 8.12. Let F be a flat of a loopless matroid M.

(1) We have an isomorphism
yFC‚pMq – C‚pMF qr´ rkF s

of complexes of graded CHpMq-modules, where CHpMq acts on the right-hand side via the
graded algebra homomorphism ϕF : CHpMq Ñ CHpMF q.

(2) If F is nonempty, we also have an isomorphism

yFC‚˝pMq – C‚pMF qr´ rkF s

of complexes of graded CHpMq-modules.
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Proof. The first statement follows from the fact that ψF : CHpMF qr´ rkF s Ñ yF CHpMq is an
isomorphism of graded CHpMq-modules [BHM`22, Proposition 2.31]. Since x∅yF “ 0 for any
nonempty flat F , the projection from C‚pMq to C‚˝pMq becomes an isomorphism after multiplying
by yF , and hence the second statement follows from the first one. �

Next we show that the stalk cohomology of C‚pMq and C‚˝pMq at a proper flat actually vanishes
in all degrees. This is stronger than what we need for perversity, but we will need the full strength
later when we prove Proposition 8.10.

Lemma 8.13.

(1) If F is a proper flat, then the stalk complex C‚pMqF is acyclic. The stalk complex C‚pMqE is
quasi-isomorphic to Q concentrated in degree zero.

(2) If F is a nonempty proper flat, the stalk complex C‚˝pMqF is acyclic. If E is nonempty, the stalk
complex C‚˝pMqE is quasi-isomorphic to Q concentrated in degree zero.

Proof. We begin by proving statement (1) when F is the empty flat. We observe that multiplication
by x∅ defines a map of complexes

C‚˝pMq Ñ x∅C‚˝pMqr1s,

and (after shifting by 1 in cohomological degree) the cone of this map is isomorphic to C‚pMq. To
prove that C‚pMq∅ is acyclic, it is therefore sufficient to prove that for all i, the map from Ci

˝pMq

to x∅Ci
˝pMqr1s induces an isomorphism on stalks at the empty flat. This follows from Lemmas 5.2

and 8.7.

Next we prove statement (1) for arbitrary proper flats. By Lemmas 5.7 and 8.12 (1),

C‚pMqF – pyFC‚pMqrrkF sq∅ – C‚pMF q∅.

Since F is proper, MF has positive rank, and the statement follows from the previous paragraph.

It follows from the definition of C‚pMq that C‚pMqE “ yEC‚pMqrds is quasi-isomorphic to a sin-
gle copy of Q in both cohomological and grading degree zero, which implies the second sentence
of (1).

For any nonempty flat F , we have yFx∅ “ 0. Therefore, the natural quotient C‚pMq Ñ C‚˝pMq

induces an isomorphism on the stalk at F . Thus, statement (2) follows from statement (1). �

Proposition 8.14. The complex C‚pMq has no cohomology except in degree zero, and H0pC‚pMqq –

Qr´ds.

Proof. Let Σk be a family of order filters defined as in Section 5.3. By Proposition 5.11, we have

C‚pMqΣk{C
‚pMqΣk`1

– C‚pMqFkr´ rkFks,
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which is acyclic for all 1 ď k ă r and quasi-isomorphic to Qr´ds in degree zero when k “ r by
Lemma 8.13 (1). The result then follows from the spectral sequence relating the cohomology of a
filtered complex to the cohomology of its associated graded. �

Next we turn to the cohomology of the costalk complex of C‚pMq, starting with the empty flat.

Proposition 8.15. For any j, we have Hj
`

C‚pMqr∅s
˘

– OSjpMq˚r´ds.

Proof. Let C‚pMq‚! be the double complex obtained by applying the construction of Section 5.5 to
each term in the complex C‚pMq, so the pi, jq term is

CipMqj! “
à

FPLjpMq

OSF pMq
˚ b yFCipMq.

Since each CipMq is pure, Proposition 5.14 gives

HjpCipMq‚! q “

$

&

%

C‚pMqr∅s if j “ 0

0 if j ‰ 0.

This implies that C‚pMqr∅s is quasi-isomorphic to the total complex of C‚pMq‚! .

On the other hand, by Lemma 8.12 the j-th row C‚pMqj! of the double complex is equal to the
direct sum over all rank j flats F of the complex

OSF pMq
˚ b yFC‚pMq – OSF pMq

˚ b C‚pMF qr´ rkF s.

Proposition 8.14 then implies that

HipC‚pMqj! q –

$

&

%

OSjpMq˚r´ds “
À

FPLjpMqOSF pMq
˚r´ds if i “ 0

0 if i ‰ 0.

Note that for i “ 0 this graded vector space is concentrated in (grading) degree d´j, which means
that the differential H0pC‚pMqj! q Ñ H0pC‚pMqj`1

! q vanishes for degree reasons. In particular, we
see that the complex OS‚pMq˚r´ds with zero differential is quasi-isomorphic to the total complex
of C‚pMq‚! .

Putting together the two paragraphs above, we can conclude the proof. �

Corollary 8.16. Let F be a flat, and let j be a nonnegative integer.

(1) We have Hj
`

C‚pMqrF s
˘

– OSjpMF q
˚r´ crkF s.

(2) If F is nonempty, then Hj
`

C‚˝pMqrF s
˘

– OSjpMF q
˚r´ crkF s.

Proof. By Lemma 5.7 and Lemma 8.12 (1),

C‚pMqrF s – pyFC‚pMqrrkF sqr∅s – C‚pMF qr∅s.
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Statement (1) then follows from Proposition 8.15. Similarly, we can deduce statement (2) using
Lemma 8.12, which says that yFC‚pMq – yFC‚˝pMqwhen F is nonempty. �

This result completes the proof of Proposition 8.8, because the only possible degree in which
HipC‚pMqrF sq can be nonzero is j “ crkF ´ i. That means that i` 2j “ crkF ` j ě crkF , because
our complex vanishes in negative grading degrees.

8.5. Proof of Proposition 8.9. Throughout this section, we assume that E is nonempty. Our goal
is to give a degree bound on the cohomology of the complex C‚˝pMq∅.

Given a complex Q‚ of graded HpMq-modules, we denote by ∆pQ‚q the cone of the natural map
Q‚´1
r∅s Ñ Q‚´1

∅ . In particular, ∆pQ‚qk “ Qk
r∅s ‘Qk´1

∅ , and we have a distinguished triangle

Q‚´1
r∅s Ñ Q‚´1

∅ Ñ ∆pQ‚q Ñ Q‚r∅s.

Lemma 8.17. The natural map ∆pC‚pMqq Ñ C‚pMqr∅s is a quasi-isomorphism.

Proof. This follows from the first part of Lemma 8.13, which says that C‚pMq∅ is acyclic. �

Lemma 8.18. The map C‚pMq Ñ C‚˝pMq induces a quasi-isomorphism ∆pC‚pMqq Ñ ∆pC‚˝pMqq.

Proof. Let C‚´pMq be the kernel of C‚pMq Ñ C‚˝pMq. In other words, the complex C‚´pMq is defined
by

Ci
´pMq–

à

∅“F1ă¨¨¨ăFiăE

xF1 ¨ ¨ ¨xFi CHpMqris,

and with differential defined by the same component-wise formula as in the definition of C‚pMq.
The complex C‚pMq is isomorphic to the mapping cone of the map C‚´1

˝ pMq Ñ C‚´pMq, which is
the direct sum of

xF1 ¨ ¨ ¨xFi CHpMqris
´x∅
ÝÝÝÑ x∅xF1 ¨ ¨ ¨xFi CHpMqri` 1s

over all flags ∅ ă F1 ă ¨ ¨ ¨ ă Fi ă E. Thus, the mapping cone of C‚pMq Ñ C‚˝pMq is chain ho-
motopy equivalent to C‚`1

´ pMq, and hence the cone of ∆pC‚pMqq Ñ ∆pC‚˝pMqq is chain homotopy
equivalent to ∆pC‚`1

´ pMqq.

Since C‚´pMq is annihilated by Υą∅, we have C‚´pMqr∅s “ C‚´pMq “ C‚´pMq∅ and therefore
the cohomology of ∆pC‚´pMqq is zero in every degree. Thus, the cohomology of the cone of
∆pC‚pMqq Ñ ∆pC‚˝pMqq is zero in every degree. Equivalently, the map ∆pC‚pMqq Ñ ∆pC‚˝pMqq is
a quasi-isomorphism. �

Lemma 8.19. The complex ∆pC‚˝pMqq is quasi-isomorphic to the cone of the map of complexes
C‚´1
˝ pMq∅r´1s Ñ C‚´1

˝ pMq∅ given by multiplication by x∅.
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Proof. By Lemma 5.2, the annihilator of Υą∅ in CHpMF q is equal to x∅ CHpMF q for all nonempty
flats F . Thus we have

CHpMF qr∅s – x∅ CHpMF q – CHpMF q∅r´1s.

By Lemma 8.7, each Ci
˝pMq is isomorphic to a direct sum of shifts of such modules, therefore

C‚´1
˝ pMqr∅s – C‚´1

˝ pMq∅r´1s.

The lemma then follows from the definition of ∆. �

Proof of Proposition 8.9. Combining Lemmas 8.17, 8.18, and 8.19, it follows that C‚pMqr∅s is quasi-
isomorphic to the cone of the map C‚´1

˝ pMq∅r´1s Ñ C‚´1
˝ pMq∅ given by multiplication by x∅.

This induces a long exact sequence

¨ ¨ ¨ Ñ Hi
`

C‚pMqr∅s
˘

Ñ Hi
`

C‚˝pMq∅
˘

r´1s
¨x∅
ÝÝÑ Hi

`

C‚˝pMq∅
˘

Ñ Hi`1
`

C‚pMqr∅s
˘

Ñ ¨ ¨ ¨ .

If HipC‚˝pMq∅q ‰ 0, let k be the smallest degree in which it does not vanish. A nonzero element
in that degree is not in the image of multiplication by x∅, so the long exact sequence implies that
Hi`1pC‚pMqr∅sq is nonzero in degree k. But that implies that k “ d ´ pi ` 1q by Proposition 8.15.
Dually, if k is the largest nonvanishing degree, then an element in that degree is killed by x∅, and
our exact sequence implies that HipC‚pMqr∅sq is nonzero in degree k ` 1, so we get k ` 1 “ d ´ i

again by Proposition 8.15. Thus, the proposition follows. �

8.6. Proof of Proposition 8.10. We will prove the first part of the proposition; the proof of the sec-
ond part is identical. By our construction, C̄‚pMq is a minimal subcomplex of C‚pMq. By Corollary
6.6, each module CipMq is isomorphic to a direct sum of HpMq-modules of the form IHpMGqrks for
G P LpMq and k P Z. Furthermore, since condition A includes CDpMGq for all flats G, the HpMq-
module C0pMq “ CHpMq contains IHpMq as a direct summand with multiplicity one. By Lemma
8.7, CipMq does not contain IHpMq as a direct summand if i ą 0. So in the minimal subcomplex
the first term C̄0pMqmust contain exactly one summand isomorphic to IHpMq.

Now take any proper flat G, and suppose that C̄0pMq contains a direct summand isomorphic
to IHpMGqrks. By Proposition 8.8 and Theorem 8.6, we must have k “ p´ crkGq{2. So the stalk
C̄0pMqG is nonzero in degree ´k “ pcrkGq{2. But any summand of C̄1pMq is isomorphic to a
module IHpMF qr`s with ` “ p1 ´ crkF q{2. The stalk at G of this module is zero unless F ą G

(the case F “ G is impossible since crkF and crkG must have opposite parity), in which case
Proposition 6.3 says that this stalk vanishes in degrees greater than or equal to

prkF ´ rkGq{2´ ` “ pcrkG´ 1q{2 ă ´k,

and so C̄1pMqG vanishes in degree´k. This is a contradiction, since Lemma 8.13 says that the stalk
complex C̄‚pMqG is acyclic. So IHpMq is the only direct summand of C̄0pMq.
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8.7. Multiplicities and inverse Kazhdan–Lusztig polynomials. In this section we show that, un-
der the assumption that Theorem 3.17 holds, the multiplicities of the modules IHpMF q in the com-
plex C̄‚pMq are given by coefficients of inverse Kazhdan–Lusztig polynomials of matroids. This
implies that these coefficients are nonnegative, providing a proof of Theorem 1.5.

For a matroid M, define a polynomial Q̃Mptq P Nrts whose coefficient of t´k is the multiplicity
of the module IHpM∅qrks in C̄d`2kpMq.

Proposition 8.20. The inverse Kazhdan–Lusztig polynomial QMptq is equal to Q̃Mptq, so in partic-
ular it has nonnegative coefficients.

Lemma 8.21. Suppose that Theorem 3.17 holds. For any flat F and any integer k, the multiplicity
of IHpMF qrks in C̄crkF`2kpMq is equal to the coefficient of t´k in Q̃MF

ptq.

Proof. Lemma 6.2 (1) gives an isomorphism

yF IHpMGqr`s –

$

&

%

IHpMG
F qr`´ rkF s if F ď G,

0 otherwise.

So to find the multiplicity of IHpMF qwith any shift in C‚pMq, it is sufficient to find the multiplicity
of IHpMF

F q in yFC‚pMq. But MF
F “ pMF q

∅ has rank zero, so our result will follow if we can show
that there is an isomorphism

yF C̄‚pMq – C̄‚pMF qr´ rkF s.

By Lemma 8.12 (1), we have an isomorphism

yFC‚pMq – C‚pMF qr´ rkF s.

Using Lemma 6.2 (1), the indecomposable summands of yFC‚pMq are in bijection with the sum-
mands of C‚pMq of the form IHpMGqr`swith G ě F . By Proposition 6.4 (1), the restriction map

EndHpMq-modpIHpM
Gqq Ñ EndHpMF q-modpyF IHpMGqq

is an isomorphism. Thus, the summands which get canceled from C‚pMF q to form the minimal
complex C̄‚pMF q are exactly the images under multiplication by yF of canceling pairs from C‚pMq.
The result follows. �

Proof of Proposition 8.20, assuming Theorem 3.17. If the rank d of M is equal to zero, then C‚pMq “

C̄‚pMq has only one component, which is IHpMq “ IHpM∅q in degree zero. So QMptq “ 1 “ Q̃Mptq

in this case.

When the rank of M is positive, by [GX21, Theorem 1.3], the inverse Kazhdan–Lusztig polyno-
mial of M satisfies

ÿ

FPLpMq

p´1qrkFPMF ptqQMF
ptq “ 0. (8)
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Thus, it suffices to show that Q̃Mptq satisfies the displayed recurrence relation when d is positive.

By Lemma 8.13 (1), the complex C‚pMq∅ is acyclic, and since C̄‚pMq∅ is a direct summand of
this complex, it is acyclic as well. By Proposition 8.8 and Theorem 8.6, C̄ipMq∅ is isomorphic to a
direct sum of modules of the form IHpMF q∅rks where k “ pi ´ crkF q{2 is a nonpositive integer.
Moreover, by Lemma 8.21, the number of copies of IHpMF q∅rks is equal to the coefficient of t´k

in Q̃Mptq. Notice that when k “ pi ´ crkF q{2 is an integer, i and crkF have the same parity.
Since the Poincaré polynomial of IHpMF q∅ is equal to PMF ptq, the alternating sum of the Poincaré
polynomials of C̄ipMq∅ for all i is equal to

ÿ

FPLpMq

p´1qcrkFPMF ptqQ̃MF
ptq “ p´1qrk M

ÿ

FPLpMq

p´1qrkFPMF ptqQ̃MF
ptq.

Since C̄‚pMq∅ is acyclic, the above sum is equal to zero.

All of the steps of this argument still hold when interpreted equivariantly with respect to any
group of symmetries of M by Lemma A.1 and Definition A.6. �

When the matroid M has odd rank 2` ` 1, the coefficient of t` in (8) is nonzero only for F “ ∅
and F “ E, which implies that PMptq and QMptq have the same coefficient of t`. Combining this
with Proposition 8.20 gives the following result.

Corollary 8.22. For any matroid M, the second term C̄1pMq of the Rouquier complex is isomorphic
to

à

jě0

à

crkF“2k`1

IHpMF qr´js‘τpMF q,

where τpMq denotes the coefficient of tprk M´1q{2 in PMptqwhen rk M is odd.

9. DELETION INDUCTION FOR IHpMq

Let M be a matroid of rank d ą 0 on the ground set E. The purpose of this section is to show
that, if CDă

d
2 pMq holds, and all of the statements of Theorem 3.17 hold for matroids whose ground

sets are proper subsets of E, then HLipMq and HR
ă d

2
i pMq also hold.

Throughout this section, we assume the following hypotheses:

(1) the element i P E is not a coloop and it does not have a parallel element;

(2) the statement CDă
d
2 pMq holds;

(3) Theorem 3.17 holds for any matroid whose ground set is a proper subset of E.

In particular, PD˝pMq and CD˝pMq hold by Corollary 7.4, and CDą
d
2 pMq holds by Remark 3.11.

By Remark 3.13 and Proposition 7.8, the statement CDă
d
2 pMq implies PDă

d
2 pMq and NSă

d
2 pMq. Our

goal is to show that these hypotheses imply HLipMq and HR
ă d

2
i pMq.
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9.1. The deletion map and the semi-small decomposition of CHpMq. Fixing an element i of E,
there is a graded algebra homomorphism

θi “ θM
i : CHpMziq Ñ CHpMq, xF ÞÑ xF ` xFYi,

where a variable in the target is set to zero if its label is not a flat of M. Just as we have done with
the pushforward and pullback homomorphisms, we will omit the superscript when the ambient
matroid is M. Then we have θipyjq “ yj for any j P Ezi. More generally, for any flat G P LpMziq,
we have θipyGq “ yḠ, where Ḡ is the closure of G in M. In particular, θi restricts to an injective
homomorphism HpMziq Ñ HpMq.

Let CHpiq be the image of the homomorphism θi, and let

Si –
 

F | F is a proper subset of Ezi such that F P LpMq and F Y i P LpMq
(

.

We will use the following result [BHM`22, Theorem 1.5].

Theorem 9.1. If i is not a coloop of M, there is a direct sum decomposition of CHpMq into inde-
composable graded CHpMziq-modules

CHpMq “ CHpiq ‘
à

FPSi

xFYiCHpiq.

All pairs of distinct summands are orthogonal for the Poincaré pairing of CHpMq. Moreover, we
have

xFYi CHpiq “ ψFYi
´

CHpMFYiq b θ
MFYi

i CHppMziqF q
¯

,

where MFYizi is identified with pMziqF because i is a coloop in MFYi. The homomorphism θi

gives isomorphisms as HpMziq-modules:

CHpiq – CHpMziq and xFYi CHpiq – CHpMFYiq b CHppMziqF qr´1s,

where the action on the first tensor factor is trivial. If F ‰ ∅ these are even isomorphisms of
H˝pMziq-modules.

9.2. Pulling back to the deletion. Let δ : LpMq Ñ LpMziq be the map given by δpF q “ F zi for all
flats F .

Lemma 9.2. The map δ is surjective and order-preserving. For any flat F P LpMziqwe have

‚ if F P Si the fiber δ´1pF q “ tF, F Y iu and rkMzi F “ rkM F “ rkMpF Y iq ´ 1, and
‚ if F R Si, then δ´1pF q is a single flat of M with the same rank as F .

Note that our assumption that i is not a coloop implies that Ezi is not a flat of M and so Ezi R Si
and rkpMziq “ rk M, and our assumption that i has no parallel elements means that tiu P LpMq,
and so ∅ P Si.



72 TOM BRADEN, JUNE HUH, JACOB P. MATHERNE, NICHOLAS PROUDFOOT, AND BOTONG WANG

Recall that, in Definition 5.3, we defined an ideal ΥΣ Ď HpMq for any order filter Σ Ď LpMq,
which is spanned as a Q-vector space by yG, G P Σ. In this section, we will write ΥM

Σ for Σ Ď LpMq

and Υ
Mzi
Σ for Σ Ď LpMziq to make it clear which matroid we are working with at any given time.

The fact that for any G P LpMziq we have θipyGq “ yḠ where Ḡ is the minimal element of δ´1pGq

immediately implies the following lemma.

Lemma 9.3. For any order filter Σ in LpMziq, we have

HpMq ¨ θipΥ
Mzi
Σ q “ ΥM

δ´1pΣq.

For an HpMq-module N, we let θ˚i N denote the HpMziq-module obtained by pulling back by this
homomorphism.

Proposition 9.4. Let N be a pure graded HpMq-module. For any flat F P LpMziq, we have an
isomorphism

pθ˚i NqF –
à

GPδ´1pF q

NGrrkMzi F ´ rkMGs.

Proof. By Lemma 9.3, we have

pθ˚i NqF “
θi
`

Υ
Mzi
ěF

˘

NrrkF s

θi
`

Υ
Mzi
ąF

˘

NrrkF s
“

ΥM
δ´1pΣěF q

NrrkF s

ΥM
δ´1pΣąF q

NrrkF s
.

We can choose an orderingG1, G2, . . . , Gr of LpMq as in Section 5.3 so that δ´1pΣěF q “ tGj , . . . , Gru

and δ´1pΣąF q “ tGk, . . . , Gru. Then Proposition 5.11 shows that the submodules ΥM
Σ`

N for ` P
rj, ks provide a filtration whose subquotients are the modules NGrrkF ´ rkGs for G P δ´1pF q. The
result follows. �

9.3. The hard Lefschetz theorem. We would like to apply Proposition 9.4 to the pullback module
θ˚i IHpMq, but since we are not assuming CDpMq holds in middle degree, we do not yet know that
IHpMq is pure. Instead, we modify IHpMq slightly to produce a module which we can show is a
direct summand of CHpMq, and hence is pure. Let

ĂIH
k
pMq–

$

&

%

IHkpMq if k ‰ d{2,

IHk
˝pMq if k “ d{2.

Equivalently, we can define

rJ
k
pMq–

$

&

%

JkpMq if k ‰ d{2,

0 if k “ d{2,

and then define ĂIHpMq to be the orthogonal complement to ψ∅
rJpMq inside of IH˝pMq. In particular,

when d is odd, ĂIHpMq “ IHpMq and rJpMq “ JpMq.
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Lemma 9.5. The subspace ĂIHpMq Ď IH˝pMq is an HpMq-submodule. Moreover, ĂIHpMq satisfies
Poincaré duality and it is a direct summand of CHpMq.

Proof. The maximal ideal Υą∅ of HpMq annihilates x∅, and hence annihilates the image of ψ∅.
Therefore, ψ∅

rJpMq is an HpMq-submodule, and thus so is its orthogonal complement. The state-
ment CDă

d
2 pMq implies that ψ∅

rJpMq satisfies Poincaré duality, and the statement CD˝pMq implies
that IH˝pMq satisfies Poincaré duality. Therefore, ĂIHpMq satisfies Poincaré duality and we have an
orthogonal decomposition

IH˝pMq “ ĂIHpMq ‘ ψ∅
rJpMq. (9)

By CD˝pMq, IH˝pMq is a direct summand of CHpMq, and hence the lemma follows. �

Lemma 9.6. The inclusion ĂIHpMq Ď IH˝pMq induces an isomorphism

ĂIHpMqF – IH˝pMqF

for each nonempty flat F .

Proof. The isomorphism follows from multiplying Equation (9) by yF , since the image of ψ∅ is
annihilated by yF . �

Proposition 9.7. The pullback module θ˚i ĂIHpMq is a perverse HpMziq-module, when considered as
a complex placed in degree 0.

Proof. Theorem 9.1 implies that θ˚i CHpMq is a pure HpMziq-module, and so the direct summand
θ˚i
ĂIHpMq is pure.

Take any flat F P LpMziq. We will show that the stalk pθ˚i ĂIHpMqqF vanishes in degrees strictly
greater than pcrkF q{2. By Proposition 9.4, it is enough to prove that

ĂIHpMqGrrkMzi F ´ rkMGs

vanishes in the same degrees for every G P δ´1pF q.

The first case is F “ Ezi. Then δ´1pF q “ tEu and rkME “ rkMzi F , since i is not a coloop in M.
We have

ĂIHpMqErrkMzi F ´ rkMEs “ ĂIHpMqE – Q,

placed in degree 0 “ pcrkF q{2. So the claimed vanishing holds in this case.

Now suppose that F is a proper flat of Mzi, and take any G P δ´1pF q. Then rkMG is either
rkMzi F (if F R Si or G “ F ) or rkMzi F ` 1 (if F P Si and G “ F Y tiu). Let us suppose first that
G ‰ ∅. Then Lemma 9.6 and Proposition 6.3 (2) show that

ĂIHpMqGrrkMzi F ´ rkMGs – IH˝pMqGrrkMzi F ´ rkMGs
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vanishes in degrees greater than or equal to

pcrkGq{2` rkMG´ rkMzi F “ pcrkF q{2` prkMG´ rkMzi F q{2 ď pcrkF q{2` 1{2.

In particular, it vanishes in degrees strictly greater than pcrkF q{2, as desired.

Next, suppose that G “ F “ ∅. Following the proof of Proposition 6.3, note that Lemmas 5.8
and 9.5 give an isomorphism ĂIHpMq∅ – pĂIHpMqr∅sq

˚r´ds. On the other hand, the socles ĂIHpMqr∅s

and IHpMqr∅s are clearly equal in all degrees except d{2, and so NSă
d
2 pMq implies that ĂIHpMqr∅s

vanishes in degrees below d{2. Thus ĂIHpMq∅ vanishes in degrees above d{2.

Finally, to see that the costalk conditions hold, we note that Poincaré duality gives an isomor-
phism ĂIHpMq˚ – ĂIHpMqrds and so Lemma 5.8 implies that the costalk conditions follow from the
stalk conditions. �

Since all of our statements are true for Mzi by induction, Theorem 8.6 allows us to deduce the
following.

Corollary 9.8. The graded HpMziq-module θ˚i ĂIHpMq is isomorphic to a direct sum of modules of
the form IHppMziqF qr´pcrkF q{2s for various flats F P LpMziq of even corank.

Proposition 9.9. The statement HLipMq holds.

Proof. Let y1 “
ř

jPEzi cjyj where all cj ą 0. Then for any flat F P LpMziq of even corank, the
statement HLppMziqF q holds because the ground set F is a proper subset of E. So for each 0 ď k ď

prkF q{2, multiplication by py1qrkF´2k on IHppMziqF qr´pcrkF q{2s gives an isomorphism between
degrees

k `
crkF

2
and prkF ´ kq `

crkF

2
“ d´

ˆ

k `
crkF

2

˙

.

Since Corollary 9.8 says that θ˚i ĂIHpMq is isomorphic to a direct sum of such modules, and since
y1 is in the image of θi, this shows that y1 acts as a degree d Lefschetz operator on ĂIHpMq. Since
ĂIHpMq “ IHpMq except in the middle degree d{2, where the hard Lefschetz property is trivial, this
proves the statement HLipMq. �

9.4. The Hodge–Riemann relations away from middle degree. Next we prove the statement

HR
ă d

2
i pMq, which says that the Hodge–Riemann inequalities hold for IHpMq with respect to mul-

tiplication by an element y1 “
ř

jPEzi cjyj with all cj ą 0. Since y1 can also be considered as an
element of HpMziq, we can show this by checking that this holds for each summand in the decom-
position of θ˚i ĂIHpMq provided by Corollary 9.8.
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We will need a lemma comparing two natural pairings on these summands. LetF be a nonempty
flat of Mzi of even corank, and suppose we have an inclusion

f : IHppMziqF qr´pcrkF q{2s ãÑ θ˚i
ĂIHpMq

of HpMziq-modules. There are two pairings on IHppMziqF q that are a priori different: the one
induced by the inclusion of IHppMziqF q into CHppMziqF q, and the one induced by the inclusion
f and the pairing on CHpMq. Note that the shift by pcrkF q{2 ensures that these pairings have the
same degree.

Lemma 9.10. These two pairings are related by a constant factor c P Q with p´1q
crkF

2 c ą 0.

Proof. Both pairings are compatible with the HpMziq-module structure in the sense that xηξ, σy “
xξ, ησy for any η P HpMziq and ξ, σ P IHppMziqF q. Thus, both are given by isomorphisms

IHppMziqF q˚ – IHppMziqF qrrkF s.

of graded HpMziq-modules. Proposition 6.4 (1) implies that IHppMziqF q has only scalar endomor-
phisms, and hence any two such isomorphisms must be related by a nonzero scalar factor c P Q.

To compute the sign of c, we pair 1 P IHppMziqF q with yF “ yF ¨ 1 P IHppMziqF q. Inside
CHppMziqF q, they pair to 1. The second pairing equals the pairing of fp1q and

fpyF q “ θipyF qfp1q “ yF̄ fp1q

inside ĂIHpMq Ď CHpMq, where F̄ is the closure of F in M. By Proposition 2.13 and Proposition 2.15,

this pairing is equal to the Poincaré pairing of ϕ
F̄
pfp1qqwith itself inside ϕ

F̄
ĂIH

crkF
2
pMq Ď CHpMF̄ q.

Since F is nonempty, pcrkF q{2 is strictly less than d{2, so ĂIH
crkF

2
pMq “ IH

crkF
2 pMq. Applying

Lemma 6.2 (1), we see that ϕ
F̄

IH
crkF

2 pMq is equal to IH
crkF

2 pMF̄ q. Since ϕ
F̄
pfp1qq is annihilated

by yj for all j P EzF̄ , it is a primitive class in IH
crkF

2 pMF̄ q with respect to multiplication by any
positive sum

ř

jPEzF̄ cjyj . Therefore, the sign of its pairing with itself is equal to p´1q
crkF

2 by
HRpMF̄ q. �

Corollary 9.11. The statement HR
ă d

2
i pMq holds.

Proof. Since the statement does not involve the middle degree, we can replace IHpMqwith ĂIHpMq.
By Corollary 9.8, it suffices to prove that each summand IHppMziqF qr´pcrkF q{2s of θ˚i ĂIHpMq sat-
isfies the Hodge–Riemann relations. Again, since the statement does not involve the middle
degree, we can assume that F is nonempty. Then the statement follows from Lemma 9.10 and
HRppMziqF q. �
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10. DELETION INDUCTION FOR IHipMq

Let M be a matroid on the ground set E. The purpose of this section is to show that HLipMq and
HRipMq hold, under the following hypotheses, which we assume throughout this section:

(1) the element i P E is not a coloop and it does not have any parallel element;

(2) CD˝pMq and CDpMq are true; and

(3) Theorem 3.17 holds for any matroid whose ground set is a proper subset of E.

The argument is similar to the one in the previous section. The homomorphism θi : CHpMziq Ñ

CHpMq induces a homomorphism θi : CHpMziq Ñ CHpMq which sends HpMziq to HipMq, and in
particular sends βMzi “ ϕ∅

Mzip´x∅q to

ϕ∅
Mpθip´x∅qq “ ϕ∅

Mp´x∅ ´ xtiuq “ βM ´ xtiu.

We show in Corollary 10.5 that pulling back IHipMq by θi gives an H˝pMziq-module which is
isomorphic to a direct sum of modules of the form IHppMziqF qr´pcrkF q{2s. Since the matroids
pMziqF have smaller ground sets than M, we know HLppMziqF q and HRppMziqF q by induction,
and we use this to deduce HLipMq and HRipMq.

However, the summands we want are not indecomposable as HpMziq-modules, so we cannot
produce our decomposition by directly following the arguments in the previous section. Instead
we deduce it from a decomposition of a certain H˝pMziq-module which we now define. Let HipMq

denote the subalgebra of CHpMq generated by H˝pMq and xtiu. Then θi sends H˝pMziq into HipMq.

Definition 10.1. We define the HipMq-submodule IHipMq of CHpMq by

IHipMq–

¨

˝

ÿ

F‰∅,tiu
KF pMq

˛

‚

K

,

where the sum is over all nonempty proper flats F of M different from tiu.

Since we are assuming CD˝pMq holds, we have

IHipMq “ IH˝pMq ‘KtiupMq.

Lemma 10.2. The stalks of IHipMq are given by

(a) IHipMq∅ “ IHipMq, as a subset of CHpMq∅ “ CHpMq,
(b) IHipMqtiu – IHpMtiuq, and
(c) IHipMqF – IH˝pMqF for any flat F ‰ ∅, tiu.

Furthermore, the isomorphism (b) comes from an equality

yi IHpMtiuq “ ψtiupIH˝pMtiuqq.
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Proof. For the first statement, Corollary 7.6, Lemma 3.3 (1), and CDpMq give

IHipMq∅ “ ϕ∅pIHipMqq

“ ϕ∅pIH˝pMqq ` ϕ
∅ KtiupMq

“ IHpMq `KtiupMq

“ IHipMq.

Next, since multiplication by yi is ψtiuϕtiu, we have

yi IHipMq “ ψtiuϕtiupIH˝pMqq ‘ ψtiuϕtiupKtiupMqq

“ ψtiu
`

IHpMtiuq
˘

‘ ψtiuK∅pMtiuq

“ ψtiupIH˝pMtiuqq,

where we have used Lemma 6.2 (2) for the first summand and Lemma 3.4 (2) for the second
summand. The isomorphism (b) then follows immediately using Lemma 5.7.

Finally, for any flat F ‰ ∅, tiu, multiplication by yF annihilates the image of ψtiu, so we have
the isomorphism (c). �

Part (a) of the previous lemma shows that we can use the module IHipMq to study IHipMq.
However, when we pull back by θi, we can only take the stalk of the HpMziq-module θ˚i IHipMq

at flats of the matroid Mzi. The stalk at ∅ P LpMziq will be too large for what we want, because
it includes a contribution from the stalk IHipMqtiuPLpMq, by Proposition 9.4. To get around this
problem, we consider an H˝pMziq-submodule IH1ipMq Ď θ˚i IHipMq defined as follows.

Let Si be the collection of subsets of Ezi defined in Section 9.1. Let

R – CHpiq‘
à

FPSizt∅u
xFYi CHpiq and P – xtiuCHpiq Ď CHpMq.

By Theorem 9.1, we have an orthogonal decomposition of CHpMziq-modules

CHpMq “ R‘ P.

Then we define our H˝pMziq-submodule by

IH1ipMq– IHipMq XR.

The next two propositions give the properties of this module that we need to deduce HLipMq

and HRipMq. The first is analogous to Proposition 9.7 and has a similar proof.

Proposition 10.3. IH1ipMq is a pure H˝pMziq-module, and it is ˝-perverse when considered as a
complex placed in degree zero.
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Our second proposition describes the stalk of the HpMziq-module IH1ipMq at the empty flat ∅ P
LpMziq. This is contained in the stalk of θ˚i IHipMq, which by Lemma 9.3 is

pθ˚i IHipMqq∅ “
θ˚i IHipMq

Υ
Mzi
ą∅ ¨ θ

˚
i IHipMq

“
IHipMq

ΥM
Σ ¨ IHipMq

,

where

Σ “ LpMq z t∅, tiuu “ δ´1pLpMziqzt∅uq.

In particular, we have a natural quotient map from pθ˚i IHipMqq∅ to

IHipMq∅ “
IHipMq

ΥM
ą∅ ¨ IHipMq

.

Proposition 10.4. The composition

IH1ipMq∅ Ñ pθ˚i IHipMqq∅ Ñ IHipMq∅ – IHipMq (10)

is an isomorphism of HpMziq-modules, where the module structure on the target is via the homo-
morphism θi : HpMziq Ñ HipMq.

We will prove these two propositions in the next sections, but first we use them to deduce
HLipMq.

Corollary 10.5. When considered as an HpMziq-module, IHipMq is isomorphic to a direct sum of
copies of modules of the form

IH
`

pMziqF
˘

r´pcrkF q{2s

for various nonempty flats F P LpMziq of even corank.

Proof. Proposition 10.3 and Theorem 8.6 imply that IH1ipMq is isomorphic as an H˝pMziq-module
to a direct sum of modules of the form

IH˝ppMziq
F qr´pcrkF q{2s

where F P LpMziq is a nonempty flat with even corank. Taking stalks at ∅ P LpMziq and using
Proposition 10.4 and Corollary 7.6 gives the result. �

Corollary 10.6. The statement HLipMq holds.

Proof. This follows from Corollary 10.5 and HLppMziqF q for all nonempty flats F P LpMziq. �

In order to prove HRipMq using these results, we need to make a careful comparison of inter-
section pairings in the decomposition provided by Corollary 10.5. We postpone this until Section
10.4.
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Remark 10.7. Let us explain the geometry behind the definition of IH1ipMq when M is realizable.
Following the notation of Section 1.3, we have the Schubert variety Y corresponding to M and
its blow-up Y˝ at the point stratum corresponding to the flat ∅ of M. Recall from Section 4.2 that
the exceptional divisor Y Ď Y˝ has intersection cohomology IHpMq. Let Yi be the blow-up of Y˝
along the proper transform of U tiu, the closure of the stratum indexed by tiu, and let Y i Ď Yi be
the inverse image of Y . It is the blow-up of Y along Y X U tiu, and its intersection cohomology is
IHipMq.

As explained in Remark 4.5, the Schubert variety corresponding to Mzi is the image Y 1 of Y
under the projection pP1qE Ñ pP1qEzi. Let Y 1˝ be the blow-up of Y 1 at the point stratum. The
projection Y Ñ Y 1 does not lift to a map Y˝ Ñ Y 1˝ , but it does lift to a map Yi Ñ Y 1˝ . The
preimage of the exceptional divisor Y 1 of Y 1˝ under this map has two components: Y i and the
exceptional divisor of Yi Ñ Y˝. Taking the stalk of the HpMziq-module IHipMq at ∅ P LpMziq gives
the cohomology of the restriction of the IC sheaf of Yi to the union of both components. Restricting
to the component Y i gives IHipMq, but there is also a contribution from the other component. The
submodule IH1ipMq allows us to get only the part of this stalk that we want.

10.1. Proof of Proposition 10.3 part I: purity. The orthogonal complement of R is

P “ xtiuCHpiq “ ψtiu
´

CHpMtiuq b θ
Mtiu

i CHpM∅q
¯

.

Since M∅ “ Mtiuzi is the matroid on the empty set, θMtiu

i CHpM∅q is just the degree zero part of
CHpMtiuq. This means that P is the image of the injective map

σ : CHpMtiuq Ñ CHpMq, a ÞÑ ψtiupab 1q.

Applying this map to the canonical decomposition CDpMtiuq, we see that P is the direct sum of

(1) σpIHpMtiuqq, and
(2) σ

`

KF zipMtiuq
˘

for each flat F ą tiu in LpMq.

Our next result says that these terms are compatible with the decomposition of CHpMq into IHipMq

and its orthogonal summands.

Lemma 10.8. We have

(1) σpIHpMtiuqq “ IHipMq X P , and
(2) σ

`

KF zipMtiuq
˘

“ KF pMq X P for all flats F ą tiu in LpMq.

Proof. For the first statement, take any a P CHpMtiuq. Then σpaq “ ψtiupa b 1q is in IHipMq if and
only if it is orthogonal to KF pMq for all flats F P LpMq other than ∅, tiu. By Lemma 2.6, this is true
if and only if a b 1 is orthogonal to ϕtiuKF pMq. By Lemma 2.17, it is enough to check this when
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F ą tiu. In that case, we have

ϕtiuKF pMq “ KF zipMtiuq b CHpMtiuq

by Lemma 3.3 (1). If tiu ă F then G “ F ztiu is a nonempty flat of LpMtiuq, and all such flats
occur this way, so σpaq is in IHipMq if and only if a is orthogonal to KGpMtiuq for all nonempty flats
G P LpMtiuq. This happens exactly when a P IHpMtiuq.

To see the second statement, use Lemma 3.3 (1) again to get

σ
`

KF zipMtiuq
˘

“ ψtiu
`

KF zipMtiuq bQ
˘

Ď KF pMq

This gives containment in one direction. The other direction follows from the fact that P is the
sum of all the terms of type (1) and (2). �

Since R is the perpendicular space to P and the terms of the form (2) are all orthogonal to
IHipMq, we see that

IHipMq XR is the perpendicular space to IHipMq X P inside IHipMq.

Lemma 10.9. The Poincaré pairing on CHpMq restricts to a non-degenerate pairing on IHipMqXP .

Proof. For a, b P IHpMtiuq, Lemma 2.18 gives
@

ψtiupab 1q, ψtiupbb 1q
D

CHpMq
“ degMpψ

tiupab 1q ¨ ψtiupbb 1qq

“ ´degMtiu
b degMtiu

`

pabb 1qp1b αMtiu ` βMtiu
b 1q

˘

“ ´degMtiu
pabq degMtiupαMtiuq.

Since degMtiupαMtiuq ‰ 0 and the pairing on IHpMtiuq is non-degenerate, the result follows. �

It follows that IHipMq is the orthogonal direct sum of IHipMq X P and IHipMq XR, and that the
restriction of the Poincaré pairing to IHipMq X R is non-degenerate. Because the Poincaré pairing
also restricts to a non-degenerate pairing on R, we can conclude that IH1ipMq “ IHipMq X R is an
H˝pMziq-direct summand of R. Theorem 9.1 then implies that R is a pure H˝pMziq-module, and
so IH1ipMq is a pure H˝pMziq-module as well.

10.2. Proof of Proposition 10.3 part II: ˝-perversity. The proof that IH1ipMq is a ˝-perverse H˝pMziq-
module follows the same basic plan as the proof of Proposition 9.7, using Proposition 9.4 to com-
pute the stalks of IH1ipMq at a nonempty flat F of Mzi in terms of the stalks of IHipMq at flats
G P δ´1pF q Ď LpMq.

We cannot apply Proposition 9.4 to IH1ipMq directly, because it is not closed under multiplication
by yi, so it is not an HpMq-module.12 But we have shown that θ˚i IHipMq is the direct sum of

12For instance, one can easily check that 1 P R but yi R R.
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IH1ipMq “ IHipMq X R and IHipMq X P , and P is annihilated by all yj for j P Ezi. Thus for any
nonempty flat F of Mzi, we have

IH1ipMqF – pθ
˚
i IHipMqqF –

à

GPδ´1pF q

IHipMqGrrkMzi F ´ rkMGs

by Proposition 9.4.

Now the proof that IH1ipMqF vanishes in degrees strictly greater than pcrkF q{2 follows exactly
the proof of Proposition 9.7, using the above equation in place of Proposition 9.4, and omitting the
case G “ ∅, since F is assumed to be nonempty.

Thus IH1ipMq satisfies the stalk conditions for perversity. To see that the costalk conditions hold,
we note that Poincaré duality gives an isomorphism IH1ipMq

˚ – IH1ipMqrds of graded H˝pMziq-
modules, and so Lemma 5.8 implies that the costalk conditions follow from the stalk conditions.

10.3. Proof of Proposition 10.4. The map (10) is a composition of an injection followed by a sur-
jection, so it will be an isomorphism if and only if the induced map from the cokernel of the first
to the kernel of the second is an isomorphism. So consider the short exact sequences containing
our maps:

0 Ñ IH1ipMq∅ Ñ pθ˚i IHipMqq∅ Ñ pIHipMq X P q∅ Ñ 0

0 Ñ
ΥM
ą∅ IHipMq

ΥM
Σ IHipMq

Ñ pθ˚i IHipMqq∅ Ñ IHipMq∅ Ñ 0.

The first sequence is exact because θ˚i IHpMq – IH1ipMq ‘ pIHipMq X P q as HpMziq-modules.

By Proposition 5.11 and Lemma 10.2, the first term of the second sequence is isomorphic to

ΥM
ětiu IHipMq

ΥM
ątiu IHipMq

“
yi IHipMq

ΥM
ątiu IHipMq

– IH˝pMtiuq∅ – IHpMtiuq.

So Proposition 10.4 is equivalent to showing that the lower row of the following diagram is an
isomorphism.

IHpMtiuq θ˚i IHipMq IHipMq X P σpIHpMtiuqq

IHpMtiuq pθ˚i IHipMqq∅ pIHipMq X P q∅

ψtiu

ϕ∅
Mtiu

π

ϕ∅
Mzi –

ζ π∅

Here π is the orthogonal projection onto IHipMqXP , since IHipMqXP and IHipMqXR are orthog-
onal complements inside IHipMq. The map π∅ is the induced map on stalks at ∅ P LpMziq, and the
third vertical map is an isomorphism because yjP “ 0 for j P Ezi. The map ζ is the unique map
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making the left square commute. It exists because the kernel of ϕ∅
Mtiu

is generated by elements yja,
where a P IHpMtiuq and j P Ezi, and we have

ϕ∅
Mzipψtiupyjaqq “ ϕ∅

Mzipyj ψtiupaqq “ 0.

Since π is an orthogonal projection, it is defined by the property that, if c P θ˚i IHpMq, then

degMpc ¨ σpaqq “ degMpπpcqσpaqq

for any a P IHpMtiuq.

Now take any b P IHpMtiuq and suppose that b “ ϕ∅
Mtiu
pbq for b P IHpMtiuq. Then π∅ζpbq “

ϕ∅
Mzipπψtiupbqq, and so we want to show that the map sending b to πpψtiupbqq is an isomorphism.

This element is characterized by the following equation, for every a P IHpMtiuq:

degM

`

πpψtiupbqq ¨ σpaq
˘

“ degM

`

ψtiupbq ¨ σpaq
˘

“ degM

´

ψtiupbq ¨ ψ
tiupab 1q

¯

definition of σ

“ degMtiu

´

b ¨ ϕtiuψ
tiupab 1q

¯

by Lemma 2.14

“ degMtiu

´

b ¨ ψ∅
Mtiu

paq
¯

by Lemma 2.19 (4)

“ degMtiu
pb ¨ aq by Lemma 2.6.

Thus the required isomorphism follows from PDpMtiuq.

10.4. The Hodge–Riemann relations. To prove HRipMq, we need to understand the Poincaré pair-
ing on the direct summands of IHipMq provided by Corollary 10.5. In order to do this, we first con-
sider the Poincaré pairing on the summands of IH1ipMq. Our first result says that these summands
are rigid, in the sense that their only endomorphisms as graded H˝pMziq-modules are multiplica-
tion by scalars.

Lemma 10.10. Let M be a loopless matroid on a nonempty ground set E. Suppose that CDpMF q,
PDpMF q, and NSpMF q hold for all proper flats F , and that HLpMq holds. Then an endomorphism
of IH˝pMq as a graded H˝pMq-module that induces the zero map on the stalk IH˝pMqE – Q must
be zero. In particular, the only endomorphisms of IH˝pMq as a graded H˝pMq-module are multi-
plication by scalars.

Proof. Take an endomorphism f of IH˝pMq which induces the zero endomorphism on IH˝pMqE .
Then following the argument of Proposition 6.4, but using Lemma 6.2 (2) in place of Lemma 6.2 (1),
we see that f vanishes on yF IH˝pMq for any nonempty flat F , and so it induces a homomorphism

f : IH˝pMq∅ Ñ IH˝pMqr∅s.
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Corollary 7.6 gives an isomorphism

IH˝pMq∅ – ϕ∅pIH˝pMqq “ IHpMq.

By Lemma 5.4 and Corollary 7.7, we have an isomorphism

IH˝pMqr∅s “ xx∅y X IH˝pMq “ ψ∅pIHpMqq – IHpMqr´1s.

Using these isomorphisms, we can write f as a map IHpMq Ñ IHpMqr´1s satisfying f “ ψ∅fϕ∅.

Both ϕ∅ and ψ∅ are homomorphisms of H˝pMq-modules, where x∅ acts on IHpMq as multiplica-
tion by ϕ∅px∅q “ ´β. Since ψ∅ is injective and ϕ∅pIH˝pMqq “ IHpMq by Corollary 7.6, we see that
f commutes with multiplication by β, or in other words it is a homomorphism of HpMq-modules.

Take an element a P IHkpMq, and first suppose that a is primitive, so βd´2ka “ 0. This gives

0 “ fpβd´2kaq “ βd´2k ¨ fpaq.

But fpaq P IHk´1pMq, and so HLpMq implies that

pβd´2k`1¨ q : IHk´1pMq Ñ IHd´kpMq

is an isomorphism, which gives fpaq “ 0. Then fpβ`aq “ β`fpaq for any ` ě 0, and since the
classes β`a span IHpMq, we conclude that f “ 0, and so f “ 0 as well. �

Now we can proceed with an analysis analogous to the one at the beginning of Section 9.4. Let
F be a nonempty flat of Mzi of even corank, and suppose we have an inclusion

f : IH˝
`

pMziqF
˘

r´pcrkF q{2s ãÑ IH1ipMq

of H˝pMq-modules. We have two pairings on IH˝ppMziq
F q that are a priori different: the one in-

duced by the inclusion of IH˝ppMziq
F q into CHppMziqF q, and the one induced by the inclusion of

IH˝ppMziq
F qr´pcrkF q{2s into IH1ipMq.

Lemma 10.11. These two pairings on IH˝ppMziq
F q are related by a constant factor c P Q with

p´1q
crkF

2 c ą 0.

Proof. This proof is essentially the same as the proof of Lemma 9.10. Both pairings are compati-
ble with the H˝pMziq-module structure in the sense that xηξ, σy “ xξ, ησy for any η P H˝pMziq and
ξ, σ P IH˝ppMziq

F q. Thus both pairings are given by isomorphisms IH˝ppMziq
F q˚ – IH˝ppMziq

F qrrkF s

of graded H˝pMziq-modules. By Lemma 10.10, the H˝pMziq-module IH˝ppMziq
F q has only scalar

endomorphisms, so any two such isomorphisms must be related by a scalar factor c P Q.

To compute the sign of c, we pair the class 1 P IH˝ppMziq
F q with the class yF P IH˝ppMziq

F q.
Inside of CHppMziqF q, they pair to 1. Since θipyF q “ yF̄ , by Proposition 2.13, Proposition 2.15,
Lemma 10.2 (c), and Lemma 6.2 (2), the pairing of their images in IH1ipMq, or equivalently in
CHpMq, is equal to the Poincaré pairing of ϕF̄ pfp1qq with itself inside of IH

crkF
2 pMF̄ q. The class
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ϕF̄ pfp1qq is annihilated by yj for all j P EzF̄ , so it is primitive, and therefore the sign of its Poincaré
pairing with itself is equal to p´1q

crkF
2 by HRpMF̄ q. �

Taking stalks at the empty flat ∅ P LpMziq and using Proposition 10.4, the inclusion f induces
an inclusion

f : IHppMziqF qr´pcrkF q{2s ãÑ IH1ipMq∅ – IHipMq

of HpMziq-modules. All of the summands of IHipMq provided by Corollary 10.5 are images of
maps of this form.

There are two pairings on IHppMziqF q that are a priori different: the one induced by the inclusion
of IHppMziqF q into CHppMziqF q, and the one induced by the above inclusion f .

Lemma 10.12. These two pairings on IHppMziqF q are related by the same constant factor c P Q as
in Lemma 10.11 with p´1q

crkF
2 c ą 0.

Proof. We need to compare the Poincaré pairings in the Chow rings and the augmented Chow
rings. Given two classes η, ξ P IH˝ppMziq

F q, we denote their images in IHppMziqF q by η, ξ. By
Propositions 2.5 and 2.7, we have

xη, ξyCHppMziqF q “ xη, x∅ξyCHppMziqF q.

On the other hand, we have

xfpηq, fpξqyCHpMq “ xfpηq, x∅fpξqyCHpMq “ xfpηq, pθipx∅q´xtiuqfpξqyCHpMq “ xfpηq, fpx∅ξqyCHpMq,

where the last equality follows from the next lemma and f being an H˝pMziq-module homomor-
phism. Thus, the two pairings are related by the same constant factor c as in Lemma 10.11. �

Lemma 10.13. For any µ, ν P R, we have xµ, xtiuνyCHpMq “ 0.

Proof. By [BHM`22, Lemma 3.9], for any F P Sizt∅u, we have

xtiuxFYi CHpiq Ď xtiuCHpiq .

Since R is the direct sum of CHpiq and xFYi CHpiq for all F P Sizt∅u, it follows that xtiuR “

xtiuCHpiq “ P , which is orthogonal to R with respect to the Poincaré pairing of CHpMq. Thus, the
lemma follows. �

Corollary 10.14. The statement HRipMq holds.

Proof. This follows from Corollary 10.5, Lemma 10.12, and HRppMziqF q for ∅ ‰ F P LpMziq. �
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11. DEFORMATION ARGUMENTS

This section is devoted to arguments that establish hard Lefschetz or Hodge–Riemann proper-
ties by considering families of Lefschetz arguments. We assume throughout that E is nonempty.

11.1. Establishing HRă
d
2 pMq.

Proposition 11.1. We have

HLpMq, HLipMq, and HR
ă d

2
i pMq ùñ HRă

d
2 pMq.

Proof. Given y “
ř

jPE cjyj with every cj ą 0, to show that IHpMq satisfies the Hodge–Riemann
relations with respect to multiplication by y in degrees less than d{2, we consider

yt – t ¨ ciyi `
ÿ

jPE,j‰i

cjyj .

By HLpMq and HLipMq, IHpMq satisfies the hard Lefschetz theorem with respect to multiplication
by yt for any t ě 0. Therefore, for any k ă d{2, the Hodge–Riemann form on IHkpMq associated
with any yt with t ě 0 has the same signature. Given the hard Lefschetz theorem, the Hodge–
Riemann relations are conditions on the signature of the Hodge–Riemann forms [AHK18, Propo-
sition 7.6], thus the fact that IHpMq satisfies the Hodge–Riemann relations with respect to multi-
plication by y0 implies that it satisfies the Hodge–Riemann relations for any yt with t ě 0. �

11.2. Establishing HRpMq. The purpose of this section is to prove Proposition 11.4, which gives
us a way to pass from HRipMq to HRpMq. If i has a parallel element, then the statements HRďki pMq
and HRďkpMq are the same. So, without loss of generality, we may assume that i has no parallel
element, or equivalently that tiu is a flat. To simplify the notation we will denote this flat without
braces in this section, so we write xi instead of xtiu, ψi instead of ψtiu, etc.

For any t ě 0, consider the degree one linear operator Lt on IHipMq given by multiplication by
β´ txi. We will assume CDpMq throughout this section, so that we have IHipMq “ IHpMq‘KipMq,
so if k ă pd´ 1q{2 we have decompositions

IHk
i pMq “ IHkpMq ‘ ψi

`

Jk´1pMiq
˘

and IHd´k´1
i pMq “ IHd´k´1pMq ‘ ψi

`

Jd´k´2pMiq
˘

,

where we use the fact that i has rank one, so CHpMiq “ Q, to suppress the second tensor factor in
the source of ψi.

Lemma 11.2. The map

Ld´2k´1
t : IHk

i pMq Ñ IHd´k´1
i pMq

is block diagonal with respect to the above direct sum decompositions.
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Proof. Since β “
ř

iRG‰∅ xG, we have βxi “ 0. Since the image of ψi is equal to the ideal of CHpMq

generated by xi, multiplication by β annihilates the image of ψi. Thus, we have

Ld´2k´1
t ψi

`

Jk´1pMiq
˘

Ď xd´2k´1
i ψi

`

Jk´1pMiq
˘

“ ψi
´

ϕipxd´2k´1
i qJk´1pMiq

¯

by Lemma 2.9 (4)

“ ψi
´

βd´2k´1
Mi

Jk´1pMiq

¯

since αMi “ 0

“ ψi
´

βd´2k´1
Mi

IHk´1pMiq

¯

by the definition of J

“ ψi
`

Jd´k´2pMiq
˘

by the definition of J.

Thus Ld´2k´1
t maps ψi

`

Jk´1pMiq
˘

to ψi
`

Jd´k´2pMiq
˘

.

On the other hand, by Proposition 3.5 and the same argument above, we have

xd´2k´1
i IHkpMq ¨ ψi

´

Jk´1pMiq

¯

“ IHkpMq ¨ ψi
´

ϕi
`

xd´2k´1
i

˘

Jk´1pMiq

¯

“ IHkpMq ¨ ψi
´

Jd´k´2pMiq

¯

“ 0.

Since IHpMq is the orthogonal complement of ψipJpMiqq in IHipMq, it follows that

xd´2k´1
i IHkpMq Ď IHd´k´1pMq.

But pβ ´ txiq
d´2k´1 “ pβqd´2k´1 ` p´txiq

d´2k´1, and IHpMq is preserved by multiplication by β,
so this shows that Ld´2k´1

t maps IHkpMq to IHd´k´1pMq. �

Lemma 11.3. Let k ď pd ´ 1q{2 be given, and suppose that the statements HRipMq and HLďkpMq

hold. For any 0 ă t ď 1, the map

Ld´2k´1
t : IHkpMq Ñ IHd´k´1pMq

is an isomorphism.

Proof. First note that the statement for t “ 1 holds by Lemma 11.2 and HRipMq. For 0 ă t ă 1,
assume for the sake of contradiction that 0 ‰ η P IHkpMq and

´

βd´2k´1 ` p´txiq
d´2k´1

¯

η “ 0. (11)

Multiplying this equation by β and by xi gives

βd´2kη “ 0 and xd´2k
i η “ 0.

Thus η is a primitive class in IHkpMqwith respect to β ´ xi. By HRipMq,

p´1qkdegM

´´

βd´2k´1 ` p´xiq
d´2k´1

¯

η2
¯

ą 0.
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But by an application of (11), this inequality is equivalent to

0 ă p´1qkdegM

´´

βd´2k´1 ` p´txiq
d´2k´1 ´ p´txiq

d´2k´1 ` p´xiq
d´2k´1

¯

η2
¯

“ p´1qkdegM

´´

´ p´txiq
d´2k´1 ` p´xiq

d´2k´1
¯

η2
¯

“ p´1qd´k´1degM

´

xd´2k´1
i p´td´2k´1 ` 1qη2

¯

.

Since 0 ă t ă 1, this inequality reduces to

p´1qd´k´1degMpx
d´2k´1
i η2q ą 0.

On the other hand, by Lemma 3.3 (3), we know that ϕipIHpMqq Ď IHpMiq. Since pβMq
d´2kη “ 0 and

ϕipβMq “ βMi
, it follows that pβMi

qd´2kϕipηq “ 0. In other words, ϕipηq P IHkpMiq is a primitive
class with respect to βMi

. Thus, by Proposition 2.9 and Proposition 2.11, we have

0 ď p´1qkdegMi

´

βd´2k´2ϕipηq2
¯

“ p´1qd´kdegMi

´

ϕi
`

xd´2k´2
i η2

˘

¯

“ p´1qd´kdegM

´

ψiϕi
`

xd´2k´2
i η2

˘

¯

“ p´1qd´kdegMpx
d´2k´1
i η2q.

Now, we have a contradiction between the above two sets of inequalities. �

Proposition 11.4. For any k ď pd´ 1q{2, we have

HRpMiq, PDpMq, HRipMq, and HLďkpMq ùñ HRďkpMq.

Proof. By induction on k, we may assume HRăkpMq. To prove HRkpMq, it suffices to prove that the
Hodge–Riemann form on IHkpMq with respect to L0 has the expected signature. More precisely,
by the proof of [AHK18, Proposition 7.6], it suffices to show that

sigL0
IHkpMq ´ sigL0

IHk´1pMq “ p´1qk
´

dim IHkpMq ´ dim IHk´1pMq
¯

,

where sigL0
denotes the signature of the Hodge–Riemann form associated with L0.

By Lemma 11.3 and PDpMq, the Hodge–Riemann form associated with Lt is non-degenerate for
all 0 ă t ď 1, and by HLďkpMq, the Hodge–Riemann form is also non-degenerate when t “ 0.
Thus, both sigLt

IHkpMq and sigLt
IHk´1pMq are constant as t varies in the closed interval r0, 1s.

Therefore, it suffices to show that

sigL1
IHkpMq ´ sigL1

IHk´1pMq “ p´1qk
´

dim IHkpMq ´ dim IHk´1pMq
¯

. (12)

By Lemma 11.2, we have

sigL1
IHk

i pMq “ sigL1
IHkpMq ` sigL1

ψi
`

Jk´1pMiq
˘

. (13)
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For any η, ξ P Jk´1pMiq, since β annihilates the image of ψi, we have

Ld´2k´1
1

`

ψipηq ¨ ψipξq
˘

“ p´xiq
d´2k´1

`

ψipηq ¨ ψipξq
˘

,

and hence

degM

´

Ld´2k´1
1

`

ψipηq ¨ ψipξq
˘

¯

“ degM

´

p´xiq
d´2k´1

`

ψipηq ¨ ψipξq
˘

¯

“ degM

´

ψipβd´2k´1
Mi

ηq ¨ ψipξq
¯

.

By Lemma 2.18 (2) with F “ tiu and the fact that αMtiu “ 0 for degree reasons, we have

degM

´

ψipβd´2k´1
Mi

ηq ¨ ψipξq
¯

“ ´degMi

´

βd´2k
Mi

ηξ
¯

.

Combining the above two sets of equations, we have

sigL1
ψi
`

Jk´1pMiq
˘

“ ´ sigβMi
Jk´1pMiq “ ´ sigβMi

IHk´1pMiq.

Therefore, by HRpMiq, we have

sigL1
ψi
`

Jk´1pMiq
˘

´ sigL1
ψi
`

Jk´2pMiq
˘

“ p´1qk
´

dimψi
`

Jk´1pMiq
˘

´ dimψi
`

Jk´2pMiq
˘

¯

.

By HRipMq, we have

sigL1
IHk

i pMq ´ sigL1
IHk´1

i pMq “ p´1qk
´

dim IHk
i pMq ´ dim IHk´1

i pMq
¯

.

The above two equations together with Equation (13) implies the desired Equation (12). �

11.3. Establishing HL˝pMq and HR
ă d

2
˝ pMq. We now use similar arguments to those in the previ-

ous subsection in order to obtain the statements HL˝pMq and HR
ă d

2
˝ pMq. Fix a positive sum

y “
ÿ

jPE

cjyj .

For any t ě 0, consider the degree one linear operator Lt on IH˝pMq given by multiplication by
y ´ tx∅. We will assume CDă

d
2 pMq, so that for any k ă d{2, we have a direct sum decomposition

IHk
˝pMq “ IHkpMq ‘ ψ∅`Jk´1pMq

˘

and IHd´k
˝ pMq “ IHd´kpMq ‘ ψ∅`Jd´k´1pMq

˘

.

Lemma 11.5. For any t ě 0, the linear map

Ld´2k
t : IHk

˝pMq Ñ IHd´k
˝ pMq

is block diagonal with respect to the above decompositions.

Proof. Since yx∅ “ 0 and y annihilates the image of ψ∅, we have

Ld´2k
t ψ∅`Jk´1pMq

˘

“ yd´2kψ∅`Jk´1pMq
˘

` p´tqd´2kpx∅q
d´2kψ∅`Jk´1pMq

˘

“ p´tqd´2kpx∅q
d´2kψ∅`Jk´1pMq

˘

“ td´2kψ∅
´

βd´2kJk´1pMq
¯

“ td´2kψ∅`Jd´k´1pMq
˘

,
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which is equal to ψ∅`Jd´k´1pMq
˘

if t ą 0 and 0 if t “ 0. In either case, we have

Ld´2k
t ψ∅`Jk´1pMq

˘

Ď ψ∅`Jd´k´1pMq
˘

.

By the above inclusion, for any η P IHkpMq and ξ P ψ∅`Jk´1pMq
˘

, we have

degM

`

Ld´2k
t pηq ¨ ξ

˘

“ degM

`

η ¨ Ld´2k
t pξq

˘

“ 0.

Notice that the graded subspace IHpMq Ď IH˝pMq is the orthogonal complement of ψ∅`JpMq
˘

.
Thus, we also have

Ld´2k
t IHkpMq Ď IHd´kpMq. �

Proposition 11.6. We have

CDă
d
2 pMq, HLă

d´2
2 pMq, and HLpMq ùñ HL˝pMq.

Proof. By Lemma 11.5, we need to show that Ld´2k
t induces isomorphisms IHkpMq – IHd´kpMq

and ψ∅`Jk´1pMq
˘

– ψ∅`Jd´k´1pMq
˘

for some t ą 0. In the proof of Lemma 11.5, we have
shown that when t ą 0 the induced isomorphism ψ∅`Jk´1pMq

˘

– ψ∅`Jd´k´1pMq
˘

follows from

HLă
d´2
2 pMq.

The statement HLpMq implies that Ld´2k
0 : IHkpMq Ñ IHd´kpMq is an isomorphism. Therefore,

for sufficiently small t, the map Ld´2k
t : IHkpMq Ñ IHd´kpMq is also an isomorphism. �

Proposition 11.7. We have

CDă
d
2 pMq, HLpMq, HRă

d
2 pMq, HLă

d´2
2 pMq, and HRă

d´2
2 pMq ùñ HR

ă d
2

˝ pMq.

Proof. For k ă d{2, we prove HRk˝pMq by induction on k. It is clear that IH˝pMq satisfies the Hodge–
Riemann relations in degree zero with respect to Lt for t sufficiently small. Now fix 0 ă k ă d{2

and suppose that HRăk˝ pMq holds. We need to show that, for t sufficiently small,

sigLt IHk
˝pMq ´ sigLt IHk´1

˝ pMq “ p´1qk
´

dim IHk
˝pMq ´ dim IHk´1

˝ pMq
¯

.

By Lemma 11.5, we have

sigLt IHk
˝pMq “ sigLt IHkpMq ` sigLt ψ

∅`Jk´1pMq
˘

.

For η, ξ P Jk´1pMq “ IHk´1pMq, since each yi annihilates the image of ψ∅, we have

Ld´2k
t

`

ψ∅pηq ¨ ψ∅pξq
˘

“ p´tx∅q
d´2k

`

ψ∅pηq ¨ ψ∅pξq
˘

,

and hence

degM

´

Ld´2k
t

`

ψ∅pηq ¨ ψ∅pξq
˘

¯

“ degM

´

p´tx∅q
d´2k ψ∅pηq ¨ ψ∅pξq

¯

“ td´2k degM

´

ψ∅`βd´2kη
˘

¨ ψ∅pξq
¯

.
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By Lemma 2.18 (1) with F “ ∅ and the fact that αM∅ “ 0 for degree reasons, we have

degM

´

ψ∅`βd´2kη
˘

¨ ψ∅pξq
¯

“ ´degM

´

βd´2k`1ηξ
¯

.

When t is positive, by the above two sets of equations, we have

sigLt ψ
∅`Jk´1pMq

˘

“ ´ sigβ Jk´1pMq “ ´ sigβ IHk´1pMq,

and therefore
sigLt IHk

˝pMq “ sigLt IHkpMq ´ sigβ IHk´1pMq.

By HLpMq and HRă
d
2 pMq, the Hodge–Riemann forms on IHkpMq and IHk´1pMq associated with L0

are non-degenerate. Thus, for t sufficiently small, we have

sigLt IHkpMq ´ sigLt IHk´1pMq “ sigL0
IHkpMq ´ sigL0

IHk´1pMq

“ p´1qk
´

dim IHkpMq ´ dim IHk´1pMq
¯

.

We also have

sigβ IHk´1pMq ´ sigβ IHk´2pMq “ p´1q´1
´

dim IHk´1pMq ´ dim IHk´2pMq
¯

by HLă
d´2
2 pMq and HRă

d´2
2 pMq. Combining the above three sets of equations, we have

sigLt IHk
˝pMq ´ sigLt IHk´1

˝ pMq

“ p´1qk
´

dim IHkpMq ´ dim IHk´1pMq
¯

´ p´1qk´1
´

dim IHk´1pMq ´ dim IHk´2pMq
¯

“ p´1qk
´

dim IHk
˝pMq ´ dim IHk´1

˝ pMq
¯

. �

12. PROOF OF THE MAIN THEOREM

Sections 12.1 and 12.2 are devoted to combining the results that we have obtained in the pre-
vious sections in order to complete the proof of Theorem 3.17. In Section 12.3 we prove Proposi-
tions 1.7 and 1.8, thus concluding the proof of Theorem 1.2.

12.1. Proof of Theorem 3.17 for non-Boolean matroids. We now complete the inductive proof of
Theorem 3.17 when M is not the Boolean matroid; the Boolean case will be addressed in Section
12.2. Let M be a matroid that is not Boolean, and assume that Theorem 3.17 holds for any matroid
whose ground set is a proper subset of E. Since M is not Boolean, we may fix an element i P E
which is not a coloop. If i has a parallel element, then all of our statements about M are equivalent
to the corresponding statements about Mzi, so we may assume that it does not.

We recall the main results in the previous five sections. By Corollary 7.4, we have PD˝pMq,
PDpMq, CD˝pMq, and CDpMq. By Proposition 8.11, we have

NSă
d´2
2 pMq holds.
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By Corollaries 10.6 and 10.14, we have

both HLipMq and HRipMq hold,

and by Proposition 9.9 and Corollary 9.11, we have

CDă
d
2 pMq ùñ HL

ă d
2

i pMq and HR
ă d

2
i pMq.

Proposition 12.1. We have

NSă
d´2
2 pMq and HRipMq ùñ HLă

d´2
2 pMq.

Proof. Given 1 ď k ă d{2, let η P IHk´1pMq be a nonzero class such that

βd´2k`1η “ 0.

Recall from the proof of Lemma 11.2 that βxtiu “ 0, and therefore

pβ ´ xtiuq
d´2k ¨ pβηq “ 0.

In other words, the class βη is primitive in IHk
i pMq with respect to multiplication by β ´ xtiu. By

NSă
d´2
2 pMq, we have βη ‰ 0. Now, HRipMq implies that

0 ă p´1qkdegM

´

pβ ´ xtiuq
d´2k´1 ¨ pβηq2

¯

“ p´1qkdegM

`

βd´2k`1 ¨ η2
˘

.

This contradicts the assumption that βd´2k`1η “ 0. �

Proposition 12.2. For any k ď d{2, we have

PDďk´1pMq and HLďk´1pMq ùñ CDďkpMq.

Proof. By CD˝pMq, the statement CDďkpMq is equivalent to the direct sum decomposition

IHďk˝ pMq “ IHďkpMq ‘ ψ∅`Jďk´1pMq
˘

.

By definition, IHpMq is the orthogonal complement of ψ∅`JpMq
˘

in IH˝pMq. Thus, the above direct
sum decomposition is equivalent to the statement that the Poincaré pairing of CHpMq restricts to
a non-degenerate pairing between ψ∅`Jďk´1pMq

˘

and ψ∅`Jěd´k´1pMq
˘

.

By Lemma 2.18 (1) with F “ ∅ and the fact that αM∅ “ 0 for degree reasons, we have

degM

`

ψ∅pµq ¨ ψ∅pνq
˘

“ ´degM

`

β ¨ µν
˘

for µ, ν P CHpMq. Thus, by PDďk´1pMq and HLďk´1pMq, the Poincaré pairing of CHpMq restricts
to a non-degenerate pairing between ψ∅`Jďk´1pMq

˘

and ψ∅`Jěd´k´1pMq
˘

. �

By Proposition 7.8, we have

CD˝pMq and CDă
d
2 pMq ùñ NSă

d
2 pMq.
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Proposition 12.3. We have

HLă
d´2
2 pMq and NSă

d
2 pMq ùñ HLpMq.

Proof. Given positive numbers cj for j P E, we let y “
ř

jPE cjyj . Suppose η P IHkpMq satisfies
yd´2kη “ 0. For any rank one flat G, we have ϕGpyq “

ř

jRG cjyj P CH1pMGq. Since yd´2kη “ 0,
we have

ϕGpyq
d´2k ¨ ϕGpηq “ 0.

By Lemma 3.4 (1), we know that ϕGpηq P IHkpMGq. Thus, the class ϕGpηq P IHkpMGq is primitive
with respect to ϕGpyq. By HRpMGq, Proposition 2.13, and Proposition 2.15, for every rank one flat
G we have

0 ď p´1qk degMG

´

ϕGpyq
d´2k´1 ¨ ϕGpηq

2
¯

“ p´1qk degM

´

yG ¨ y
d´2k´1η2

¯

,

and the equality holds if and only if ϕGpηq “ 0.

On the other hand, since yd´2kη “ 0, we have

0 “ p´1qk degM

´

yd´2kη2
¯

“ p´1qk degM

ˆˆ

ÿ

jPE

cjyj

˙

¨ yd´2k´1η2

˙

“ p´1qk
ÿ

jPE

cj degM

´

y
tju
¨ yd´2k´1η2

¯

,

where tju denotes the closure of tju in M. Since each cj ą 0, the above two sets of equations imply
that ϕGpηq “ 0 for every rank one flat G. Thus,

yGη “ ψG
`

ϕGpηq
˘

“ ψGp0q “ 0

for every rank one flat G. By NSă
d
2 pMq, it follows that η “ 0.

We have proved that multiplication by yd´2k is an injective map from IHkpMq to IHd´kpMq. To
conclude it is an isomorphism, it is enough to know that these spaces have the same dimension.
We know that PD˝pMq holds, and since IHpMq is the perpendicular space to ψ∅pJpMqq in IH˝pMq,
it is enough to know that dim Jk´1pMq “ dim Jd´k´1pMq. This follows from HLă

d´2
2 pMq. �

Proposition 12.4. We have
HR˝pMq ùñ NS˝pMq.

Proof. Let y “
ř

jPE yj . By HR˝pMq, we can choose ε ą 0 such that IH˝pMq satisfies the Hodge–
Riemann relations with respect to multiplication by y ´ εx∅. Suppose that η is a nonzero element
of the socle of IHk

˝pMq for some k ď d{2. By HR˝pMq, we have

p´1qk degM

´

py ´ εx∅q
d´2kη2

¯

ą 0. (14)
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Since η is annihilated by every yj , Lemma 5.2 implies that η is a multiple of x∅. On the other hand,
since η is annihilated by x∅, Lemma 5.2 implies that η is in the ideal spanned by the yj . Thus we
have η2 “ 0, which contradicts Equation (14). �

Proposition 12.5. We have

NS˝pMq ùñ NSpMq.

Proof. Suppose that k ď d{2 and η P IHk´1pMq is an element of the socle, that is, βη “ 0. By Corol-
lary 7.7, it follows that ψ∅pηq is a multiple of x∅, and hence annihilated by each yj by Lemma 5.2.
Furthermore, by Proposition 2.5, we have

x∅ψ
∅pηq “ ψ∅`ϕ∅px∅qη

˘

“ ψ∅p´βηq “ 0.

Thus, ψ∅pηq P IHk
˝pMq is annihilated by each yj and x∅. Then NS˝pMq implies that ψ∅pηq “ 0, and

the injectivity of ψ∅ implies that η “ 0. �

Proposition 12.6. We have

HLă
d´2
2 pMq and NSpMq ùñ HLpMq.

Proof. When d is odd, the statements HLă
d´2
2 pMq and HLpMq are the same. When d is even, the

only missing case is HL
d´2
2 pMq, which is exactly the same as NS

d´2
2 pMq. �

From Corollary 7.4, we have PD˝, PD, CD˝, and CD of M. Following Figure 1, we have obtained
CD, NS, NS˝, HL, HL˝, HL, HR, HR˝, and HR. The statement PD follows from HL and HR. The
statement NS is proved in Proposition 12.5. So we have completed the proof of Theorem 3.17
assuming M is not the Boolean matroid.

12.2. Proof of Theorem 3.17: Boolean case. Suppose M is the Boolean matroid onE “ t1, 2, . . . , du
with d ą 0.

Proposition 12.7. The canonical decomposition CDpMq of CHpMq holds. We have IHpMq “ HpMq,
and the space JpMq is spanned by 1, β, . . . , βd´2.

Proof. Let J1pMq be the subspace of HpMq spanned by 1, β, . . . , βd´2. We have HpMq Ď IHpMq, since
IHpMq is an HpMq-module that contains 1. Since βd´2 is not zero, we have J1pMq Ď JpMq.

Thus if we can show there is a direct sum decomposition

CHpMq “ HpMq ‘
à

∅ăFăE
ψFM

`

J1pMF q b CHpMF q
˘

, (15)

the proposition will follow.
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For a Boolean matroid M, CHpMq admits an automorphism

τ : CHpMq Ñ CHpMq, xF ÞÑ xEzF .

The automorphism τ exchanges α and β. It is then easy to see that the decomposition (15) is the
result of applying τ to the decomposition pD3q of [BHM`22].

Alternatively, one can use the basis of CHpMq given by Feichtner and Yuzvinsky [FY04, Corol-
lary 1]. Their basis is given by all products

xm1
G1
xm2
G2
¨ ¨ ¨xmkGkα

mk`1 ,

where G1 ă G2 ă ¨ ¨ ¨ ă Gk is a (possibly empty) flag of nonempty proper flats and we have
m1 ă rkG1, mi ă rkGi ´ rkGi´1 for 1 ă i ď k, and mk`1 ă crkGk. Applying τ gives

βmk`1pxFkq
mk ¨ ¨ ¨ pxF1q

m1 ,

where Fi “ EzGi. If k ‰ 0 this is in ψFk
`

pβMFk
qmk b CHpMFkq

˘

, while if k “ 0 it is in HpMq. The
direct sum decomposition (15) follows. �

Since IHpMq is isomorphic to HpMq, which is spanned by 1, β, β2, . . . , βd´1, we immediately
deduce NSpMq and HLpMq. Notice that the involution τ induces the identity map on CHd´1pMq.
Therefore, degMpβ

d´1q “ degMpα
d´1q “ 1, and we have PDpMq and HRpMq.

The proof of Proposition 12.2 also works for the Boolean matroid, so from HLpMq and HRpMq

we get CDpMq. By Lemma 5.2 and Corollary 7.6, we have an isomorphism of graded vector spaces

IH˝pMq∅ – ϕ∅pIH˝pMqq “ IHpMq.

Since ψ∅pβiq “ ψ∅ϕ∅pp´x∅q
iq “ p´1qipx∅q

i`1, it follows that ψ∅JpMq is spanned by x∅, . . . , xd´1
∅ .

Since x∅yj “ 0 for any j P E, we have an isomorphism of vector spaces
`

ψ∅JpMq
˘

∅ – ψ∅JpMq.

Since IHpMq has total dimension d and JpMq has total dimension d ´ 1, the stalk IHpMq∅ is one-
dimensional, and hence IHpMq∅ – IH0pMq – Q. Therefore, IHpMq is generated in degree zero as a
module over HpMq. Equivalently, IHpMq is isomorphic to a quotient of HpMq.

On the other hand, since M is the Boolean matroid, HpMq “ Qry1, . . . , yds{py
2
1, . . . , y

2
dq is a

Poincaré duality algebra. Since IHdpMq is one-dimensional, the quotient map HpMq Ñ IHpMq

is an isomorphism in degree d. Therefore, the quotient map must be an isomorphism, that is,

IHpMq – HpMq “ Qry1, . . . , yds{py
2
1, . . . , y

2
dq.

Now, it is a well-known fact that HpMq satisfies Poincaré duality, the hard Lefschetz theorem, and
the Hodge–Riemann relations. The statement PD˝pMq follows from PDpMq, PDpMq, and HLpMq.
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By Lemma 11.2, the statement HL˝pMq follows from HLpMq and HLpMq, and the statement HR˝pMq
follows from HRpMq and HRpMq.

12.3. Proofs of Propositions 1.7 and 1.8. Recall from Section 1.2 that the proof of Theorem 1.2
relies on Theorem 1.6, which we have already proved as part of Theorem 3.17, as well as on
Propositions 1.7 and 1.8. In this subsection, we will prove these remaining two propositions.

Proof of Proposition 1.7. As parts of Theorem 3.17, we have already obtained PDpMq and NSpMq. By
PDpMq, the socle of IHpMq is equal to the orthogonal complement pm IHpMqqK in IHpMq. By NSpMq,
we know that pm IHpMqqK “ 0 in degrees less than or equal to d{2. Thus, m IHpMq “ IHpMq in
degrees greater than or equal to d{2, or equivalently, IHpMq∅ “ 0 in degrees greater than or equal
to d{2. �

Proof of Proposition 1.8. Choose an ordering F1, . . . , Fr of LpMq refining the natural partial order as
in Section 5.3 with the further property that Σµ “ tFµ, . . . , Fru “ LěppMq and Σν “ tFν , . . . , Fru “

Lěp`1pMq. By definition, we have

mp IHpMq{mp`1 IHpMq –
IHpMqΣµ
IHpMqΣν

. (16)

We claim that there exists a canonical isomorphism

à

FPLppMq

IHpMqěF
IHpMqąF

–
IHpMqΣµ
IHpMqΣν

. (17)

In fact, the natural maps
IHpMqěF
IHpMqąF

Ñ
IHpMqΣµ
IHpMqΣν

induce a surjective map
à

FPLppMq

IHpMqěF
IHpMqąF

Ñ
IHpMqΣµ
IHpMqΣν

.

To show that the above map is an isomorphism, it suffices to show that both sides have the same
dimension. By Proposition 5.11 (1), we have

dim

ˆ

IHpMqΣµ
IHpMqΣν

˙

“
ÿ

µďkďν´1

dim

ˆ

IHpMqΣk
IHpMqΣk`1

˙

“
ÿ

µďkďν´1

dim IHpMqFk “
ÿ

FPLppMq

dim IHpMqF .

Thus, the isomorphism in Equation (17) follows.

By Lemma 5.7 and Lemma 6.2 (1), for any flat F , we have canonical isomorphisms

IHpMqěF
IHpMqąF

–
`

IHpMqr´ rkF s
˘

F
–

`

yF IHpMq
˘

∅ –
`

IHpMF qr´ rkF s
˘

∅. (18)

Now, the proposition follows from Equations (16), (17), and (18). �
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12.4. Proof of Theorem 1.4. By Theorem 3.17, all of our statements hold for M and MF , and so
in particular Lemma 6.2 says that ϕF restricts to a surjection IHpMq Ñ IHpMF q. Because we are
assuming that yF is fixed by the action of Γ, this surjection is Γ-equivariant. Since ϕF is a ring
homomorphism which sends the maximal ideal m of HpMq to the maximal ideal mF of HpMF q, it
follows that we have a Γ-equivariant surjection

IHpMq∅ Ñ IHpMF q∅.

The result now follows by taking Γ-equivariant Poincaré polynomials.

APPENDIX A. EQUIVARIANT POLYNOMIALS

The purpose of this appendix is to give precise definitions of equivariant Kazhdan–Lusztig
polynomials, equivariant Z-polynomials, and equivariant inverse Kazhdan–Lusztig polynomials.
We also prove an equivariant analogue of the characterization of Kazhdan–Lusztig polynomials
and Z-polynomials that appears in [BV20, Theorem 2.2].

Let Γ be a finite group, and let VReppΓq be the ring of virtual representations of Γ over Q with
coefficients in Q. For any finite-dimensional representation V of Γ, let rV s be its class in VReppΓq.
If Γ acts on a set S and x P S, we write Γx Ď Γ for the stabilizer of x. We use the following standard
lemma [Pro21, Lemma 2.7].

Lemma A.1. Let V “
À

xPS Vx be a vector space that decomposes as a direct sum of pieces indexed
by a finite set S, and suppose that Γ acts linearly on V and acts by permutations on S. If γ¨Vx “ Vγ¨x

for all x P S and γ P Γ, then

rV s “
à

xPS

|Γx|

|Γ|
IndΓ

ΓxrVxs P VReppΓq.

Let M be a matroid on the ground set E, and let Γ be a finite group acting on M. In other words,
the set E is equipped with an action of Γ by permutations that take flats of M to flats of M. We
define the equivariant characteristic polynomial

χΓ
Mptq–

rk M
ÿ

k“0

p´1qkrOSkpMqs trk M´k P VReppΓqrts,

where OSkpMq is the degree k part of the Orlik–Solomon algebra of M. The dimension homo-
morphism from VReppΓqrts to Zrts takes the equivariant characteristic polynomial χΓ

Mptq to the
ordinary characteristic polynomial χMptq; see [OT92, Chapter 3]. The following statement appears
in [GPY17, Theorem 2.8].

Theorem A.2. To each matroid M and symmetry group Γ, there is a unique way to assign a poly-
nomial PΓ

Mptqwith coefficients in VReppΓqwith the following properties:
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(a) If the ground set of M is empty, then PΓ
Mptq “ 1 (the trivial representation).

(b) For every matroid M on a nonempty ground set, the degree of PΓ
Mptq is strictly less than rk M{2.

(c) For every matroid M, we have trk MPMpt
´1q “

ÿ

FPLpMq

|ΓF |

|Γ|
IndΓ

ΓF

´

χΓF
MF ptqP

ΓF
MF
ptq

¯

.

The polynomial PΓ
Mptq is called the equivariant Kazhdan–Lusztig polynomial of M with respect

to the action of Γ.

The following definition appears in [PXY18, Section 6].

Definition A.3. The equivariant Z-polynomial of M with respect to the action of Γ is

ZΓ
Mptq –

ÿ

FPLpMq

|ΓF |

|Γ|
IndΓ

ΓF

´

PΓF
MF
ptq

¯

trkF P VReppΓqrts.

A polynomial fptq P VReppΓqrts is called palindromic if tdeg fptqfpt´1q “ fptq. The fact that the
equivariant Z-polynomial is palindromic is asserted without proof in [PXY18, Section 6]; a full
proof appears in [Pro21, Corollary 4.5].

Lemma A.4. For any polynomial fptq of degree d, there is a unique polynomial gptq of degree
strictly less than d{2 such that fptq ` gptq is palindromic.

Proof. We must take gptq to be the truncation of tdfpt´1q ´ fptq to degree tpd´ 1q{2u. �

The following proposition is an equivariant analogue of [BV20, Theorem 2.2].

Corollary A.5. Let M be a nonempty matroid, let P̃Γ
Mptq be a polynomial of degree strictly less than

rk M{2 in VReppΓqrts, and let

Z̃Γ
Mptq– P̃Γ

Mptq `
ÿ

∅‰FPLpMq

|ΓF |

|Γ|
IndΓ

ΓF

´

PΓF
MF
ptq

¯

trkF .

If Z̃Γ
Mptq is a palindromic polynomial, then P̃Γ

Mptq “ PΓ
Mptq and Z̃Γ

Mptq “ ZΓ
Mptq.

Proof. By definition of ZΓ
Mptq, we have

ZΓ
Mptq “ PΓ

Mptq `
ÿ

∅‰FPLpMq

|ΓF |

|Γ|
IndΓ

ΓF

´

PΓF
MF
ptq

¯

trkF .

The corollary then follows from Lemma A.4 and the palindromicity of Z̃Γ
Mptq. �
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When the rank of M is positive, by [GX21, Theorem 1.3], the inverse Kazhdan–Lusztig polyno-
mial of M satisfies

ÿ

FPLpMq

p´1qrkFPMF ptqQMF
ptq “ 0.

We use the recurrence relation to define an equivariant analogue of QMptq.

Definition A.6. The equivariant inverse Kazhdan–Lusztig polynomial of M with respect to the
action of Γ is defined by the condition thatQΓ

Mptq is equal to the trivial representation if the ground
set of M is empty, and otherwise

ÿ

FPLpMq

p´1qrkF
|ΓF |

|Γ|
IndΓ

ΓF

´

PΓF
MF ptqQ

ΓF
MF
ptq

¯

“ 0.

Equivalently, we recursively put

QΓ
Mptq “ ´

ÿ

∅‰FPLpMq
p´1qrkF

|ΓF |

|Γ|
IndΓ

ΓF

´

PΓF
MF ptqQ

ΓF
MF
ptq

¯

P VReppΓqrts.

For equivalent definitions of PΓ
Mptq, Z

Γ
Mptq, andQΓ

Mptq in the framework of equivariant incidence
algebras and equivariant Kazhdan–Lusztig–Stanley theory, we refer to [Pro21, Section 4].
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