Evolving Structures in Mathematics

Seminar at Charles University, Prague Tomas Mikolov, 2019

The Goal

Certain mathematical structures, such as cellular automata, can apparently develop complex patterns when starting from simple conditions.

What if life, intelligence, culture, languages all arise from a simple system, and the complexity we observe is only illusionary?

In this seminar, we aim to understand better the concept of evolution in mathematical structures.

Example: L-system

Example: Mandelbrot's fractals

Seminar Overview

- Computing Machinery and Intelligence, A. Turing
- Society of Mind, Marvin Minsky
- The Quark and The Jaguar, Murray Gell-Mann
- L-systems: Mathematical Models for Cellular Interactions in Development, A. Lindenmayer
- Fractals: The fractal geometry of nature, B. Mandelbrot
- Von Neumann's Self-Reproducing Automata, A. W. Burks
- Studying Artificial Life with Cellular Automata, C. G. Langton
- Genetic Algorithms, J. Holland
- Neuroevolution
- Proving Darwin, Gregory Chaitin

Today's talk and discussion

On Creativity, I. Asimov: to help set the style of the seminar

Computing Machinery and Intelligence, A. Turing: classic paper on AI where evolution is discussed

On Creativity

 many great new ideas are obvious in the hindsight, but are rejected at first: don't be afraid to ask "stupid questions"

• to create novel ideas, we may need diverse backgrounds and experiences

• it takes a lot of time to develop simple and general ideas, and we should not be worried if the first ideas are messy and incomplete

Computing Machinery and Intelligence, A. Turing

• Imitation game

• Turing's opinions on how to develop "intelligent machines"

• Turing machine, halting problem and how do these relate to evolution

Imitation game

• replaces question "Can machines think?" with "Can we construct machine that acts as an intelligent person?"

• Imitation game: a committee of experts is supposed to decide if it communicates with a machine or a person

 besides some loopholes (naive experts, limited communication) Turing test remains unsolved

Imitation game objections

- Theological objection: missing soul
- "Heads in the Sand": better if machines cannot be intelligent
- Mathematical Objection: Halting problem shows limitations of machines
- Missing consciousness
- Various disabilities: missing sense of humour, make mistakes, ...
- Ada Lovelace's objection: "The Analytical Engine has no pretensions to originate anything. It can do whatever we know how to order it to perform"

Learning machines

• Can the machine generate novel ideas?

• How much information can the brain hold? Turing's estimate: 10^9 bits

Turing's idea of the solution to AI

"At my present rate of working I produce about a thousand digits of programme a day, so that about sixty workers, working steadily through the fifty years might accomplish the job, if nothing went into the wastepaper basket."

-- it appears Turing did think the intelligent machine could be all programmed manually

Second idea: Child machine

• instead of programming the AI machine that can play the game, one could program a Child machine that can learn

• the complexity of programming is substantially lower, and the game can be played be the child machine after "education period"

• "Presumably the child brain is something like a notebook as one buys it from the stationer's. Rather little mechanism, and lots of blank sheets."

Evolution of the child machine

"Structure of the child machine = hereditary material

Changes of the child machine = mutation,

Natural selection = judgment of the experimenter"

Reinforcement learning and language channels

- Turing discusses rewards & punishments for speeding up the learning beyond random mutations
- Communication through language seems to be crucial for fast learning without excessive need for punishments

"... I have done some experiments with one such child machine, and succeeded in teaching it a few things, but the teaching method was too unorthodox for the experiment to be considered really successful."

Further discussion

• Turing machine, Turing completeness

• Halting problem