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1. Singular value decomposition

Consider a (real) matrix

A ∈ Rn×m, r = rank (A) ≤ min {n,m} .

A has

m columns of length n ,
n rows of lenght m ,
r is the maximal number of linearly independent

columns (rows) of A .
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There exists an SVD decomposition of A in the form

A = U ΣV T ,

where U = [u1, . . . , un] ∈ Rn×n, V = [v1,
. . . , vm] ∈ Rm×m are orthogo-

nal matrices, and

Σ =

[
Σr 0
0 0

]
∈ Rn×m, Σr =

 σ1
. . .

σr

 ∈ Rr×r,
σ1 ≥ σ2 ≥ . . . ≥ σr > 0 .
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Singular value decomposition – the matrices:

A U S V
T

{ui} i= 1,...,n are left singular vectors (columns of U),

{vi} i= 1,...,m are right singular vectors (columns of V ),

{σi} i=1,...,r are singular values of A.
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The SVD gives us:

span (u1, . . . , ur) ≡ range (A) ⊂ Rn,
span (vr+1, . . . , vm) ≡ ker (A) ⊂ Rm,

span (v1, . . . , vr) ≡ range (AT) ⊂ Rm,
span (ur+1, . . . , un) ≡ ker (AT) ⊂ Rn,

spectral and Frobenius norm of A, rank of A, . . .
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Singular value decomposition – the subspaces:
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The outer product (dyadic) form:

We can rewrite A as a sum of rank-one matrices in the dyadic form

A = U ΣV T

= [u1, . . . , ur]

 σ1
. . .

σr


 vT1...
vTr


= u1σ1v

T
1 + . . . + urσrv

T
r

=
r∑

i=1

σiuiv
T
i

≡
r∑

i=1

Ai .

Moreover, ‖Ai‖2 = σi gives ‖A1‖2 ≥ ‖A2‖2 ≥ . . . ≥ ‖Ar‖2 .
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Matrix A as a sum of rank-one matrices:

A

A1

A2

Ar -1

Ar

...

+

+

+

+

i = 1

r

S AiA =

SVD reveals the dominating information encoded in a matrix. The

first terms are the “most” important.
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Optimal approximation of A with a rank-k:

The sum of the first k dyadic terms (k ≤ r)
k∑
i=1

Ai ≡
k∑
i=1

σiuiv
T
i

is the best rank-k approximation of the matrix A in the sense of
minimizing the 2-norm of the approximation error, i.e.,

k∑
i=1

uiσiv
T
i = argmin

X∈Rn×m, rank (X)≤k
{‖A−X‖2}.

This allows to approximate A with a lower-rank matrix

A ≈
k∑
i=1

Ai ≡
k∑
i=1

σiuiv
T
i .
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Different possible distributions of singular values:
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(BCSPWR06 and ZENIOS from the Harwell-Boeing Collection).
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2. Application 1 - image compression

Grayscale image = matrix, each entry represents a pixel brightness.
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Grayscale image: scale 0, . . . ,255 from black to white

=


255 255 255 255 255 . . . 255 255 255
255 255 31 0 255 . . . 255 255 255
255 255 101 96 121 . . . 255 255 255
255 99 128 128 98 . . . 255 255 255
...

...
...

...
... . . .

...
...

...
255 90 158 153 158 . . . 100 35 255
255 255 102 103 99 . . . 98 255 255
255 255 255 255 255 . . . 255 255 255



Colored image: 3 matrices for Red, Green and Blue brightness values
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MATLAB DEMO:

Approximate a grayscale image A using the SVD by
∑k
i=1Ai. Compare

storage requirements and quality of approximation for different ks.

Memory required to store:

an uncompressed image of size m× n: mn values

rank k SVD approximation: k(m+ n+ 1) values
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3. Application 2 - image deblurring
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Sources of noise and blurring: physical sources (moving objects,
lens out of focus), measurement, discretization, rounding errors, ...

Challenge: Having some information about the blurring process, try
to approximate the “exact” image.

motion

blur

?
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Model of blurring process:

Blurred photo:

Barcode scanning:

X (exact image)

A (blurring operator)

B (blurred noisy image)
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PSF (point spread function) = blurring model for a single pixel

18



Obtaining a linear model:

Using some discretization techniques, it is possible to transform this

problem to a linear problem

Ax = b, A ∈ Rn×n, x, b ∈ Rn,

where A is a discretization of A, b = vec(B), x = vec(X).

Size of the problem: n = number of pixels in the image, e.g., even

for a low resolution 456× 684 px we get 311 904 equations.
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Image vectorization B → b = vec (B):

b =B b  b      b= [   ,   ,..., ]1 2 w
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Solution back reshaping x = vec (X) → X:

x = X x  x      x= [   ,   ,..., ]1 2 w

[ ]
x

x

x
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2

...

w
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Solution of the linear problem:

Let A be nonsingular (which is usually the case). Then Ax = b has
the unique solution

xnaive = A−1b.

X B

A

naive solution

A−1

Why? Because of specific properties of our problem.
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Consider that η is noise and bexact is the exact part in our image b.

Then our linear model is

Ax ≈ b, b =

Ax︷ ︸︸ ︷
bexact +η,

where ‖bexact‖ � ‖η‖, but

‖A−1bexact‖ � ‖A−1η‖.

Usual properties:

• the problem is sensitive to small changes in b;

• singular values σj of A decay quickly;

• bexact is smooth and satisfies the discrete Picard condition (DPC);

• η is often random and does not satisfy DPC.
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SVD components of the naive solution:

From the SVD of A we have

xnaive ≡ A−1b =
n∑

j=1

(
1

σj
vj u

T
j

)
b

=
n∑

j=1

uTj b

σj
vj

=
n∑

j=1

uTj b
exact

σj
vj︸ ︷︷ ︸

xexact=A−1bexact

+
n∑

j=1

uTj η

σj
vj︸ ︷︷ ︸

A−1η

.

What is the size of the right sum (inverted noise) in comparison to
the left one?
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Exact data: On average, |uTj b
exact| decay faster than σj (DPC).

White noise: The values |uTj η| do not exhibit any trend.

Thus uTj b = uTj b
exact + uTj η are for small indexes j dominated by the

exact part, but for large j by the noisy part.

Because of the division by σj, the components of the naive solu-

tion corresponding to small singular values are dominated by inverted

noise.
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Violation of DPC due to presence of noise in b:
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Basic regularization method - Truncated SVD:

Using the dyadic form

A = U ΣV T =
n∑
i=1

uiσiv
T
i ,

we can approximate A with a rank-k matrix

A ≈ Â ≡
k∑
i=1

Ai =
k∑
i=1

ui σi v
T
i .

Replacing A by Â gives an TSVD approximate solution

x(k) =
k∑

j=1

uTj b

σj
vj .
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TSVD regularization: removing the troublesome components
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Here the smallest σj’s are not present. However, we removed also

some components of xexact.

An optimal k has to balance between removing noise and not losing

too many components of the exact solution. It depends on the matrix

properties and on the amount of noise in the considered image.

MATLAB DEMO: Compute TSVD regularized solutions for differ-

ent values of k. Compare quality of the obtained image.
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Other regularization methods:

• direct regularization;

• stationary regularization;

• projection (including iterative) regularization;

• hybrid methods combining the previous ones.

30



Other applications:

• computer tomography (CT);

• magnetic resonance;

• seismology;

• crystallography;

• material sciences;

• ...
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