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Introduction 

 

Understanding populations and their dynamics is a crucial element in biology. Its importance 

is highlighted by the fact that a completely self-sufficient scientific field - demography - was 

developed to that purpose. In Analytical Theory of Biological Populations, Alfred J. Lotka 

(1880-1949), one of the founding fathers of demography, devises the term general demology 

as a new branch of biological science ‘concerned with the analytical study of aggregations 

formed by populations of diverse biological organisms’ (Lotka, 1998, p.3). 

 

In this work divided into five sections, I aim to explore the mathematical methods introduced 

by Lotka and his contemporaries and reach an understanding of population changes with 

stress on human population growth. In the first section, I provide motivation for predicting 

quantitative behaviour of human populations. The second section involves a brief formulation 

of the issue as observed in reality, i.e. the biological point of view. The transition from the 

real to the abstract is described in the third section, in which I gradually develop three 

models beginning with the simplest assumptions and then moving to more complex settings. 

The fourth section is concerned with additional remarks on the mathematics of the models. 

In the final section, I evaluate the models with focus on potential discrepancies between the 

mathematical solution and the real-world situation. Full step-by-step solutions to the main 

equations are presented in the Appendix. 

 

 

Motivation 

 

The importance of predicting the correct rate of human population growth becomes clear at a 

brief glance towards the recent history of mankind. I consider fear of overpopulation to be a 

dangerous phenomenon to be avoided, as it led to multiple inhuman policies throughout the 

20th century such as eugenics in the USA and the infamous one-child policy in China 

(Weiss, 2019). 

 

In 1798, Thomas Malthus published An Essay on the Principle of Population, in which he 

argues that the number of people on Earth is growing at a quicker rate than the amount of 

resources and the expected result in future is famine and starvation (Malthus, 1998). This 

essay was the first to spark fear of overpopulation and even today aids many arguments in 

favour of population planning. I discuss the model that Malthus used for his predictions later 

in the text.  

 

The Population Bomb, a bestseller published by Paul Ehrlich in 1968, is another example of 

a panic-invoking work concerning rapid population growth. The political consequences of this 

more recent publication were also dire (Mann, 2018), yet we now see that the famine 

predicted by Ehrlich has never come. 
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In the 21st century, it is still common to see commentators worry about overpopulation and 

consequential starvation (Connor, 2006; Whiting, 2018). With climate change on the rise and 

the indisputable role of humanity in causing it, we can see how population growth can be 

harmful to the environment by the simple logic of ‘more people create more emissions and 

more waste’ (Leblanc, 2018). During the completion of this work, Senator Bernie Sanders, 

one of the leading figures of the Democratic Party in the US and a potential presidential 

candidate, argued that population control should play a role in solving the climate crisis 

(BBC, 2019). However, it is necessary to work with carefully crafted predictions which keep 

us reasonable and pragmatic. Whenever one talks about the possible consequences of 

population growth, and it does not matter whether one is an optimist or a pessimist, it is 

crucial that their reasoning is based on realistic models and correct data. 

 

 

The real-world formulation of the problem 

 

The object under study is a population, defined as ‘a set of organisms of the same species 

living in a particular place and time’ (Haefner, 2005, p. 272), and its evolution. The task is to 

determine its size at any time given its size at the initial time. Another important piece of 

information is a measure of increase or decrease in the population in the beginning of the 

studied period. The population can have additional properties influencing the evolution, 

some of which are introduced later in the text. For clarity and brevity, I study only isolated 

populations (i.e. no emigration or immigration is allowed). It is also assumed that the 

population is settled within a certain territory and changes occur only in time, not in space.  

 

The task 

 

Consider an isolated population. Reproduction is a continuous process. Find a suitable way 

to predict the population growth or decline and thus estimate the population size at any time 

in the future. 

 

There is an essential distinction that needs to be considered when building almost any 

mathematical model. The issue concerns the passage of time. Does one wish to treat time 

as a step-by-step process, or rather as a continuous entity? That is, should one use a 

discrete or a continuous model? In our case, the former is to consider each generation as if 

detached from the previous one, while the latter allows for continuous reproduction. To 

provide an example, when considering a bacteria population, one usually assumes a certain 

rule, e.g. ‘every hour, the number of bacteria doubles’. This problem is best tackled by a 

discrete model, since one calculates with a constant time step between each generation. 

However, if it is necessary to make more complex assumptions, one is forced to devise a 

continuous model, which usually involves differential equations (Haefner, 2015). This is the 

case for all models presented in this text. 

 

 

Building the models 

 

I begin with basic definitions that provide a translation from the biological to the 

mathematical realm. 
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As convention requires, time (measured in years) shall be denoted by t. A population of a 

single species is a single-valued time-dependent function denoted by 𝑁(𝑡). The initial 

population is the value 𝑁(𝑡), commonly abbreviated to 𝑁0. An annual change in population is 
ΔN

Δt
. 

 

As noted above, populations studied in this work are assumed to be isolated. It immediately 

follows that  

 

ΔN

Δt
= 𝐵 −  𝐷    (1), 

 

where B and D denote respectively the number of births and the number of deaths in the 

current year. This is the most general discrete formulation of the equations to be studied. A 

continuous version of the general formulation is  

 

𝑑𝑁

𝑑𝑡
= 𝑓(𝑁)    (2), 

 

where 𝑓(𝑁)  is a general function and its particular form is to be derived from biological data 

and assumptions. 

 

Now, with the necessary definitions, the problem transforms into a differential equation, 

which is to be solved given certain initial conditions. Depending on assumptions for the 

function 𝑓(𝑁), we obtain the following equations, which comprise our models. 

 

Model 1: Malthusian growth 

 

Assuming that the annual increase in population is constant, we deduce from (1) that the 

annual increase per capita, denoted by r and obtained statistically, is the value  

 

𝑟 =
ΔN

NΔt
=

𝐵 − 𝐷

𝑁
. 

 

It follows that  

 

ΔN

Δt
= 𝑟𝑁    (3𝑎). 

  

Now, if the magnitude of r remains within certain bounds, which is the case for most human 

populations, we can transfer from the discrete to the continuous and obtain the equation  

 

𝑑𝑁

𝑑𝑡
 =  𝑟𝑁    (3𝑏), 

 

with the solution  

𝑁(𝑡) = 𝑁0𝑒𝑟𝑡     (𝑀𝑎𝑙𝑡ℎ𝑢𝑠𝑖𝑎𝑛 𝑔𝑟𝑜𝑤𝑡ℎ). 
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Depending on the sign of r, the result is either exponential growth, or exponential decline. 

We are often interested in the behaviour of the function at the limit 𝑡 → ∞. In this case, if r is 

positive, the function diverges to positive infinity, a fairly unrealistic result. If r is negative, the 

limit is equal to zero, meaning the resulting state is extinction of the population. 

 

 
Figure 1: Malthusian law with N0 = 100. Figures 1, 2 & 4 were created using www.desmos.com. 

 

Model 2: logistic growth 

 

The second model differs from the first one in that we do not assume constant annual 

increase in the population. Vaguely put, we assume instead that the population growth 

gradually slows down as the population gets larger. This assumption has a reasonable 

biological basis: with larger populations, resources tend to get exhausted more quickly, 

resulting in population decline. Even though this is the case for animals rather than humans, 

the following model fits data from the 20th century USA, so it is relevant to human 

populations, too (Lotka, 1998, p. 95). Here, it is necessary to introduce a new variable C. It 

denotes the carrying capacity of an environment, which is ‘the average population density or 

population size of a species below which its numbers tend to increase and above which its 

numbers tend to decrease’ (Britannica, 2007). In our case, C is considered to be a size. 

 

To convert the vague assumption into a concrete mathematical expression, we add a 

quadratic term involving C to the function 𝑓(𝑁), which results in  

 

𝑓(𝑁) = 𝑟𝑁 (1 −  
𝑁

𝐶
). 
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The expression 1 −
𝑁

𝐶
  is positive when 𝑁 < 𝐶 and negative when 𝑁 > 𝐶 (and so is the value 

of 𝑓(𝑁) for positive r). This is a mathematical translation of the intuition ‘growth until reaching 

C, then decline’. We have the equation 

 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (1 −

𝑁

𝐶
)   (4), 

 

which yields the solution  

 

𝑁(𝑡) =  
𝑁0𝐶

𝑁0 + (𝐶 − 𝑁0)𝑒−𝑟𝑡
    (𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑔𝑟𝑜𝑤𝑡ℎ). 

 

In contrast with the Malthusian model, this solution produces stable states for positive values 

of r. A stable state is understood as a positive real value of 𝑁(𝑡) as 𝑡 → ∞, which means the 

population is capable of surviving at current conditions. Unsurprisingly, the limit is equal to 

the carrying capacity of the population. For negative r, the limit again equals zero. A special 

case is the initial condition 𝐶 = 𝑁0, which results in a stable state at the carrying capacity for 

any r. Substituting into the logistic growth function shows that the population is not 

dependent on time in this case – in other words, it is constant. 

 

 
Figure 2: Logistic growth with N0 = 100 and C = 2000. Includes the special case (green) with C = N0 = 100. 
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Model 3: Allee effect 

 

In the last model, we assume a certain population size to be optimal for reproduction. Again, 

this requires a new variable. This optimal population shall be denoted by A. The reproduction 

rate increases until the population reaches A; then reproduction slows down. We proceed by 

adding a term involving A to the function 𝑓(𝑁). As previously, the term should somehow 

capture the critical threshold, which is A in this case. One of the possible and simplest 

variations is 𝑁 − 𝐴 (negative when 𝑁 < 𝐴, positive when 𝑁 > 𝐴). For scaling, we divide by C. 

Hence, we get  

 

𝑓(𝑁) = 𝑟𝑁 (1 −
𝑁

𝐶
)

𝑁 − 𝐴

𝐶
. 

 

Therefore 

 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (1 −

𝑁

𝐶
)

𝑁 − 𝐴

𝐶
  (5), 

 

a simple version of the Allee effect.  

 

The solution to the equation is fairly complicated and beyond the scope of this work.1 

Moreover, it is dependent on the three variables r, A and C and it is not sensible to present it 

in the wide scope that can be reached by adjusting the constants. Instead, it is possible to 

infer a few observations of the qualitative behaviour of the population. 

 

We distinguish between strong and weak Allee effects. A strong Allee effect occurs when the 

initial reproduction rate r is negative, while a weak Allee effect occurs when r is positive. The 

weak Allee effects behave in a way similar to the logistic growth. In the strong version, the 

behaviour of the population depends on initial conditions. There are two possible outcomes 

depending on whether the initial population is large enough, i.e. whether it holds that 𝑁0 < 𝐴, 

or 𝑁0 > 𝐴 (see Figure 3). In the former case, the population reaches extinction, while in the 

latter case, a delayed logistic growth occurs and the population settles at the carrying 

capacity (Drake & Kramer, 2011).  

 
Figure 3: Allee effects compared to logistic growth. Adapted from Drake & Kramer (2011). 

                                                
1 In fact, none of the consulted literature presents an explicit solution to the equation. 
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Some additional mathematical remarks on the models 

 

Apart from the biological arguments for using the equations above, there is a reasonable 

mathematical justification for the consequential steps leading from Model 1 to Model 3. If we 

assume that the general function 𝑓(𝑁) is sufficiently smooth, it follows that there is a Taylor 

series expansion for 𝑓(𝑁). As we progress through the models, we take more terms of the 

expansion at every step.  

 

Assume 𝑓(𝑁) = 𝑎0 +  𝑎1𝑁 +  𝑎2𝑁2 +  𝑎3𝑁3 + ⋯  

 

By Axiom of Parenthood (every organism must have parents, there is no spontaneous 

generation of organisms), we have 
𝑑𝑁

𝑑𝑡
(0) = 𝑓(0) = 0, which yields 𝑎0 = 0 (Edelstein-Keshet, 

2005, p. 214). Hence the simplest ‘piece’ of the Taylor expansion to be considered is the 

linear term 𝑎1𝑁, which results in equation (1) with 𝑎1 = 𝑟. In equation (2), we have two terms 

coming from the Taylor series of 𝑓(𝑁), namely 𝑎1𝑁 +  𝑎2𝑁2 with 𝑎1 = 𝑟 and 𝑎2 =  −
𝑟

𝐶
. The 

Allee effect equation makes use of three terms up to cubic.  

 

Since 𝑎0 = 0, we can rewrite  𝑓(𝑁) = 𝑁(𝑎1 +  𝑎2𝑁 +  𝑎3𝑁2 + ⋯ ) = 𝑁𝑔(𝑁). The function 𝑔(𝑁) 

is called the intrinsic growth rate of the population and its behaviour is the most 

straightforward tool for understanding the relation between the real and the abstract. In 

Model 1, we see that 𝑔(𝑁) = 𝑟, a constant, meaning that the reproduction rate is the same at 

all times, which is exactly the assumption we made. Adding a second term in Model 2 

changes 𝑔(𝑁) to a linear decreasing function, which agrees with the assumption that the 

reproduction slows down as population increases. In Model 3, 𝑔(𝑁) is a quadratic function 

with a maximum in A. This fits the assumption that the reproduction rate increases until the 

population density reaches a certain point corresponding to A and then it declines.  

 
Figure 4: Sketches of the intrinsic growth rate function g(N) for each model. 
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From the analysis above, it is clear that one could produce a large variety of models by 

making use of the function 𝑔(𝑁). Development of reproduction rate in a population can be 

converted to function behaviour and with a new function one obtains a new differential 

equation, i.e. a new model. An example of this would be the Gompertz law, which 

assumes 𝑔(𝑁) to be a decreasing logarithmic function and finds use in oncology when 

modeling growth of tumors (Edelstein-Keshet, 2005, p. 217). 

 

 

Discussion 

 

The field of population dynamics offers a lot more than the three introductory equations 

presented in this work. Populations are complicated and have a tendency to be influenced 

by far more factors than are captured by the models. For example, a crucial assumption of 

this work is that studied populations are isolated. Without this assumption, the elementary 

equation 
ΔN

Δt
= 𝐵 −  𝐷 needs to be modified to include immigration and emigration.  

 

Furthermore, the behaviour of populations is affected by other species and environment. 

Human populations are influenced by complex social interactions. Biological evolution of a 

population is a stochastic process and thus any deterministic model that we create will not 

be able to completely capture its behaviour.2 In simpler words, the world of mathematics is 

predictable, while the real world is not. As the anecdote popular among statisticians and 

attributed to George E. P. Box says: ‘All models are wrong, but some are useful.’ (Barroso, 

2018). 

 

Moreover, ecosystems often display chaotic behaviour, which albeit being deterministic is a 

feature our models are not capable of capturing. Chaos, a sensitive dependence to initial 

conditions exhibited by a dynamical system, causes a serious complication in our ability to 

understand and predict biological processes in general (Bishop, 2017).  

 

It is possible to tackle the issue in an alternative way. Instead of using a deterministic 

equation based on simple biological assumptions, one can resort to the arsenal of stochastic 

methods provided by the field of statistics. With human populations, there is usually a great 

amount of data to extrapolate from. Statistical methods might provide a higher level of 

practicality, especially when making predictions. 

 

Nevertheless, the models presented in this text provide a piecewise understanding of 

intrinsic populations’ behaviour. Coming back to Alfred J. Lotka, it is the inherent dynamic 

qualities of a general population that theorists should be interested in, as opposed to 

approximation-based predictions. What this work hopefully managed is to capture and 

explain some of those qualities expressed in the language of mathematics. 

 

 

                                                
2 A deterministic process is completely determined by its initial state and hence predictable once one 

has enough information. This is the case for our models – their solutions are determined by the 

equations and initial conditions. On the other hand, a stochastic process admits probabilistic factors 

and it is therefore impossible to predict its evolution in the future with absolute certainty.  
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Appendix: solutions to the central equations 

 

Model 1 

 

We solve the equation 

 

𝑑𝑁

𝑑𝑡
 =  𝑟𝑁    (3𝑏). 

 

We can rewrite (3b) as 

 

𝑑𝑁

𝑁
 =  𝑟 𝑑𝑡. 

 

Integrating both sides, we get 

 

ln 𝑁 = 𝑟𝑡 + 𝐾, 

 

where K denotes the integration constant. Applying exponential operator to the both sides of 

the equation yields 

 

𝑁(𝑡) =  𝑒𝑟𝑡+𝐾 = 𝐾′𝑒𝑟𝑡 , 

 

where K’ denotes a constant to be expressed in terms of the initial condition N0. Substituting 

t = 0 into the equation, we have K’ = N(0), so the final solution is 

 

𝑁(𝑡) = 𝑁0𝑒𝑟𝑡     (𝑀𝑎𝑙𝑡ℎ𝑢𝑠𝑖𝑎𝑛 𝑔𝑟𝑜𝑤𝑡ℎ). 

 

 

Model 2 

 

We solve 

  
𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (1 −

𝑁

𝐶
)   (4). 

 

Rewriting (4) as  

 

𝑑𝑁

𝑁 (1 −
𝑁
𝐶)

 =  𝑟 𝑑𝑡, 

 

we can integrate both sides. To integrate the left-hand side, we use partial fraction 

expansion, obtaining  

 

∫(
1

𝑁
+

1
𝐶

1 −
𝑁
𝐶

) 𝑑𝑁 = ∫(
1

𝑁
+

1

𝐶 − 𝑁
) 𝑑𝑁 =  ∫ 𝑟 𝑑𝑡.  
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After integration, we have 

 

ln
𝑁

𝐶 − 𝑁
= 𝑟𝑡 + 𝐾. 

 

Hence,  

 

𝑁

𝐶 − 𝑁
= 𝐾′𝑒𝑟𝑡     (𝐴).  

 

To find an explicit expression for N(t), we rearrange the terms in the equation and get 

 

𝑁(𝑡) =  
𝐶𝐾′𝑒𝑟𝑡

1 + 𝐾′𝑒𝑟𝑡
. 

 

To express K’ in terms of N0 and C, we substitute t = 0 into equation (A) and obtain  

 

𝐾′ =  
𝑁0

𝐶 − 𝑁0
. 

 

Therefore  

 

𝑁(𝑡) =  
𝐶

𝑁0
𝐶 − 𝑁0

𝑒𝑟𝑡

1 +
𝑁0

𝐶 − 𝑁0
𝑒𝑟𝑡

=  
𝑁0𝐶𝑒𝑟𝑡

𝐶 − 𝑁0 + 𝑁0𝑒𝑟𝑡
. 

 

Multiplying both the numerator and the denominator by 𝑒−𝑟𝑡, we reach the final form of the 

solution, which is 

 

𝑁(𝑡) =  
𝑁0𝐶

𝑁0 + (𝐶 − 𝑁0)𝑒−𝑟𝑡
    (𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑔𝑟𝑜𝑤𝑡ℎ). 
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