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Abstract. We introduce notions of combinatorial blowups, building sets, and nested sets for
arbitrary meet-semilattices. This gives a common abstract framework for the incidence combi-
natorics occurring in the context of De Concini–Procesi models of subspace arrangements and
resolutions of singularities in toric varieties. Our main theorem states that a sequence of com-
binatorial blowups, prescribed by a building set in linear extension compatible order, gives the
face poset of the corresponding simplicial complex of nested sets. As applications we trace the
incidence combinatorics through every step of the De Concini–Procesi model construction, and
we introduce the notions of building sets and nested sets to the context of toric varieties.

There are several other instances, such as models of stratified manifolds and certain graded

algebras associated with finite lattices, where our combinatorial framework has been put to work;

we present an outline at the end of this paper.
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1. Introduction

For an arbitrary meet-semilattice we introduce notions of combinatorial blowups,
building sets, and nested sets. The definitions are given on a purely order-theoretic
level without any reference to geometry. This provides a common abstract frame-
work for the incidence combinatorics occurring in at least two different situations
in algebraic geometry: the construction of De Concini–Procesi models of subspace
arrangements [7], and the resolution of singularities in toric varieties.

The various parts of this abstract framework have received different empha-
sis within different situations: while the notion of combinatorial blowups clearly
specializes to stellar subdivisions of defining fans in the context of toric varieties,
building sets and nested sets were introduced in the context of model construc-
tions by De Concini and Procesi [7] (earlier and in a more special setting by Fulton
and MacPherson [11]), from which we adopt our terminology. This correspondence
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however is not complete: the building sets in [7, 11] are not canonical, they depend
on the geometry, while ours do not. See Section 4.1 for further details.

It was proved in [7] that a sequence of blowups within an arrangement of com-
plex linear subspaces leads from the intersection stratification of complex space
given by the maximal subspaces of the arrangement to an arrangement model
stratified by divisors with normal crossings. In the context of toric varieties, there
exist many different procedures for stellar subdivisions of a defining fan that result
in a simplicial fan, so-called simplicial resolutions.

The purpose of our Main Theorem 3.4 is to unify these two situations on the
combinatorial level: a sequence of combinatorial blowups, performed on a (combi-
natorial) building set in linear extension compatible order, transforms the initial
semilattice to a semilattice where all intervals are boolean algebras, more precisely
to the face poset of the corresponding simplicial complex of nested sets. In partic-
ular, the structure of the resulting semilattice can be fully described by the initial
data of nested sets. Both the formulation and the proof of our main theorem are
purely combinatorial.

We sketch the content of this article:
Section 2. After providing some basic poset terminology, we define build-

ing sets and nested sets for meet-semilattices in purely order-theoretic terms and
develop general structure theory for these notions.

Section 3. We define combinatorial blowups of meet-semilattices, and study
their effect on building sets and nested sets. The section contains our Main Theo-
rem 3.4 which describes the result of blowing up the elements of a building set in
terms of the initial nested set complex.

Section 4. This section is devoted to relating our abstract framework to two
different contexts in algebraic geometry: In 4.1 we briefly review the construction of
De Concini–Procesi models for subspace arrangements. We show that the change
of the incidence combinatorics of the stratification in a single construction step
is described by a combinatorial blowup of the semilattice of strata. In 4.2 we
draw the connection to simplicial resolutions of toric varieties: we recognize stellar
subdivisions as combinatorial blowups of the face posets of defining fans and discuss
the notions of building and nested sets in this context.

Section 5. Since a first version of this paper was written and circulated in the
fall of 2000, our combinatorial framework for the incidence combinatorics of reso-
lutions has been taken up in various contexts. We outline the model construction
for real subspace and halfspace arrangements and for real stratified manifolds by
G. Gaiffi [14]. Moreover, we give a short account of the study of a graded algebra
associated with any finite lattice in [10], where our combinatorial generalization of
originally geometric notions leads to the construction of an, at first sight, unrelated
geometric counterpart for wonderful models of hyperplane arrangements. We also
note that, more recently, our combinatorial resolutions were studied in the context
of log resolutions of arrangement ideals [1].
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2. Building sets and nested sets of meet-semilattices

2.1. Poset terminology

We recall some notions from the theory of partially ordered sets, and refer to [21,
Ch. 3] for further details. All posets discussed in this paper will be finite. A po-
set L is called a meet-semilattice if any two elements x, y ∈L have a greatest lower
bound, i.e., the set {z ∈L | z ≤x, z ≤ y} has a maximal element, called the meet,
x∧ y, of x and y. Greatest lower bounds of subsets A= {a1, . . . , at} in L we denote
by

∧
A= a1 ∧ . . . ∧ at. In particular, meet-semilattices have a unique minimal

element denoted 0̂. Minimal elements in L\ {0̂} are called atoms in L. Meet-
semilattices share the following property: for any subset A= {a1, . . . , at}⊆L the
set {x∈L |x≥ a for all a∈A} is either empty or it has a unique minimal element,
called the join,

∨
A= a1 ∨ . . . ∨ at, of A. If the meet-semilattice needs to be speci-

fied, we write (
∨

A)L = (a1 ∨ . . . ∨ at)L for the join of A in L. For brevity, we talk
about semilattices throughout the paper, meaning meet-semilattices.

Let P be an arbitrary poset. For x∈P set P≤x = {y ∈P | y≤x}; P<x, and P≥x,
P>x are defined analogously. For subsets G ⊆P with the induced order, we define
G≤x = {y ∈P | y ∈G, y≤x}, and G<x again analogously. For intervals in P we use
the standard notation [x, y] := {z ∈P |x≤ z ≤ y}, [x, y) := {z ∈P |x≤ z <y}, etc.

A poset is called irreducible if it is not a direct product of two other posets, both
consisting of at least two elements. For a poset P with a unique minimal element 0̂,
we call I(P ) = {x∈P | [0̂, x] is irreducible } the set of irreducible elements in P .
In particular, the minimal element 0̂ and all atoms of P are irreducible elements
in P . For x∈P , we call D(x) := max (I(P )≤x) the set of elementary divisors of x
– a term which is explained by the following proposition:

Proposition 2.1. Let P be a poset with a unique minimal element 0̂. For x∈P
there exists a unique finest decomposition of the interval [0̂, x] in P as a direct
product, which is given by an isomorphism ϕel

x :
∏l

j=1 [0̂, yj ]
∼=−→ [0̂, x], with

ϕel
x (0̂, . . . , yj , . . . , 0̂) = yj for j = 1, . . . , l. The factors of this decomposition are

the intervals below the elementary divisors of x: {y1, . . . , yl} = D(x).

Proof. Whenever a poset with a minimal element 0̂ is represented as a direct prod-
uct, all elements which have more than one coordinate different from 0̂ are re-
ducible. Hence, if

∏l
j=1[0̂, yj ]∼= [0̂, x], and the yj are irreducible for j = 1, . . . , l,

then {y1, . . . , yl}= D(x). �

2.2. Building sets

In this subsection we define the notion of building sets of a semilattice and develop
their structure theory.
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Definition 2.2. Let L be a semilattice. A subset G in L\ {0̂} is called a building
set of L if for any x∈L\ {0̂} and maxG≤x = {x1, . . . , xk} there is an isomorphism
of posets

ϕx :
k∏

j=1

[0̂, xj ]
∼=−→ [0̂, x] (2.1)

with ϕx(0̂, . . . , xj , . . . , 0̂) = xj for j = 1, . . . , k. We call F (x) := maxG≤x the set
of factors of x in G.

The next proposition provides several equivalent conditions for a subset of
L\ {0̂} to be a building set.

Proposition 2.3. For a semilattice L and a subset G of L\ {0̂} the following are
equivalent:

(1) G is a building set of L;
(2) G⊇ I(L) \ {0̂}, and for every x∈L\ {0̂} with D(x)= {y1, . . . , yl} the elemen-

tary divisors of x, there exists a partition πx = π1| . . . |πk of [l] with blocks
πt = {i1, . . . , i|πt|} for t = 1, . . . , k, such that the elements in maxG≤x =
{x1, . . . , xk} are of the form

xt = ϕel
x (0̂, . . . , 0̂, yi1 , 0̂, . . . , 0̂, yi2 , 0̂, . . . , 0̂, yi|πt| , 0̂, . . . , 0̂).

Informally speaking, the factors of x in G are products of disjoint sets of
elementary divisors of x.

(3) G generates L\ {0̂} by ∨, and for any x∈L, any {y, y1, . . . , yt} ⊆ maxG≤x,
and z ∈L with z <y, we have G≤y ∩ G≤z∨y1∨···∨yt

= G≤z.
(4) G generates L\ {0̂} by ∨, and for any x∈L, any {y, y1, . . . , yt} ⊆ maxG≤x,

and z ∈L with z <y, the following two conditions are satisfied:

i) G≤y ∩ G≤y1∨···∨yt
= ∅ “disjointness,”

ii) z ∨ y1 ∨ · · · ∨ yt < y ∨ y1 ∨ · · · ∨ yt “necessity.”

Proof. (1)⇒(2): That G contains I(L) \ {0̂} follows directly from the definition of

building sets. We have the following isomorphisms: ϕx :
∏k

j=1 [0̂, xj ]−→ [0̂, x] by
the building set property, and ϕel

xj
:

∏
y∈D(xj)

[0̂, y]−→ [0̂, xj ] for j = 1, . . . , k by

Proposition 2.1. The composition ϕx ◦ (
∏k

j=1 ϕel
xj

) yields the finest decomposition
ϕel

x of [0̂, x]. Thus, D(x)= �k
j=1 D(xj), which gives the partition described in (2).

(2)⇒(1): The decomposition of [0̂, x] into intervals below the elements in
maxG≤x follows from Proposition 2.1 by assembling factors [0̂, yj ] with maximal
elements indexed by elements from the same block of the partition πx into one
factor.

(1)⇒(3): (3) is a direct consequence of [0̂, x] decomposing into a direct product
of the form described in the definition of building sets.
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(3)⇒(4): i) follows by setting z = 0̂ in (3). Equality in ii) implies with (3) that
G≤y = G≤z, in particular, y ∈ G≤z – a contradiction to z < y.

(4)⇒(1): For x ∈ L\ {0̂} and maxG≤x = {x1, . . . , xk} consider the poset map

φ :
k∏

j=1

[0̂, xj ] −→ [0̂, x] , (α1, . . . , αk) �−→ α1 ∨ . . . ∨ αk .

i) φ is surjective: For 0̂ �= y≤x, let maxG≤y = {y1, . . . , yt}. First,
∨t

i=1 yi = y,
since G generates L by ∨. Second, define γj :=

∨
yi∈Sj

yi with Sj := (maxG≤y) ∩
G≤xj

for j = 1, . . . , k. Clearly, γj ∈ [0̂, xj ], and ∪k
j=1Sj = maxG≤y, since G≤y⊆G≤x.

Hence, φ(γ1, . . . , γk) =
∨t

i=1 yi = y.
ii) φ is injective: a) Assume φ(α1, . . . , αk)= φ(β1, . . . , βk) = y �= x. Let

maxG≤y = {y1, . . . , yt}. By induction on the number of elements in [0̂, x] we
can assume that [0̂, y] decomposes as a direct product [0̂, y] ∼= ∏t

i=1 [0̂, yi]. More-
over, the subsets Sj of maxG≤y defined in i) actually partition maxG≤y as fol-
lows from the disjointness property applied to pairwise intersections of the G≤xj

.
Thus, [0̂, y] ∼= ∏k

j=1 [0̂, γj ], with elements γj ∈ [0̂, xj ] as above, and it follows that
αj = βj = γj for j = 1, . . . , k.

b) Assume that φ(α1, . . . , αk)= φ(β1, . . . , βk)= x. By the necessity property it
follows that αj = βj = xj for j = 1, . . . , k. �

Remark 2.4. The definition of building sets and of irreducible elements, as well
as the characterization of building sets in Proposition 2.3 (2), are independent of
the existence of a join operation and can be formulated for any poset with a unique
minimal element.

We gather some important properties of building sets.

Proposition 2.5. For a building set G of L, the following holds:
(1) Let x ∈ L, F (x) = {x1, . . . , xk} the set of factors of x in G, and 0̂ �= y ∈G

with y≤x. Then there exists a unique j ∈{1, . . . , k} such that y≤xj; i.e.,
F (x) = maxG≤x induces a partition of G≤x.

(2) For x∈L and x0 ∈F (x),
∨

(F (x) \ {x0}) <
∨

F (x) = x ,

i.e., each factor of x in G is needed to generate x.
(3) If h1, . . . , hk in G are such that (hi,

∨k
j=1 hj ] ∩ G = ∅ for i = 1, . . . , k, then

F (
∨k

j=1 hj) = {h1, . . . , hk}.

Proof. (1) is a consequence of Proposition 2.3 (4)i), as was noted already in the
proof of (4)⇒(1), part ii) a), in the previous proposition. Taking the full set of
factors and setting z = 0̂ in Proposition 2.3 (4)ii), yields (2). For (3) note that
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{h1, . . . , hk}⊆F (
∨k

j=1 hj) by assumption. If {h1, . . . , hk} were not the complete
set of factors, we would obtain a contradiction to (2). �

Example 2.6. (1) For the boolean lattice Bn of rank n, its atoms form the minimal
building set. As with any other semilattice, the full poset without its minimal
element gives the maximal building set.

In the smallest interesting example, the rank 3 boolean lattice B3, we see that
there are other building sets between these extremal choices: The atoms can be
combined with any other rank 2 element to form a building set. Moreover, atoms
can be combined with the top element to form a building set, and any other subset
of B3 containing the latter is in fact a building set.

(2) For the partition lattice Πn, the minimal building set is given by the 1-block
partitions. Again, the maximal building set is given by the full lattice without its
minimal element. Looking at Π4, we see that we can add any 2-block partition
to the minimal building set, e.g., (12)(34), to obtain building sets other than the
extreme ones.

(3) The lattice Dn of positive integral divisors of a natural number n > 0 ordered
by division relation has the prime powers dividing n as its minimal building set.
Note that this example includes the boolean lattice for any n having no square
divisors, hence there are ample building sets between the extreme choices.

2.3. Nested sets

In this subsection we define the notion of nested subsets of a building set of a semi-
lattice and prove some of their properties.

Definition 2.7. Let L be a semilattice and G a building set of L. A subset N
in G is called nested if, for any set of incomparable elements x1, . . . , xt in N of
cardinality at least two, the join x1 ∨ · · · ∨ xt exists and does not belong to G. The
nested sets in G form an abstract simplicial complex, denoted N (G).

Note that the elements of G are the vertices of the complex of nested sets N (G).
Moreover, the order complex of G is a subcomplex of N (G), since linearly ordered
subsets of G are nested.

Proposition 2.8. For a given semilattice L and a subset N of a building set G
of L, the following are equivalent:

(1) N is nested.
(2) Whenever x1, . . . , xt are noncomparable elements in N , the join x1∨· · ·∨xt

exists, and F (x1 ∨ · · · ∨ xt) = {x1, . . . , xt}.
(3) There exists a chain C ⊆ L, such that N =

⋃
x∈C F (x).

(4) N ∈ Λ, where Λ is the maximal subset of 2G, for which the following three
conditions are satisfied:
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(o) ∅ ∈ Λ, and {g} ∈ Λ, for g ∈ G;
(i) if N ∈ Λ and x ∈ max N , then N<x ∈ Λ;
(ii) if N ∈ Λ, then max N = F (

∨
max N).

Proof. (1)⇒(2): Let N be a nested set, and M = {x1, . . . , xt}⊆N a set of incompa-
rable elements with

∨t
i=1 xi �∈ G. We can assume that for some xj : (xj ,

∨t
i=1 xi]∩

G �= ∅, otherwise the claim follows by Proposition 2.5 (3). Without loss of generality,
we assume that there exists an element y ∈(x1,

∨t
i=1 xi]∩G and that y∈maxG≤∨

M .
Define M ′ := {x1, . . . , xt}∩G≤y = {x1 =xj0 , xj1 , . . . , xjk

} and z :=
∨k

l=0 xjl
. Since

M ′ = {xj0 , xj1 , . . . , xjk
} is nested (it is a subset of N), we have the strict inequality

z < y. Furthermore,

t∨

i=1

xi = z ∨
∨

(M \ M ′) ≤ z ∨
∨

(max G≤∨
M \ {y}) <

t∨

i=1

xi ,

where the first inequality follows from Proposition 2.5 (1) and the second inequality
from Proposition 2.5 (2). We thus arrive at a contradiction, which finishes the
proof.

(2)⇒(1): Obvious.
(2)⇒(3): Let N be a set satisfying condition (2). Fix a particular linear ex-

tension {x1, . . . , xk} on the partial order of N , and define αj := x1 ∨ . . . ∨xj , for
j = 1, . . . , k. By (2) we have F (αj)= max{x1, . . . , xj}, and therefore xj ∈F (αj)
and xj+1 �∈F (αj) for j = 1, . . . , k. Hence, the αj ’s are different and form a chain
C = α1 < α2 < · · · < αk. By construction, N =

⋃
x∈C F (x).

(1), (2)⇒(4): Let N be a nested set, we shall prove that N ∈ Λ by induction
on the size of N :

(1) if |N | = 0, then N ∈ Λ by condition (o);
(2) if |N | ≥ 1, then max N = F (

∨
max N) by condition (2). Furthermore,

since |N<x| < |N |, and N<x is nested (it is a subset of N), N<x ∈ Λ by
induction. Hence N ∈ Λ.

(3)⇒(1): Let C = (α1 < . . . <αk) be a chain in L and N =
⋃

x∈C F (x). Let
N ′ = {x1, . . . , xt}⊆N , t≥ 2, be an antichain in N , and s the maximal index in C
such that N ′ ∩F (αs) �= ∅. In particular, N ′ ∩F (αs) �= {αs} due to |N ′| > 1 and N ′

being an antichain.
Let y ∈N ′ ∩F (αs). If |N ′ ∩F (αs)|> 1,

y <
∨

(N ′ ∩F (αs)) ≤
∨

N ′ ≤ αs ,

where the strict inequality is a consequence of the necessity property for building
sets. Thus,

∨
N ′ �∈ G. If |N ′ ∩F (αs)|= 1, we have y <

∨
N ′ ≤αs, due to N ′ being

an antichain with |N ′|> 1, and again
∨

N ′ �∈ G.
(4)⇒(3): We need the following fact:
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Fact. If there are elements x1, . . . , xt and y1, . . . , yk in L, such that xt > yj for
j = 1, . . . , k, and F (

∨t
i=1 xi)= {x1, . . . , xt}, and F (

∨k
j=1 yj)= {y1, . . . , yk}, then

F (x1 ∨ · · · ∨ xt−1 ∨ y1 ∨ · · · ∨ yk)= {x1, . . . , xt−1, y1, . . . , yk}.

Once the fact above is proved, one can derive (3) as follows: For N ∈ Λ we
shall form a chain C = (α1 < . . . <α|N |) such that N =

⋃|N |
i=1 F (αi). Choose a

linear extension {x1, . . . , xt} of N . Set αt =
∨

max N , αt−1 =
∨

max(N \ {xt}),
αt−2 =

∨
max(N \ {xt, xt−1}), and so on. By (4)(ii), F (αt)= max N . Applying

(4)(i) to xt ∈ max N , and (4)(ii) to N<xt
, we obtain F (

∨
max N<xt

)= max N<xt
.

With the fact above, we conclude that F (αt−1)= max(N \ {xt}), and, using the
same argument iteratively, we arrive to N =

⋃t
i=1 F (αi).

Proof of the fact. Set α := x1 ∨ . . . ∨xt−1 ∨ y1 ∨ . . . ∨ yk. Since α ≤ ∨t
i=1 xi,

the factors of α can be partitioned into groups of elements below the xi for
i= 1, . . . , t, by Proposition 2.5 (1). Since xi ≤α for i= 1, . . . , t−1, we obtain F (α) =
{x1, . . . , xt−1, γ1, . . . , γm} with γj ≤xt for j = 1, . . . , m.

Again using Proposition 2.5 (1), the y1, . . . , yk can be partitioned into groups
below the factors γj for j = 1, . . . ,m. The occurrence of one strict inequality
∨ {yl | yl ≤ γj}< γj for some j ∈{1, . . . , m} yields a contradiction to α =

∨t−1
i=1 xi ∨∨k

j=1 yj =
∨t−1

i=1 xi ∨
∨m

j=1 γj , due to the necessity property of building sets. More-
over, since the yi are factors themselves, joins of more than two of the yi’s are not
elements of G. Thus, yi = γi, for i= 1, . . . , k=m, as claimed. �

Example 2.9. (1) For the boolean lattice Bn with its minimal building set, any
subset of atoms is nested. The nested set complex is hence a simplex on n vertices.
As for any other semilattice with maximal building set, the nested sets are the
totally ordered subsets of the poset, hence the nested set complex is the order
complex of the poset. In the particular case of Bn it is the barycentric subdivision
of a simplex on n vertices. For B3 with building set G = {1, 2, 3, 23} the nested set
complex consists of two triangles, namely {1, 2, 23} and {1, 3, 23}.

(2) For the partition lattice Πn with its minimal building set of 1-block parti-
tions, a subset of such partitions is nested if and only if any two nontrivial blocks
are either contained in one another or disjoint. This is the example which has sug-
gested the terminology of nested sets in the first place, it appeared as the central
combinatorial structure in the paper of Fulton and MacPherson [11] on models for
configuration spaces of smooth complex varieties.

3. Sequences of combinatorial blowups

We introduce the notion of a combinatorial blowup of an element in a semilattice
and prove that the set of semilattices is closed under this operation.
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3.1. Combinatorial blowups

Definition 3.1. For a semilattice L and an element α ∈ L we define a poset Bl αL,
the combinatorial blowup of L at α, as follows:
• elements of Bl αL:

(1) y ∈ L, such that y �≥ α;
(2) [α, y], for y ∈ L, such that y �≥ α and (y ∨ α)L exists

(in particular, [α, 0̂] can be thought of as the result of blowing up α);

• order relations in Bl αL:

(1) y > z in Bl αL if y > z in L;
(2) [α, y] > [α, z] in Bl αL if y > z in L;
(3) [α, y] > z in Bl αL if y ≥ z in L;

where in all three cases y, z �≥ α.

Note that the atoms in Bl αL are the atoms of L together with the element [α, 0̂].
It is easy, albeit tedious, to check that the class of (meet-)semilattices is closed
under combinatorial blowups.

Lemma 3.2. Let L be a semilattice and α ∈ L; then Bl αL is a semilattice.

Proof. The joins in Bl αL are defined by the rule

([α, y] ∨ [α, z])Bl αL = [α, (y ∨ z)L],
([α, y] ∨ z)Bl αL = [α, (y ∨ z)L],

(y ∨ z)Bl αL = (y ∨ z)L,

which is applicable only if (y ∨ z)L exists, otherwise the corresponding joins in
Bl αL do not exist. Also, the first and second formulae are applicable only in the
case (y ∨ z)L �≥ α, otherwise the corresponding joins do not exist. The check of
this is straightforward and is left to the reader. �

Observe that it is possible that (x ∨ y)L exists, while (x ∨ y)Bl αL does not.

3.2. Blowing up building sets

In this subsection we prove that if one combinatorially blows up a building set of
a semilattice in any chosen linear extension order, then one ends up with the face
poset of the simplicial complex of nested sets of this building set. The following
proposition provides the essential step for the proof.
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Proposition 3.3. Let L be a semilattice, G a building set of L, and α∈ maxG.
Then, G̃ = (G \ {α}) ∪ {[α, 0̂]} is a building set of Bl αL. Furthermore, the nested
subsets of G̃ are precisely the nested subsets of G with α replaced by [α, 0̂].

Proof. It is easy to see that G̃ is a building set of Bl αL. Indeed, given x ∈ L\L≥α,
(2.1) is obvious for x ∈ Bl αL, and, if (x ∨ α)L exists, it follows for [α, x] ∈ Bl αL
from the identity

[0̂, [α, x]]Bl αL = [0̂, x]Bl αL × B1 ,

where B1 is the subposet consisting of the two comparable elements 0̂ < [α, 0̂].
Let us now see that the sets of nested subsets of G and G̃ are the same when

replacing α by [α, 0̂].
Let N be a nested set in G, not containing α. For incomparable elements

x1, . . . , xt in N ,
∨t

i=1 xi �≥α, since otherwise we had α ∈ maxG≤∨
xi

=F (
∨t

i=1 xi) =
{x1, . . . , xt} by Proposition 2.8(2). Thus,

∨t
i=1 xi exists in Bl αL and

∨t
i=1 xi �∈ G̃.

Hence, N is nested in G̃. A nested subset in G̃ not containing [α, 0̂] is obviously
nested in G.

Now let N be nested in G containing α, and set Ñ = (N \{α})∪{[α, 0̂]}. Subsets
of incomparable elements in Ñ not containing [α, 0̂] can be dealt with as above.
Thus assume that [α, 0̂], x1, . . . , xt are incomparable in Ñ . Then, x1, . . . , xt are
incomparable in the nested set N , and, as above, we conclude that

∨t
i=1 xi exists

and
∨t

i=1 xi �≥α. Moreover, α ∨ ∨t
i=1 xi exists in L (joins of nested sets always

exist!); thus, [α,
∨t

i=1 xi] = [α, 0̂] ∨ ∨t
i=1 xi exists in Bl αL and is obviously not

contained in G̃. We conclude that Ñ is nested in G̃.
Conversely, let Ñ be nested in G̃ containing [α, 0̂], and set N = (Ñ \ {[α, 0̂]}) ∪

{α}. Again it suffices to consider subsets of incomparable elements α, x1, . . . , xt in
N . With [α, 0̂], x1, . . . , xt incomparable in Ñ , [α, 0̂] ∨ ∨t

i=1 xi = [α,
∨t

i=1 xi] exists
in Bl αL; thus α∨∨t

i=1 xi exists in L. Incomparability implies that α∨∨t
i=1 xi > α,

and thus α ∨ ∨t
i=1 xi �∈ G. We conclude that N is nested in G. �

By iterating the combinatorial blowup described in Proposition 3.3 through all
of G, we obtain the following theorem, which serves as a motivation for the whole
development.

Theorem 3.4. Let L be a semilattice and G a building set of L with some chosen
linear extension: G = {G1, . . . , Gt}, with Gi > Gj implying i < j. Let Bl kL
denote the result of subsequent blowups Bl Gk

(Bl Gk−1(. . . Bl G1L)). Then the final
semilattice Bl tL is equal to the face poset of the simplicial complex N (G).

Proof. The building set Gt of Bl tL that results from iterated application of Propo-
sition 3.3 obviously is the set of atoms A in Bl tL. Every element x ∈ Bl tL is the
join of atoms below it: x =

∨
A≤x. The subset A≤x of Gt is nested, in particular,
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it is the set of factors of x in Bl tL with respect to Gt (Proposition 2.8(2)). Propo-
sition 2.5(2) implies that the interval [0̂, x] in Bl tL is boolean. We conclude that
Bl tL is the face poset of a simplicial complex with faces in one-to-one correspon-
dence with the nested sets in Gt, which in turn correspond to the nested sets in G
by Proposition 3.3. �

4. Instances of combinatorial blowups

4.1. De Concini–Procesi models of subspace arrangements

Let A = {A1, . . . , An} be an arrangement of linear subspaces in complex space C
d.

Much effort has been spent on describing the cohomology of the complement
M(A) = C

d \ ⋃A of such an arrangement and, in particular, on answering the
question whether the cohomology algebra is completely determined by the combi-
natorial data of the arrangement. Here, combinatorial data is understood as the
lattice L(A) of intersections of subspaces of A ordered by reverse inclusion to-
gether with the complex codimensions of the intersections. A major step towards
the solution of this problem (for a complete answer see [3, 4]) was the construction
of smooth models for the complement M(A) by De Concini and Procesi [7] that
allowed for an explicit description of rational models for M(A) following [17]. The
De Concini–Procesi models for arrangements in turn are one instance in a sequence
of model constructions reaching from compactifications of symmetric spaces [5, 6],
over the Fulton–MacPherson compactifications of configuration spaces [11] to the
general framework of wonderful conical compactifications proposed by MacPherson
and Procesi [18].

Given a complex subspace arrangement A in C
d, De Concini and Procesi de-

scribe a smooth irreducible variety Y together with a proper map π : Y −→ C
d

such that π is an isomorphism over M(A), and the complement of the preim-
age of M(A) is a union of irreducible divisors with normal crossings in Y . The
model Y can be constructed by a sequence of blowups of smooth subvarieties that
is prescribed by the stratification of complex space induced by the arrangement.

4.1.1. Building sets for subspace arrangements

In order to enumerate the strata in the intersection stratification of Y given by
the irreducible divisors, De Concini and Procesi introduced the notions of building
sets, nested sets and irreducible elements as follows:

Definition 4.1. ([7, §2]) Let L(A) be the intersection lattice of an arrangement A
of linear subspaces in a finite-dimensional complex vector space. Consider the
lattice L(A)∗ formed by the orthogonal complements of intersections ordered by
inclusion.
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(1) For U ∈L(A)∗, U = ⊕k
i=1 Ui with Ui ∈L(A)∗, is called a decomposition

of U if for any V ⊆U , V ∈ L(A)∗, V = ⊕k
i=1 (Ui ∩ V ) and Ui ∩ V ∈L(A)∗

for i = 1, . . . , k.
(2) Call U ∈L(A)∗ \ {0̂} irreducible if it does not admit a nontrivial decom-

position.
(3) G ⊆L(A)∗ \ {0̂} is called a building set for A if for any U ∈L(A)∗ and

G1, . . . , Gk maximal in G below U , U = ⊕k
i=1 Gi is a decomposition (the

G-decomposition) of U .
(4) A subset S ⊆G is called nested if for any set of noncomparable elements

U1, . . . , Uk in S, U = ⊕k
i=1 Ui is the G-decomposition of U .

Note that L(A)∗ coincides with L(A) as abstract lattices. We will therefore talk
about irreducible elements, building sets and nested sets in L(A) without explicitly
referring to the dual setting of the preceding definition.

The notions of Definition 4.1 are in part based on the earlier notions intro-
duced by Fulton and MacPherson in [11] to study compactifications of configura-
tion spaces. Our terminology is naturally adopted from [11, 7]. Building sets and
nested sets in the sense of De Concini and Procesi are building and nested sets
for the intersection lattices of subspace arrangements in our combinatorial sense
(see Proposition 4.5 (1) below). However, there are differences. The opposite is
not true: A combinatorial building set for the intersection lattice of a subspace
arrangement is not necessarily a building set for this arrangement in the sense of
De Concini and Procesi; neither are irreducible elements in the sense of De Concini
and Procesi irreducible in our sense.

Example 4.2. (Combinatorial versus De Concini–Procesi building sets) Consider
the following arrangement A of 3 subspaces in C

4:

A1 : z4 = 0 , A2 : z1 = z2 = 0 , A3 : z1 = z3 = 0 .

The intersection lattice L(A) is a boolean algebra on 3 elements. Combinatorial
building sets of this lattice have been discussed in Example 2.6, in particular, the
set of atoms {A1, A2, A3}⊆L(A) is the minimal combinatorial building set. How-
ever, any building set for A in the sense of De Concini and Procesi necessarily
includes the intersection A2 ∩A3, since its orthogonal complement does not de-
compose in L(A)∗. The minimal building set for A, i.e., the set of irreducibles
for A, in the sense of De Concini and Procesi is {A1, A2, A3, A2 ∩A3}. Any other
building set contains this minimal building set and the total intersection

⋂A= 0.

The main difference between our combinatorial setup and the original context
of De Concini–Procesi model constructions can be formulated in the following way:
our constructions are order-theoretically canonical for a given semilattice. The set
of combinatorial building sets, in particular the set of irreducible elements, depends
only on the semilattice itself and not on the geometry of the subspace arrangement
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which it encodes. See Proposition 4.5 for a complete explanation.

4.1.2. Local subspace arrangements

In order to trace the De Concini–Procesi construction step by step we need the
more general notion of a local subspace arrangement.

Definition 4.3. Let M be a smooth complex d-dimensional manifold and A a union
of finitely many smooth complex submanifolds of M such that all nonempty inter-
sections of submanifolds in A are connected smooth complex submanifolds. A is
called a local subspace arrangement if for any x ∈ A there exists an open set
N in M with x∈N , a subspace arrangement Ã in C

d, and a biholomorphic map
φ : N → C

d, such that φ(N ∩ A) = Ã.

Given a subspace arrangement A, the initial ambient space C
d of M(A) carries

a natural stratification by the subspaces of A and their intersections, the poset of
strata being the intersection lattice L(A) of the arrangement. For a local subspace
arrangement A = {A1, . . . , An} in M we again consider the stratification of M by
all possible intersections of the Ai’s, just like in the global case. The poset of strata
is also denoted by L(A) and is called the intersection semilattice (it is a lattice if
the intersection of all maximal strata is nonempty).

Definition 4.4. Let A be a local subspace arrangement and L(A) its intersection
semilattice. For U ∈ L(A), U1, . . . , Uk ∈ L(A) are said to form a decomposition
of U if for any x ∈ U there exists an open set N with x∈N and a biholomorphic
map φ : N → C

d, such that φ(N ∩ U1), . . . , φ(N ∩ Uk) form a decomposition of
φ(N ∩ U) in the sense of Definition 4.1(1).

As in the global case, G ⊆ L(A) is a building set for A if for any U ∈ L(A),
the set of strata maxG≤U gives a decomposition of U .

We shall refer to these building sets as geometric building sets. The differ-
ence between combinatorial building sets and geometric ones is contained in the
dimension function as is explained in the following proposition.

Proposition 4.5. Let A be a local subspace arrangement with intersection semi-
lattice L(A).

(1) If G ⊆ L(A) is a geometric building set of A, then it is a combinatorial
building set.

(2) If G ⊆ L(A) is a combinatorial building set of L(A), and for any x ∈ L(A)
the sum of codimensions of its factors is equal to the codimension of x, then
G is a geometric building set.

Proof. In both cases it is enough to consider the case when A is a subspace ar-
rangement.
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(1) Consider G as a subset of L(A)∗, then, for U ∈G, the isomorphism ϕU

requested in Definition 2.2 is given by taking direct sums:

ϕU :
k∏

j=1

[0̂, Gj ]
⊕k

j=1−→ [0̂, U ] ,

where G1, . . . , Gk are maximal in G below U .
(2) For U ∈ L(A)∗, the set {U1, . . . , Uk} = maxG≤U gives a decomposition of

U because:

a) By the definition of L(A)∗ and the definition of combinatorial building sets,
we have U = span(U1, . . . , Uk), and, since

∑k
i=1 dim Ui = dim U , we have

U =
⊕k

i=1 Ui;
b) for any V ⊆ U ,

⊕k
i=1(Ui ∩ V ) ⊆ V = span(U1 ∧ V, . . . , Uk ∧ V ) ⊆

⊕k
i=1(Ui ∩ V ), where “∧” denotes the meet operation in L(A)∗, hence

V =
⊕k

i=1(Ui ∩ V ). �

4.1.3. Intersection stratification of local arrangements after blowup

Let a space X be given with an intersection stratification induced by a local
subspace arrangement, and let G be a stratum in X. In the blowup of X at G,
Bl GX, we find the following maximal strata:

• maximal strata in X that do not intersect with G,
• blowups of maximal strata V at G∩V , Bl G∩V V , where V is maximal in X

and intersects G,
• the exceptional divisor G̃ replacing G.

We consider the intersection stratification of Bl GX induced by these maximal
strata. We will later see (proof of Proposition 4.7) that in case G is maximal in
a building set for the local arrangement in X, then the union of maximal strata
in Bl GX is again a local arrangement with induced intersection stratification. In
general, this is not the case, see Example 4.6

For ease of notation, let us agree here that formally blowing up an empty (non-
existing) stratum has no effect on the space. We think about a stratum Y in X,
intersection of all maximal strata V1, . . . , Vt that contain Y , as being replaced by
the intersection of corresponding maximal strata in Bl GX:

Bl G∩V1V1 ∩ . . . ∩ Bl G∩Vt
Vt , (4.1)

(recall that Bl G∩Vj
Vj =Vj for G∩Vj = ∅). The intersection (4.1) being empty

means that the stratum Y vanishes under blowup of G. For notational conve-
nience, we most often retain names of strata under blowups, thereby referring to
the replacement of strata described above.
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Example 4.6. (Local subspace arrangements are not closed under blowup) We
give an example which shows that blowing up a stratum in a local subspace arrange-
ment does not necessarily result again in a local subspace arrangement. Consider
the following arrangement of 2 planes and 1 line in C

3:

A1 : y − z = 0 , A2 : y + z = 0 , L : x = y = 0 .

After blowing up L, the planes A1 and A2 are replaced by complex line bundles
over CP1, which have in common their zero section Z and a complex line Y ; L
is replaced by a direct product of C and CP1, which intersects both line bundles
in Z. The new maximal strata fail to form a local subspace arrangement in the
point Z ∩ Y .

4.1.4. Tracing incidence structure during arrangement model construc-
tion

We now give a more detailed description of the model construction by De
Concini and Procesi via successive blowups, and then proceed with linking our
notion of combinatorial blowups to the context of arrangement models.

Let A be a complex subspace arrangement, G ⊆L(A) a geometric building set
for A, and {G1, . . . , Gt} some linear extension of the partial containment order on
associated strata in C

d such that Gk ⊃Gl implies l < k. The De Concini–Procesi
model Y = YG of M(A) is the result of blowing up the strata indexed by elements
of G in the given order. Note that the linear order was chosen so that at each step
the stratum which is to be blown up does not contain any other stratum indexed by
an element of G. At each step we consider intersection stratifications as described
above, and we denote the poset of strata after blowup of Gi with LG

i (A). For the
case of a stratum Gi being empty after previous blowups, remember our agreement
of considering blowups of ∅ as having no effect on a space. The later Proposition 4.7
however shows that strata indexed by elements in G do not disappear during the
sequence of blowups.

Let us remark that the combinatorial data of the initial stratification, i.e., of the
arrangement, prescribes much of the geometry of YG : the complement YG \M(A) is
a union of smooth irreducible divisors indexed by elements of G, and these divisors
intersect if and only if the set of indices is nested in G [7, Thm 3.2].

Proposition 4.7. Let A be an arrangement of complex subspaces, G a building
set for A in the sense of De Concini and Procesi, and {G1, . . . , Gt} some linear
extension of the partial containment order on associated strata as described above.
Let Bl Gi (A) denote the geometric result of successively blowing up strata G1, . . . , Gi,
for 1≤ i≤ t. Then,

(1) the poset of strata LG
i (A) of Bl Gi (A) can be described as the result of a

sequence of combinatorial blowups of the intersection lattice L=L(A):

LG
i (A) = Bl i(L) , for 1≤ i≤ t ,
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(Recall that Bl i(L) = Bl Gi
(Bl Gi−1(. . . Bl G1L)) for 1≤ i≤ t.)

(2) the union of maximal strata AG
i in Bl Gi (A) is a local subspace arrangement,

with G in LG
i (A) being a building set for AG

i in the sense of Definition 4.4.
(Recall that G here refers to the preimages of the original strata in G ⊆L(A)
under the sequence of blowups.)

Proof. We proceed by induction on the number of blowups. The induction start is
obvious since the lattice of strata LG

0 (A) of the initial stratification of C
d coincides

with the intersection lattice L(A) = Bl 0(L) of the arrangement A. The union of
maximal strata is the arrangement A itself with its given building set G.

Assume that LG
i−1(A) = Bl i−1(L) for some 1≤ i≤ t, the union of maximal strata

AG
i−1 in Bl Gi−1(A) being a local arrangement, and G a building set for LG

i−1(A). Let
G= Gi be the next stratum to be blown up. First, we proceed in 4 steps to show
that LG

i (A) = Bl i(L). In 2 further steps we then verify the claims in (2).
Step 1: Assign strata of Bl Gi (A) to elements in Bl i(L).
We distinguish two types of elements in Bl i(L):

Type I : Y with Y ∈Bl i−1(L) andY �≥ G ,
Type II : [G,Y ] with Y ∈Bl i−1(L) , Y �≥ G ,

and Y ∨G exists in Bl i−1(L) .

To Y ∈Bl i(L) of type I, assign Bl G∩Y Y (recall that blowing up an empty stratum
does not change the space). Note that dim Bl G∩Y Y = dim Y .

To [G,Y ]∈Bl i(L) of type II, assign (Bl G∩Y Y ) ∩ G̃, where G̃ denotes the
exceptional divisor that replaces G in Bl Gi (A). This description comprises G̃ being
assigned to [G, 0̂]. Note that dim(Bl G∩Y Y ) ∩ G̃ = dimY − 1.

Step 2: Reverse inclusion order on the assigned spaces coincides with the partial
order on Bl i(L).

(1) X,Y ∈Bl i(L), both of type I:

X ≤Bl i(L) Y ⇔ X ≤Bl i−1(L) Y ⇔ X ⊇Bl Gi−1(A) Y ⇔ Bl G∩XX ⊇ Bl G∩Y Y ,

where “⇐” in the last equivalence can be seen by first noting that Y \ (G∩Y ) ⊆
X \ (G∩X), and then comparing points in the exceptional divisors.

(2) X, [G,Y ]∈Bl i(L), X of type I, [G,Y ] of type II:
As above we conclude

X ≤Bl i(L) [G,Y ] ⇔ X ≤Bl i−1(L) Y

⇔ X ⊇Bl Gi−1(A) Y ⇒ Bl G∩XX ⊇ Bl G∩Y Y ∩ G̃ .

To prove the converse is rather subtle. Note first that G∩Y ⊆ G∩X. Assume
that G strictly contains G∩X; then both G∩X and G∩Y are not in the building
set due to the linear order chosen on G, and G is a factor of both G∩X and G∩Y .
Let F (G∩X)= {G,G1, . . . , Gk}, F (G∩Y )= {G,H1, . . . , Ht}. X written as a join
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of elements in Bl i−1(L) below the factors of G∩X reads

X = gX ∨ Z1 ∨ . . . ∨ Zk

for some gX ∈ [0̂, G], Zi ∈ [0̂, Gi] for i= 1, . . . , k. If Zi <Gi for some i∈{1, . . . , k},
we have

G ∨ X = G ∨ (gX ∨ Z1 ∨ . . . ∨ Zi ∨ . . . ∨ Zk)
≤ G ∨ (gX ∨ G1 ∨ . . . ∨ Zi ∨ . . . ∨ Gk)
< G ∨ G1 ∨ . . . ∨ Gk = G ∨ X ,

by the “necessity” property of Proposition 2.3(4), yielding a contradiction. Hence,

X = gX ∨ G1 ∨ . . . ∨ Gk ,

and similarly, Y = gY ∨ H1 ∨ . . . ∨ Ht for some gY ∈ [0̂, G].
For each j ∈{1, . . . , k} there exists a unique ij ∈{1, . . . , t} such that Gj ≤ Hij

by Proposition 2.5(1). Thus,
∨

Gi <
∨

Hj , and, for showing that X ≤ Y , it is
enough to see that gX ≤ gY .

We show that in an open neighborhood of any point y ∈G∩Y , gY ⊆ gX . This
yields our claim since strata in Bl Gi−1(A) have pairwise transversal intersections:
if they coincide locally, they must coincide globally. With AG

i−1 being a local ar-
rangement, there exists an open neighborhood of y ∈G∩Y where the stratification
is biholomorphic to a stratification induced by a subspace arrangement. We tacitly
work in the arrangement setting, using that (Bl i−1(L))≤G∨Y is the intersection
lattice of a product arrangement. The G-decomposition of (G ∨ Y )⊥ described in
Definition 4.4 yields (when transferred to the primal setting):

gY = span(G,Y ) .

Analogously, gX = span(G,X).
In the linear setting we are concerned with, we interpret points in the exceptional

divisor of a blowup as follows:

Bl G∩Y Y ∩ G̃ = {(a, span(p,G ∩ Y )) | a ∈ G ∩ Y, p ∈ Y \ (G ∩ Y )} . (4.2)

In terms of this description, the inclusion map Bl G∩Y Y ∩ G̃ ↪→ Bl G(Bl Gi−1(A))
reads

(a, span(p,G ∩ Y )) �−→ (a, span(p,G)) .

Therefore, Bl G∩Y Y ∩ G̃ being contained in Bl G∩XX ⊆Bl G(Bl Gi−1(A)) means that
for (a, span(p,G ∩ Y )) ∈ Bl G∩Y Y ∩ G̃ there exists q ∈X \ (G ∩ X) such that
span(p,G) = span(q,G). In particular, span(Y,G)⊆ span(X,G), which by our
previous arguments implies that Y ⊆X.

We assumed above that G⊃G∩X. If G∩X coincides with G, i.e., X con-
tains G, then gX = X and a similar reasoning applies to see that Y ⊆X. Similarly,
for G∩X = G∩Y = G.
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(3) [G,X], [G,Y ]∈Bl i(L), both of type II:

[G,X] ≤Bl i(L) [G,Y ] ⇔ X ≤Bl i−1(L) Y

⇔ X ⊇Bl Gi−1(A) Y ⇔ Bl G∩XX ∩ G̃ ⊇ Bl G∩Y Y ∩ G̃ ,

where “⇐” follows from (2) and Bl G∩XX ⊇Bl G∩XX ∩ G̃⊇Bl G∩Y Y ∩ G̃.
Step 3: Each of the assigned spaces is the intersection of maximal strata

in Bl Li (A).
It is enough to show that spaces assigned to elements of type I in Bl i(L) are

intersections of new maximal strata. Those associated to elements of type II then
are intersections as well by definition.

Let Y ∈Bl i(L), Y �≥G, and Y = ∩t
i=1 Vi with V1, . . . , Vt the maximal strata

in Bl Gi−1(A) containing Y . We claim that

Bl G∩Y Y =
t⋂

i=1

Bl G∩Vi
Vi . (4.3)

For the inclusion “⊆” note that Bl G∩Y Y ⊆Bl G∩Vi
Vi is a direct consequence of Y ⊆Vi

as discussed in Step 2 (1).
For the reverse inclusion we need the following identity:

t∨

i=1

(G ∧ Vi) = G ∧ Y . (4.4)

This identity holds in any semilattice without referring to G being an element of
the building set.

Let α ∈ ∩t
i=1 Bl G∩Vi

Vi. In case α ∈ ∩t
i=1 Vi \ (G ∩ Vi), we conclude that

α∈Y \ (G∩Y ). We thus assume that α is contained in the intersection of excep-
tional divisors G̃∩Vi, i = 1, . . . , t. We again switch to local considerations in the
neighborhood of a point y ∈G∩Y , using that it carries a stratification biholomor-
phic to an arrangement stratification.

Using the description (4.2) of points in exceptional divisors that are created by
blowups in the arrangement setting, α∈ ∩t

i=1 G̃∩Vi ⊆ ∩t
i=1 Bl G∩Vi

Vi means that
there exist a∈ ∩t

i=1 (G∩Vi), and pi ∈Vi \ (G∩Vi) for i = 1, . . . , t, with

α = (a, span(pi, G∩Vi)) ∈ Bl G∩Vi
Vi .

In particular, span(pi, G) = span(pj , G) for 1≤ i, j ≤ t. Thus,

span(pj , G) ⊆
t⋂

i=1

span(Vi, G) = span(Y,G)

using the identity (4.4). We conclude that there exists y ∈Y \ (G∩Y ) such that
span(y,G) = span(pj , G) for all j ∈{1, . . . , k}, hence

α = (a, span(y,G∩Y )) ∈ Bl G∩Y Y .



Vol. 10 (2004) Incidence combinatorics of resolutions 55

Though we are for the moment not concerned with the case of Y ⊆G, we note
for later reference that (4.3) remains true, with Bl Y Y = ∅ meaning that the inter-
section on the right-hand side is empty. Following the proof of the inclusion “⊇”
in (4.3) for G∩Y =Y , we first find that the intersection of blowups can only contain
points in the exceptional divisors. Assuming α∈ ∩t

i=1 G̃∩Vi we arrive to a con-
tradiction when concluding that span(pj , G)⊆ ∩t

i=1 span(Vi, G) = span(Y,G)= G
for j = 1, . . . , t.

Step 4: Any intersection of maximal strata in Bl Gi (A) occurs as an assigned
space.

Every intersection involving the exceptional divisor G̃ occurs if we can show
that all other intersections occur (intersections that additionally involve G̃ then
are assigned to corresponding elements of type II).

Consider W =
⋂t

i=1 Bl G∩Vi
Vi, where the Vi are maximal strata in Bl Gi−1(A);

recall here that a blowup in an empty stratum does not alter the space. We
can assume that ∩t

i=1 Vi �= ∅, otherwise the intersection W were empty. With the
identity (4.3) in Step 3 we conclude that either W = ∅ (in case ∩t

i=1 Vi ⊆G) or
W = Bl G∩⋂t

i=1 Vi
∩t

i=1 Vi, in which case it is assigned to the element ∩t
i=1 Vi in

Bl i(L).
Step 5: AG

i is a local subspace arrangement in Bl Gi (A).
It follows from the description (4.3) of strata in Bl Gi (A) that all intersections

of maximal strata are connected and smooth. It remains to show that AG
i locally

looks like a subspace arrangement. Let y ∈AG
i . We can assume that y lies in the

exceptional divisor G̃. Let x ∈ G⊆AG
i−1 be the image of y under the blowdown

map.
We first give a local description around x in AG

i−1. By induction hypothesis,
there exists a neighborhood N of x, and an arrangement of linear subspaces B
in C

n such that the pair (N,AG
i−1 ∩N) is biholomorphic to the pair (Cn,B). We

can assume that under this biholomorphic map, x is mapped to the origin. Let
T =

⋂
B∈B B and note that G∩N is mapped to some subspace Γ in B.

With G being maximal in the building set for AG
i−1, B/T is a product arrange-

ment with one of the factors being an arrangement in Γ/T . More precisely, there
exists a subspace Γ′ ⊆C

n, and two subspace arrangements, C in Γ/T and C′ in
Γ′/T , such that

(1) Γ/T ⊕ Γ′/T ⊕ T = C
n,

(2) B = {A ⊕ Γ′/T ⊕ T |A∈C} ∪ {Γ/T ⊕ A′ ⊕ T |A′ ∈C′}.
Blowing up G in Bl Gi−1(A) locally corresponds to blowing up Γ in C

n. Let t be
the point on the special divisor Γ̃ corresponding to y ∈ G̃; thus t maps to the origin
in C

n under the blowdown map. A neighborhood of t in Bl ΓC
n is an n-dimensional

open ball which can be parameterized as a direct sum

M ⊕ M ′ ⊕ I ⊕ T .

Here, M is an open ball around 0 in Γ/T , M ′ is an open ball on the unit sphere in
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Γ′/T around the point of intersection with the line 〈p〉 in Γ′/T that defines t as a
point in the exceptional divisor, t = (0, span(p,Γ)) ∈ Γ̃ (compare (4.2)), and I an
open unit ball in C.

The maximal strata in this neighborhood are the following:
• the hyperplane M ⊕ M ′ ⊕ {0} ⊕ T , as the exceptional divisor,
• (M ∩ A) ⊕ M ′ ⊕ I ⊕ T , replacing A ⊕ Γ′/T ⊕ T after blowup,
• M ⊕ (M ′ ∩A′) ⊕ I ⊕ T , replacing Γ/T ⊕ A′ ⊕ T after blowup for A′ �= 0.

This proves that around t in Bl ΓC
n we have the structure of a local subspace

arrangement, which in turn shows the local arrangement property around y in AG
i .

Step 6: G is a building set for AG
i in the sense of Definition 4.4.

G is a combinatorial building set by Proposition 3.3. Complementing this with
the dimension information about the strata, we conclude, by Proposition 4.5(2),
that G is a geometric building set. �

4.2. Simplicial resolutions of toric varieties

The study of toric varieties has proved to be a field of fruitful interplay between al-
gebraic and convex geometry: toric varieties are determined by rational polyhedral
fans, and many of their algebraic geometric properties are reflected by combinato-
rial properties of their defining fans.

We recall one such correspondence – between subdivisions of fans and special
toric morphisms – and show that so-called stellar subdivisions are instances of
combinatorial blowups. This allows us to apply our Main Theorem in the present
context: Given a polyhedral fan, we specify a class of simplicial subdivisions,
and, interpreting our notions of building sets and nested sets, we describe the
incidence combinatorics of the subdivisions in terms of the combinatorics of the
initial fan. For background material on toric varieties we refer to the standard
sources [2, 20, 12, 9].

Let XΣ be a toric variety defined by a rational polyhedral fan Σ. Any subdivi-
sion of Σ gives rise to a proper, birational toric morphism between the associated
toric varieties (cf [2, 5.5.1]). In particular, simplicial subdivisions yield toric mor-
phisms from quasi-smooth toric varieties to the initial variety – so-called simplicial
resolutions. Since quasi-smooth toric varieties are rational homology manifolds,
such morphisms can replace smooth resolutions for (co)homological considerations.

We define a particular, elementary, type of subdivisions:

Definition 4.8. Let Σ = {σ}σ∈Σ ⊆R
d be a polyhedral fan, i.e., a collection of

closed polyhedral cones σ in R
d such that σ ∩ τ is a cone in Σ for any σ, τ ∈Σ.

Let cone(x) be a ray in R
d generated by x∈ relint τ for some τ ∈Σ. The stellar

subdivision sd(Σ, x) of Σ in x is given by the collection of cones

(Σ \ star(τ,Σ) ) ∪ { cone(x, ρ) | ρ ⊆ σ for some σ ∈ star(τ,Σ) } ,
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where star(τ,Σ)= {σ ∈Σ | τ ⊆σ}, and cone(x, ρ) the closed polyhedral cone spanned
by ρ and x. If only concerned with the combinatorics of the subdivided fan, we also
talk about stellar subdivision of Σ in τ , sd(Σ, τ), meaning any stellar subdivision
in x for x∈ relint τ .

Proposition 4.9. Let F(Σ) be the face poset of a polyhedral fan Σ, i.e., the set
of closed cones in Σ ordered by inclusion, together with the zero cone {0} as a
minimal element. For τ ∈Σ, the face poset of the stellar subdivision of Σ in τ can
be described as the combinatorial blowup of F(Σ) at τ :

F(sd(Σ, τ)) = Bl τF(Σ) .

Proof. Removing star(τ,Σ) from Σ corresponds to removing F(Σ)≥τ from F(Σ),
adding cones as described in Definition 4.8 corresponds to extending F(Σ) \F(Σ)≥τ

by elements [τ, ρ] for ρ∈F(Σ), ρ⊆σ for some σ ∈ star(τ,Σ). The comparison of
order relations is straightforward. �

We apply our Main Theorem to the present context.

Theorem 4.10. Let Σ be a polyhedral fan in R
d with face poset F(Σ). Let G ⊆F(Σ)

be a building set of F(Σ) in the sense of Definition 2.2, N (G) the complex of nested
sets in G (cf. Definition 2.7). Then, the consecutive application of stellar subdivi-
sions in every cone G∈G in a nonincreasing order yields a simplicial subdivision
of Σ with face poset equal to the face poset of N (G).

As examples of building sets for face lattices of polyhedral fans let us mention:
(1) the full set of faces, with the corresponding complex of nested sets being

the order complex of F(Σ) (stellar subdivision in all cones results in the
barycentric subdivision of the fan);

(2) the set of rays together with the non-simplicial faces of Σ;
(3) the set of irreducible elements in F(Σ): the set of rays together with all

faces of Σ that are not products of some of their proper faces.

Remark 4.11. For a smooth toric variety XΣ, the union of closed codimension 1
torus orbits is a local subspace arrangement, in particular, the codimension 1 orbits
form a divisor with normal crossings, [12, p. 100]. The intersection stratification
of this local arrangement coincides with the torus orbit stratification of the toric
variety. For any face τ in the defining fan Σ, the torus orbit Oτ together with
all orbits corresponding to rays in Σ form a geometric building set. Our proof
in 4.1.4. applies in this context with Oτ playing the role of G. We conclude that
under blowup of XΣ in the closed torus orbit Oτ , the incidence combinatorics of
torus orbits changes exactly in the way described by a stellar subdivision of Σ in τ .
This is the combinatorial part of the well-known fact that in the smooth case, the
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blowup of XΣ in a torus orbit Oτ corresponds to a regular stellar subdivision of
the fan Σ in τ [19].

5. An outlook

5.1. Models for real subspace arrangements and stratified manifolds

In the spirit of the De Concini–Procesi wonderful model construction for subspace
arrangements, Gaiffi [14] presents a model construction for the complement of
arrangements of real linear subspaces modulo R

+: Given a central subspace ar-
rangement A in some Euclidean vector space V , denote by M̂(A) the quotient of
its complement by R

+. Denote the unit sphere in V by S(V ), and consider, for a
given (geometric) building set G in L(A), the embedding

ρ : M̂(A) −→ S(V ) ×
∏

G∈G
G ∩ S(V ) .

The map is obtained by composing the natural section M̂(A) → M(A), [x] �→ x
|x| ,

with a projection onto each factor of the right-hand side product. Denote the clo-
sure of this map by YG . YG is shown to be a manifold with corners, which enjoys
much of the properties familiar from the projective setting: the boundary of YG
is stratified by codimension 1 manifolds with corners indexed with building set
elements and having nonempty intersection whenever the index set is nested with
respect to G. The setup allows for a straightforward generalization to mixed sub-
space and halfspace arrangements motivated by compactifications of configuration
spaces in work of Kontsevich [15]. A step aside from classical (linear) arrangements,
our combinatorial framework still applies is this context.

In a second part of his paper, Gaiffi extends the previous construction to coni-
cally stratified manifolds with corners. Replacing the explicit construction of tak-
ing the closure of an embedding into a product of spheres as above, he describes
a sequence of “real blowups” in the sense of Kuperberg and Thurston [16]. The
sequence is prescribed by the choice of a subset of strata in the original manifold
that is a combinatorial building set in our sense. The resulting space is a manifold
with corners with its boundary stratified by codimension 1 manifolds with corners
that are indexed by the building set elements, and intersections being nonempty if
and only if the corresponding index sets are nested.

5.2. A graded algebra associated with a finite lattice

In a joint paper of Yuzvinsky and the first author [10], we start out from the
combinatorial notions of building sets and nested sets given in the present paper
and define a commutative graded algebra in purely combinatorial terms:
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Definition 5.1. For a finite lattice L, A its set of atoms, and G a combinatorial
building set in L, define the algebra D(L,G) as the quotient of a polynomial algebra
over Z with generators in 1-1 correspondence with the elements of G:

D(L,G) := Z [{xG}G∈G ]
/
I ,

where the ideal of relations I is generated by
t∏

i=1

xGi
, for {G1, . . . , Gt} not nested ,

∑

G≥H

xG , for H ∈ A .

For L the intersection lattice of an arrangement of complex hyperplanes A and G
its minimal building set, this algebra was shown to be isomorphic to the integer
cohomology algebra of the compact wonderful arrangement model in [8, 1.1]. We
show in [10] that the algebra in fact is isomorphic to the cohomology algebra of the
arrangement model for any choice of a building set in the intersection lattice.

Going beyond the arrangement context, we can provide yet another geomet-
ric interpretation of the algebras D(L,G): For an arbitrary atomic lattice and a
given combinatorial building set we construct a smooth, non-compact toric variety
XΣ(L,G) and show that its Chow ring is isomorphic to the algebra D(L,G).

In a sense this is a prototype result of what we had hoped for when working on
our combinatorial framework: to provide the outset for going beyond the geometric
context of resolutions and yet get back to it in a different, elucidating, and other
than via the abstract combinatorial detour, seemingly unrelated way.
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