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Definition

Cellular automaton (CA)

A mathematical model composed of elementary components (cells)
that are updated in discrete time steps according to local rules.
The cells can take k possible values (states).

Although very simples, cellular automata exhibit very interesting
and unusual properties.
CAs are defined by a local transition table.

1D Automaton:

2D Automaton:
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Wolfram’s classification

Wolfram has studied extensively the 1D elementary CA and
created a classification of the 256 possible rules into 4 classes.

Class 1 Fixed homogeneous state is reached

Class 2 A pattern of periodic regions is produced

Class 3 A chaotic aperiodic pattern is produced

Class 4 Complex localized structures are generated
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(a) Rule 8 (b) Rule 253
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Wolfram’s classification

Wolfram has studied extensively the 1D elementary CA and
created a classification of the 256 possible rules into 4 classes.

Class 1 Fixed homogeneous state is reached

Class 2 A pattern of periodic regions is produced

Class 3 A chaotic aperiodic pattern is produced

Class 4 Complex localized structures are generated
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(a) Rule 4 (b) Rule 37
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Wolfram’s classification

Wolfram has studied extensively the 1D elementary CA and
created a classification of the 256 possible rules into 4 classes.

Class 1 Fixed homogeneous state is reached

Class 2 A pattern of periodic regions is produced

Class 3 A chaotic aperiodic pattern is produced

Class 4 Complex localized structures are generated
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(a) Rule 45 (b) Rule 30
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Wolfram’s classification

Wolfram has studied extensively the 1D elementary CA and
created a classification of the 256 possible rules into 4 classes.

Class 1 Fixed homogeneous state is reached

Class 2 A pattern of periodic regions is produced

Class 3 A chaotic aperiodic pattern is produced

Class 4 Complex localized structures are generated
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(a) Rule 110

Rule 110 is computationally universal.
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Sensitivity to initial state

(a) Chaotic - (Class
3)

(b) Ordered - (Class
2)

(c) Homogenous -
(Class 1)

Figure: Rule 22 - Random initial state top left 12 cells. Size: 64 cells, ran
for 128 steps
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Compression based study of 1D CAs

Idea:
Use the compressed length of a CA state as a proxy for its
complexity.

Many definitions of complexity: here the Kolmogorov complexity is
constant for a given rule.
We are looking for a more qualitative interpretation of complexity,
similar to what human beings perceive.
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Compression based study of 1D CAs

Idea:
Use the compressed length of a CA state as a proxy for its
complexity.

A CA state is represented as a string of 0s and 1s (or something
else for more states) that can be fed to a compression algorithm
(gzip in the rest of the presentation).

0110010rr

Examples:

→ ` = 13
→ ` = 34
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Compressed length for single-cell initialization

Figure: Single cell activated in initial configuration, evolve an automaton
of size 1024 for 512 timesteps

→ Obtained classification matches exactly the Wolfram
“manual” classification (originally observed by Zenil, 2010)
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Influence of the compression algorithm

Setting: Random initialization for 3 rules, the state is
compressed every 50 timesteps.
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Figure: Temporal evolution of
compressed length for 3 rules.
Comparison of gzip with PAQ

Figure: Rule 82
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2D CAs

With 2D CAs, the number of rules is much higher: 2512 rules total,
2102 if we require the rules to have all symmetries.

Gets even bigger if we add more states and/or larger
neighborhoods.

I There is no chance of sampling all the rules (not even a
significant portion of it)

I Some parts of this space might be more interesting than
others

→ We need a way of guiding this search towards interesting
rules
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Compressed length repartition

Sample rules at random and compress the state as an “unrolled
string”.
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Figure: Compressed length distribution for k = 2, 2D CAs. Grid size is
256× 256, automata are ran for 1000 time steps.



10/21

Extreme cases — Illustration

(a) High compressed length (b) Low compressed length
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Intermediate cases — Illustration

(a) Compressed length = 2914 (b) Compressed length = 6753
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Beyond compressed length

Compressed length is not the right metric for 2D CAs

I Most rules are at the extremes of the graph.

I Interesting rules might have very different compressed lengths,
what matters is the dynamic of this complexity.
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Joint compression score

To measure the stability of patterns for an evolving 2D CA, we use
the joint compression, i.e. the compressed length of the
concatenation of two steps relatively far apart in time.

N	time	steps

C1

C2

C12+ >

Compress

Compress

Compress
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Results on 2D CA rules

The score we compute is
C1 + C2

C12
. Distribution on the histogram

below.
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Figure: Histogram of joint
compression score for 13000
random rules

Two parts:

I A large portion of rules that
have very high
compressed length and
no structure (low joint
compression score).

I Other group (∼1%)that
seems to have much more
structure (although not all
rules do and not all
“structured rules” exhibit
interesting behavior).
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Example rules — 2 states
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Langton’s lambda parameter

The lambda parameter is defined with respect to a quescient state
(usually 0), as the proportion of transitions that lead to any other
state.

Example of 1D rule 22:

λ =
3

8
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Relation to lambda parameter
The vast majority of rules of 2-states 2D CAs have a λ close to 0.5.
For the graph below the rules were sampled with a lambda uniform
over [0, 1].
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Figure: Proportion of rules that would qualify as interesting with the
defined scheme
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3 States — 2D CAs
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(a) Score histogram for 3-states
automata

(b) Compressed length histogram
for 3-states automata

Similar distributions → if this can be generalized, this would be a
first toward creating a systematic approach for finding interesting
rules.
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Example rules — 3 states
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Further work

I Study the influence of the initial state.

I Add some input/output capabilities ?

I Refine the metric or find some other ?
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Thank you
for your

attention!


