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Introduction

According to [6], homological algebra (HA) is primarily a tool for proving non-
constructive existence theorems in algebra, and for quantifying obstructions for
validity of various algebraic properties. For example, by employing the Ext and
Tor functors, one can measure the non-exactness of the Hom and tensor product
functors, the Tor functor measures the lack of torsionfreeness, etc. The extra feature
of HA that we will stress here is the possibility to prove directly structural results
for infinitely generated modules without dealing with the finitely generated ones
(e.g., in the classification of tilting modules over various commutative rings that is
not affected by the fact that all finitely generated tilting modules are trivial).

Since this series is part of a Non-commutative Algebra Program, our selection
from the rich supply of results developed within, or with substantial influence, of
HA is aimed at applications in module and representation theory over general (not
necessarily commutative) rings:

(a) First, we present classic basics of HA for categories of modules (these results
easily extend to corresponding relative versions – see [2]); then

(b) we introduce a more recent branch of HA called the set-theoretic homological
algebra, which provides powerful tools for investigating the structure and approxi-
mation properties of modules [4] (as well as objects of more general Grothendieck
categories), and finally

(c) we give some applications, notably to (infinite dimensional) tilting theory,
and finish by recent results combining Mittag-Leffler conditions with tilting that
yield bounds for the approximation theory.

1. Basic concepts

1(i) The Hom and ⊗ bifunctors

• The setting: R associative (possibly non-commutative) ring with unit, Mod–R
the category of all (possibly infinitely generated) right R-modules, morphisms are
written as acting on the opposite side from the scalars.

This setting includes includes the categories of abelian groups, linear spaces,
representations of groups, representations of Lie algebras, representations of quivers,
quasi-coherent sheaves over affine schemes, et al.

The basic Hom-bifunctor: HomR(−,−) from Mod–R × Mod–R to Mod–Z:
additive, and contravariant (covariant) in the first (second) variable. Variants for
bimodules.
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(Unbounded) chain complex of modules C (the differential δn maps Cn to
Cn−1), long exact sequence, short exact sequence. The long exact sequence as a
splicing of short exact ones. Dually: (unbounded) cochain complexes C (where
δn maps Cn to Cn+1).

Both the covariant F = HomR(M,−) functor, and the contravariant G =
HomR(−, N), are left exact.

• Definition: M (N) is a projective (injective) module provided that the
functor F (G) is exact.

Each free module is projective. Projectives = direct summands of free modules.
Each projective module is a direct sum of countably generated projective modules
(Kaplansky). Each module is a homomorphic image of a free one. Corollary:
Projective (free) resolutions exist.

The character module duality HomZ(−,Q/Z) from Mod–R to R–Mod (other
dualities available in special cases: for R commutative: the injective cogenerator
duality HomR(−,W ), for R fin.dim. k-algebra: the k-duality Homk(−, k), etc.).
The dual of a projective module is injective. Each module embeds into an injective
one; injective hull; (minimal) injective coresolution.

For non-right noetherian rings: no classification of injectives possible (Faith-
Walker). For right noetherian: direct sums of hulls of indecomposable cyclics suffice,
for comm. noe.: even direct sums of E(R/p) for p ∈ Spec(R) (Matlis).

• The tensor product bifunctor − ⊗R −: Mod–R ⊗R R–Mod → Mod–Z
(defined by the universal property for bilinear maps) is additive, covariant and
right exact in each variable. Variants for bimodules. Flat modules (making ⊗
exact); e.g., the projectives.

The tensor product and the Hom-functor are adjoint, that is, for each bimodule
N ∈ R–Mod−S, the induced functors T = − ⊗R N : Mod–R → Mod–S and
H = HomS(N,−) : Mod–S → Mod–R have the property that HomR(−, H(−)) and
HomS(T (−),−) are naturally isomorphic (as bifunctors from Mod–R ×Mod–S →
Mod–Z), cf. [2, 2.16]).

For M ∈ Mod–R and P ∈ Mod–S, the isomorphism of HomR(M,HomS(N,P ))
onto HomS(M ⊗R N,P ) is given by f 7→ ((m⊗R n) 7→ f(m)(n)).

1(ii) Forming the Ext groups and their long exact sequences

• Morphism of complexes, the category C(Mod–R) of (unbounded) complexes
of modules. Subcomplex, quotient complex.

The nth homology moduleHn(C) of a chain complex C: Hn(C) = Zn(C)/Bn(C),
where Zn(C) = Ker(δn) is the nth cycle and Bn(C) = Im(δn+1) is the nth bound-
ary. Note: C is exact, iff Hn(C) = 0 for each n. For cochain complexes, the term
cohomology module is used.

Each morphism of (co)chain complexes f : C → D induces for each n a module
homomorphism Hn(f) : Hn(C) → Hn(D). Moreover, Hn : C(Mod–R) → Mod–R
is an additive covariant functor (the nth (co)homology functor), cf. [2, 1.5.4].

A technical tool in Mod–R: the Snake lemma provides for the connecting
homomorphism, see [2, 1.2.16]. Note: There is also a version of the lemma for
complexes of modules, see [3, 2.3].

• Long exact sequences of (co)homologies: each short exact sequence
of complexes 0 → C ′ → C → C ′′ → 0 induces a long exact sequence of their
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(co)homologies (to go from Hn to Hn+1, use the connecting homomorphism, cf. [2,
p. 30, 1.5.7]).

• The Ext-groups: Let I be an injective coresolution (cochain complex) of the
module N and let I∗ be its deleted complex. Apply HomR(M,−) to I∗ to obtain
the cochain complex HomR(M, I∗) of abelian groups. Its nth cohomology group is
denoted by ExtnR(M,N).

Computations: Ext0R(M,N) ∼= HomR(M,N),
Ext1R(M,N) ∼= HomR(M,Ω−1(N))/πN (HomR(M, I0) where Ω−1(N) = I0/N is

the 1st cosyzygy of N in I.

• Let f, g : C → C ′ be morphisms of chain complexes. Then f ∼ g (f is
homotopic to g) provided there exists (’backward diagonal’) morphisms sn : Cn →
C ′n+1 such that fn − gn = δ′n+1sn + sn−1δn. (s is called the chain homotopy
between f and g). Similarly, cochain homotopy is defined for cochain complexes.
∼ is an equivalence, invariant under composition with morphism of chain com-

plexes (both from left and right), and sums. In fact, f ∼ g iff f − g ∼ 0 (i.e., f − g
is null homotopic).

Easy: Homotopic morphisms induce the same maps at homology modules, i.e.,
f ∼ g implies Hn(f) = Hn(g) for each n, see [2, 1.5.13].

• Comparison Lemma: Let I and J be injective coresolutions of the modules
P and Q, respectively. Then each ϕ ∈ HomR(P,Q) extends to a chain map between
the deleted complexes, f : I∗ → J∗, which is unique up to cochain homotopy (i.e.,
f − f ′ ∼ 0 for any other extension f ′ : I∗ → J∗).

Using this for P = Q = N , and applying HomR(M,−), we infer that the def-
inition of ExtnR(M,N) does not depend on a particular choice of the injective
coresolution of N (if f : I∗ → J∗ and g : J∗ → I∗ are cochain maps induced
by idN , then HomR(M, g) ◦ HomR(M,f) = HomR(M, gf) ∼ HomR(M, idI∗) and
HomR(M,f) ◦ HomR(M, g) = HomR(M,fg) ∼ HomR(M, idJ∗), so for each n ≥
0, Hn(HomR(M, g)) ◦ Hn(HomR(M,f)) = idHomR(M,I∗) and Hn(HomR(M,f)) ◦
Hn(HomR(M, g)) = idHomR(M,J∗), and the nth cohomology groups are isomor-
phic).

The nth cohomology functor ExtnR(M,−) is called the nth right derived func-
tor of HomR(M,−).

Note: ExtnR(M,N) = 0 whenever N is injective and n > 0.

• Horseshoe Lemma: Given a short exact sequence of modules E : 0→ N ′ →
N → N ′′ → 0 and injective coresolutions I ′ and I ′′ of N ′ and N ′′, resp., there is
an injective coresolution I of N (with In = I ′n ⊕ I ′′n for each n ≥ 0) such that
0 → I ′ → I → I ′′ → 0 is a short exact sequence of complexes expanding E (Proof
by induction on the short exact ’columns’: the first column = E , second column =
the cokernel (= 1st cosyzygy) exact sequence, etc.)

The dual Horseshoe lemma for projective resolutions, [2, 8.2.1].

Applying the Horseshoe Lemma and the long exact sequence of cohomologies,
we obtain the long exact sequence for Ext measuring the non-right exactness of
Hom: 0 → HomR(M,N ′) → HomR(M,N) → HomR(M,N ′′) → Ext1R(M,N ′) →
Ext1R(M,N)→ Ext1R(M,N ′′)→ Ext2R(M,N ′)→ . . . .

Convenient for computations of Ext: since ExtiR(M, I) = 0 for each injective
module I and i > 0, computation of the higher Ext’s reduces to the first one by
dimension shifting in the second component, using the cosyzygy modules:

Extn+1
R (M,N) ∼= ExtnR(M,Ω−1(N)) ∼= . . . ∼= Ext1R(M,Ω−n(N)) for n ≥ 1.
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• The dual approach for computing ExtnR(M,N): Let P be a projective
resolution (chain complex) of the module M and let P ∗ be its deleted complex.
Apply HomR(−, N) to P ∗ to obtain the cochain complex HomR(P ∗, N) of abelian
groups. Its nth cohomology group is also denoted by ExtnR(M,N).

A dual version of the Comparison Lemma shows that this group does not depend
on the choice of P . ExtnR(−, N) is called the nth right derived functor of
HomR(−, N).

Also, ExtnR(M,N) = 0 whenever M is projective and n > 0; dimension shifting
in the first component using syzygy modules reduces computation of Extn for n > 1
to Ext1.

The dual Horshoe Lemma and the long exact sequence of cohomologies yields
the long exact sequence 0 → HomR(M ′, N) → HomR(M,N) → HomR(M ′′, N) →
Ext1R(M ′, N)→ Ext1R(M,N)→ Ext1R(M ′′, N)→ Ext2R(N ′, N)→ . . . .

• The balance: In order to show that the two definitions of ExtnR(M,N)
above yield the same notion, we fix a deleted projective resolution P ∗ of M with
the differentials δi, and deleted injective coresolution I∗ of N with the differen-
tials εj . We form a commutative first quadrant diagram with exact rows and
columns, consisting of the groups HomR(Pi, Ij) for i, j ≥ 0, the horizontal maps
HomR(δi+1, Ij), and vertical maps HomR(Pi, εj). Let Cj = Ker(HomR(δ1, Ij)) and
Di = Ker(HomR(Pi, ε0)).

Then Cj ∼= HomR(M, Ij) and Di
∼= HomR(Pi, N), and we can extend the dia-

gram by adding one column to the left, formed by the complex 0→ C0 → C1 → . . .
with the differentials HomR(M, εj), and one bottom row formed by the complex
0→ D0 → D1 → . . . with the differentials HomR(δi+1, N).

The extended diagram is still commutative, the nth cohomology group of the
complex added to the left is An = ExtnR(M,N) computed in the first way, while the
nth cohomology group of the bottom complex is Bn = ExtnR(M,N) computed in the
second (dual) way. Using exactness of the rows and columns of the original diagram,
we can chase it diagonally and define maps αn : An → Bn and βn : Bn → An so
that αnβn = id and βnαn = id, giving the desired isomorphisms (cf. [2, 1.4.16 and
8.2.14]).

• The Baer/Yoneda Ext. The group Ext1R(M,N) can alternatively be
defined as the group of all equivalence classes of extensions (= short exact se-
quences) of the form 0 → N → X → M → 0 (Hint: use a pushout to form
such an extension from a projective presentation of M). The zero element in
Ext1R(M,N) then corresponds to the equivalence class of the split exact sequence
0 → N → N ⊕M → M → 0, and addition in Ext1R(M,N) to the Baer sum of
extensions.

Generalization for n ≥ 1: the Yoneda Ext. Note: This construction is available
to define Extn even for abelian categories without projective or injective objects.

• The Tor bifunctor. The TorRn (−, N) functor is defined as the nth left derived
functor of − ⊗R N , and TorRn (M,−) of M ⊗R −, using projective resolutions and
the corresponding variants of the Comparison and Horseshoe Lemmas. The long
exact sequence for Tor follows, and measures the non-left exactness of ⊗. Also the
balance holds true for TorRn (M,N), [2, p.183, Ex.17].

The adjointness of Hom and ⊗ yields duality formulas for Extn and Torn:
ExtnR(M,HomS(N, I)) ∼= HomS(TorRn (M,N), I) where M ∈ Mod–R, N ∈ R −

Mod–S, and I ∈ Mod–S is injective, cf. [2, 2.16(b)].
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• The mapping cone. Let f : C → D be a morphism of chain com-
plexes. The complex C(f) with n-th term Dn ⊕ Cn−1 and differential δn(y, x) =
(dn(y)+(−1)n−1fn−1(x), cn−1(x)) is the mapping cone of f . A variant definition:
δn(y, x) = (dn(y) + fn−1(x),−cn−1(x)).

There is a short exact sequence of complexes of modules 0 → D → C(f) →
S(C) → 0 where S(C) is the suspension of C (i.e., the complex whose nth term
is Cn−1 and nth differential is cn−1, or −cn−1 for the variant definition).

The role of the mapping cone: C(f) is exact, iff f is a homology isomorphism
(i.e., Hn(f) is an isomorphism for each n < ω). Proof: Apply the Snake lemma
to the complex above to get a long exact sequence of homology complexes, and
observe that the connecting homomorphisms are (variants) of the mapping cone
and its iterated suspensions.

1(iii) Direct and inverse limits of modules.

• Let (I,≤) be an upper directed poset, M = (Mi, fji | i ≤ j ∈ I), a direct
system of modules. The colimit (M,fi | i ∈ I) ofM in Mod–R is called the direct
limit of M and denoted by lim−→Mi.

Special cases: If all fji are monic, then so are the fi, and M is the directed
union of the fi(Mi). Typical example: M expressed as the directed union of (some
of) its ’small’ submodules (e.g., the finitely generated ones). Note: direct limits of
monomorphisms include arbitrary direct sums as a particular case.

If {mα | α < κ} is a set of generators of M , then M is the directed union of the
chain (Mα | α < κ) where Mα =

∑
β<αmβR.

Important case: the C-filtration of a module M , see [4, 6.1]. Example: the
Prüfer p-group Zp∞ is {Zp}-filtered.

• The dual setting: an inverse system I of left R-modules, the inverse limit
of I. Example: the I-adic completion M̂ = lim←−M/MIn (where I is an ideal of a
commutative ring R such that

⋂
n I

n = 0).
Special case: inverse system of epimorphisms, still more special: C-cofiltration,

[4, 6.34]. Note: inverse limits of epimorphisms include direct products as a partic-
ular case.

If M is C-filtered, then M∗ is C∗-cofiltered. Example: the p-adic group Jp is
{Zp}-cofiltered, see [4, 6.35].

• Commutativity formulas (cf. [4]): Hom always commutes with inverse lim-
its, i.e., the canonical homomorphism HomR(M, lim←−Ni)→ lim←−HomR(M,Ni) is an
isomorphism. IfM is finitely presented, then lim−→HomR(M,Ni) ∼= HomR(M, lim−→Ni).

If n > 0 and M is an FPn+1 module, then ExtnR(M, lim−→Ni) ∼= lim−→ExtnR(M,Ni).
However, ExtnR(M,−) commutes with inverse limits iff ExtnR(M,−) = 0, i.e., iff M
has projective dimension ≤ n.

Also HomR(lim−→Mi, N) ∼= lim←−HomR(Mi, N) canonically. If n > 0 and N is
pure-injective, then ExtnR(lim−→Mi, N) ∼= lim←−ExtnR(Mi, N). For n = 1, this condition
characterizes the pure-injectivity of N (Auslander).
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2. Approximations and relative homological algebra

2(i) Basics of the approximation theory.

• Preenvelopes (precovers) as left (right) approximations. Minimal versions,
special versions.

Wakamatsu Lemma: minimal approximations are special, cf. [4, 5.13].

Basic examples: projective (pre)covers, injective hulls.

Relative homological algebra uses general precovering/preenveloping classes in
place of projectives/injectives in order to define relative (co)homology. This is the
main topic of [2]. Here, we rather follow [4] and focus on the approximation theory
and its applications to the structure theory of infinitely generated modules.

Perps (= kernels of Ext1): C⊥, ⊥C. A cotorsion pair (A,B) is defined by
A = ⊥B and B = A⊥. Hereditary cotorsion pairs (also higher Ext’s vanish).

• Salce’s Lemma: If (A,B) is a cotorsion pair, then A is special precovering,
iff B is special preenveloping, cf. [4, 5.20]. Such cotorsion pair is called complete.
Comment: cotorsion pairs are formal analogs of torsion pairs, but more important
is their relation to approximations; e.g., Salce’s Lemma substitutes for the lack of
explicit dualities within Mod–R.

2(ii) Transfinite extensions and deconstructibility.

• Recall: C-filtrations (= transfinite extensions of the modules in C); Filt(C).

A class D is deconstructible provided that D = Filt(S) for a set S. Implies:
closure under extensions and direct sums.

• Eklof’s Lemma: ⊥C is closed under transfinite extensions for each class C,
cf. [4, 6.2]. Note: but (consistently with ZFC), the class ⊥Z is not deconstructible
(Whitehead groups).

Open problem: Is there a class of the form ⊥C which is not deconstructible
(provably in ZFC)?

Examples of deconstructible classes: Pn (Proof: zigzag in projective resolutions),
Fn (Proof: using purification), torsion-free modules over a domain, etc., see [4, §8.1].

• The Enochs-Šťov́ıček Lemma: Each deconstructible class is precovering,
cf. [4, 7.2]. Note: often special precovering (see below).

2(iii) Cofiltrations and the Lukas lemma.

• Recall: C-cofiltrations. Lukas Lemma = dual Eklof Lemma (with a dual
proof! See [4, 6.37].)

Corollary: Countable inverse limits of epimorphisms of injective modules have
injective dimension ≤ 1, [4, 6.38].

Compare with (Bergman): Each module is an inverse limit of injective modules.
Moreover, each module over a right noetherian ring is an inverse limit of an inverse
system of epimorphisms of injective modules. The latter inverse system is uncount-
able, based on an Aronszajn tree. Note: the Aronszajn tree makes it possible to
construct an uncountable inverse system of epimorphisms whose inverse limit is 0,
cf. [4, 6.32].



TOPICS IN HOMOLOGICAL ALGEBRA 7

3. Set-theoretic homological algebra

3(i) Quillen’s small object argument.

• For each module M and each set S of modules, there is a short exact sequence
0→M → P → N → 0 such that P ∈ S⊥ and N is S-filtered, [4, 6.11].

Corollary: The cotorsion pair generated by any set S is complete. If R ∈ S, then
its left class A consists of direct summands of S-filtered modules, [4, 6.14]. More-
over, A is deconstructible. Example: FCC - flat covers and cotorsion envelopes.

3(ii) Bongartz Lemma and its dual.

• W.l.o.g., S = {T} for a single module T . Bongartz Lemma is a special case
of the above when Ext1R(T, T (κ)) = 0 for all κ. Then even N ∼= T (λ) for some λ, [4,
6.15].

Dual Bongartz Lemma: If Ext1R(Cκ, C) = 0 for all κ, then for each module
M there is a short exact sequence 0 → N → P → M → 0 such that P ∈ ⊥C and
N ∼= Cλ for some λ, [4, 6.44].

Warning: There is no dual to the small object argument (by the Eklof-Shelah’s
consistency result above, see [4, p.153]).

3(iii) The Hill Lemma.

• The point: expands a single C-filtrationM of a module M into a family H of
C-filtered submodules that forms a complete distributive sublattice of the modular
lattice L(M).

More precisely (see [4, 7.10]): assume that each module in C is ≤ κ-presented
for κ regular uncountable. Then H can be constructed to satisfy:

(H1) (expansion) M⊆ H;
(H2) (distributivity) H is a complete distributive sublattice of L(M);
(H3) (C-filtration) If N ⊆ P are both in H, then P/N is C-filtered (in particular,

for each N ∈ H, both N and M/N are C-filtered).
(H4) (density) If N ∈ H, and X ⊆ M has cardinality < κ, then there exists

N ∪X ⊆ P ∈ H such that P/N is < κ-presented.

Idea of proof: Let M = (Mα | α ≤ σ) be a C-filtration of M and fix Aα < κ-
generated such that Mα +Aα = Mα+1. Take

H = {
∑
α∈S

Mα | S a closed subset of σ}.

Here, closed means that Mα ∩Aα ⊆
∑
β<α,β∈SMβ , for each α ∈ S.

The point: Mα ∩
∑
α∈SMα =

∑
β∈S∩αMβ (’from submodules to subsets’).

Applications of the Hill lemma (see [4, Chapter 7]): replacing a particular
C-filtration by a ’better’ one, Kaplansky’s theorem for cotorsion pairs, existence of
C-socle sequences, Shelah’s singular compactness for C-filtered modules, locality of
Drinfeld vector bundles, etc.
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4. Some applications to representation/module theory

4(i) Infinite dimensional tilting theory.

• A module T is n-tilting if
(T1) T has projective dimension ≤ n;
(T2) ExtiR(T, T (κ)) = 0 for all κ and all i > 0;
(T3) There is an exact sequence 0→ R→ T0 → · · · → Tn → 0 with Ti ∈ AddT

for all i ≤ n.

The class T =
⋂
i>0 KerExtiR(T,−) is the n-tilting class induced by T . Two

tilting modules inducing the same tilting class are called equivalent.

• (Angeleri-Coelho) If T is a tilting class, then the inducing tilting module T
can be obtained from an iteration of special T -preenvelopes of the regular module
R (a la (T3)).

• (Miyashita-Bazzoni) n-tilting modules induce n-tuples of category equiva-
lences between subcategories Mod–R and Mod–S where S = EndT generalizing
the Morita equivalence.

Here, T need not be finitely generated - this is essential when R is commutative
(because there, all finitely generated tilting modules are projective, [4, 13.2]).

If T is 1-tilting, then T is a special preenveloping torsion class. Conversely, each
special preenveloping torsion class is 1-tilting, [4, 14.4].

Tilting classes and/or modules have been classified over many rings (tame hered-
itary algebras, Prüfer domains, commutative noetherian rings, ...), see [4, Part III].
A more involved application of set-theoretic homological algebra yields

• Finite type of tilting modules: For each n-tilting module T there is a
set S of strongly finitely presented modules of projective dimension ≤ n such that
T = S⊥. In particular, the tilting class T is axiomatizable, [4, 13.46].

4(ii) The structure of Mittag-Leffler and locally T -projective modules.

• (Raynaud-Gruson) A module M is Mittag-Leffler provided that the canon-
ical map M ⊗R

∏
iNi →

∏
iM ⊗R Ni is monic for each family (Ni | i ∈ I) of left

R-modules.

Equivalent conditions: ℵ1-pure-projective, a ’ML-limit’ of finitely presented mod-
ules, etc. [4, 3.14]. In particular, flat Mittag-Leffler = locally R-projective (= ℵ1-
projective). Applying set-theoretic homological algebra, one arrives at a barrier:

• Complexity of flat Mittag-Leffler modules: If R is not right perfect, then
the class F of all flat Mittag-Leffler modules is closed under transfinite extensions,
but it is not precovering, and hence not deconstructible.

F is the class of all ’locally T -projective’ modules for the trivial tilting module
T = R. The non-precoverin, and hence non-deconstructibility, extends to any class
of locally T -projective modules when T is ’non-

∑
-pure split’, cf. [S] and [ASR]. In

this way, the ML-theory yields further boundaries of the approximation theory of
modules.
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