Tilting theory for commutative rings

Jan Trlifaj

Univerzita Karlova, Praha

Representation Theory Workshop
Nanjing Normal University
May 16, 2014
(i-) Tilting Modules
Let R be a ring and $n < \omega$. A right R-module T is n–tilting provided
Let R be a ring and $n < \omega$. A right R-module T is n–tilting provided
Let R be a ring and $n < \omega$. A right R-module T is n–tilting provided

\[(T1) \quad \text{pd}_R(T) \leq n,\]
Let R be a ring and $n < \omega$. A right R-module T is n–tilting provided

\[(T1) \quad \text{pd}_R(T) \leq n, \ i.e., \ there \ is \ an \ \text{Add}(R)\text{-resolution of } T \text{ of length } \leq n.\]
Let R be a ring and $n < \omega$. A right R-module T is n–tilting provided

(T1) $\text{pd}_R(T) \leq n$, i.e., there is an $\text{Add}(R)$-resolution of T of length $\leq n$.

(T2) $\text{Ext}_R^i(T, T^{(\kappa)}) = 0$ for all $1 \leq i$ and all κ.

Let R be a ring and $n < \omega$. A right R-module T is n–tilting provided

(T1) $\text{pd}_R(T) \leq n$, i.e., there is an $\text{Add}(R)$-resolution of T of length $\leq n$.

(T2) $\text{Ext}_R^i(T, T^{(\kappa)}) = 0$ for all $1 \leq i$ and all κ, i.e., T is a strong splitter.
Let R be a ring and $n < \omega$. A right R-module T is n–tilting provided

1. $\text{pd}_R(T) \leq n$, i.e., there is an $\text{Add}(R)$-resolution of T of length $\leq n$.
2. $\text{Ext}_R^i(T, T^{(\kappa)}) = 0$ for all $1 \leq i$ and all κ, i.e., T is a strong splitter.
3. There is a long exact sequence $0 \to R \to T_0 \to \cdots \to T_n \to 0$ with $T_i \in \text{Add} T$.

(i-) Tilting Modules
Let R be a ring and $n < \omega$. A right R-module T is n–tilting provided

(T1) $\text{pd}_R(T) \leq n$, i.e., there is an $\text{Add}(R)$-resolution of T of length $\leq n$.

(T2) $\text{Ext}_R^i(T, T(\kappa)) = 0$ for all $1 \leq i$ and all κ, i.e., T is a strong splitter.

(T3) There is a long exact sequence $0 \to R \to T_0 \to \cdots \to T_n \to 0$ with $T_i \in \text{Add} T$, i.e., there is an $\text{Add}(T)$-coresolution of R of length $\leq n$.

Let R be a ring and $n < \omega$. A right R-module T is n–tilting provided

(T1) $\text{pd}_R(T) \leq n$, i.e., there is an $\text{Add}(R)$-resolution of T of length $\leq n$.

(T2) $\text{Ext}_R^i(T, T^{(\kappa)}) = 0$ for all $1 \leq i$ and all κ, i.e., T is a strong splitter.

(T3) There is a long exact sequence $0 \to R \to T_0 \to \cdots \to T_n \to 0$ with $T_i \in \text{Add}T$, i.e., there is an $\text{Add}(T)$-coresolution of R of length $\leq n$.

Tilting module = n–tilting module for some $n < \omega$. The tilting class induced by T is $T^\perp = \{ M \in \text{Mod-}R \mid \text{Ext}_R^i(T, M) = 0 \text{ for all } i \geq 1 \}$.
Let R be a ring and $n < \omega$. A right R-module T is n–tilting provided

(T1) $\text{pd}_R(T) \leq n$, i.e., there is an $\text{Add}(R)$-resolution of T of length $\leq n$.

(T2) $\text{Ext}_R^i(T, T^{(\kappa)}) = 0$ for all $1 \leq i$ and all κ, i.e., T is a strong splitter.

(T3) There is a long exact sequence $0 \to R \to T_0 \to \cdots \to T_n \to 0$ with $T_i \in \text{Add}T$, i.e., there is an $\text{Add}(T)$-coresolution of R of length $\leq n$.

A tilting module T is good if (T3) holds with $\text{Add}T$ replaced by $\text{add}T$.

The tilting modules T and T' are equivalent if $T^\perp = (T')^\perp$.

Each tilting module is equivalent to a good one.

Tilting module = n–tilting module for some $n < \omega$. The tilting class induced by T is $T^\perp = \{ M \in \text{Mod-}R \mid \text{Ext}_R^i(T, M) = 0 \text{ for all } i \geq 1 \}$.
The classic case
T is classical if $T \in \text{mod–}R$ (i.e., T is strongly finitely presented).
The classic case

\(T \) is classical if \(T \in \text{mod}\ R \) (i.e., \(T \) is strongly finitely presented).

Each classical tilting module is good.
The classic case

T is classical if $T \in \text{mod-}R$ (i.e., T is strongly finitely presented).

Each classical tilting module is good.

Theorem

Let T be a classical n–tilting module. Then for each $i \leq n$ there is a category equivalence

$$\bigcap_{j \leq n, j \neq i} \text{Ker}(\text{Ext}_R^i(T, -)) \quad \cong \quad \text{Ext}_R^i(T, -) \quad \Leftrightarrow \quad \bigcap_{j \leq n, j \neq i} \text{Ker}(\text{Tor}_S^j(-, T))$$

where $S = \text{End}_R(T)$.
Classical tilting for commutative rings is trivial ...
Lemma

Let R be a commutative ring and T be a strongly finitely presented module of projective dimension $n \geq 1$. Then $\text{Ext}^n_R(T, T) \neq 0$.
Classical tilting for commutative rings is trivial ...

Lemma

- Let R be a commutative ring and T be a strongly finitely presented module of projective dimension $n \geq 1$. Then $\text{Ext}_R^n(T, T) \neq 0$.
- All classical tilting modules over a commutative ring are projective. !!!
Lemma

- Let R be a commutative ring and T be a strongly finitely presented module of projective dimension $n \geq 1$. Then $\text{Ext}^n_R(T, T) \neq 0$.
- All classical tilting modules over a commutative ring are projective. !!!
General i-tilting theorem

Let R be a ring and T be a good n–tilting module. Then for each $i \leq n$ there is a category equivalence

$$\bigcap_{j \leq n, j \neq i} \text{Ker}(\text{Ext}^j_R(T, -)) \leftrightarrow \text{Ext}^i_R(T, -) \leftrightarrow \bigcap_{j \leq n, j \neq i} \text{Ker}(\text{Tor}^S_j(-, T)) \cap \mathcal{E}_\perp$$

where $S = \text{End}_R(T)$, $\mathcal{E}_\perp = \{X \in D(S) \mid \text{Hom}_{D(S)}(\mathcal{E}, X) = 0\}$, and \mathcal{E} is the kernel of the total left derived functor $L(- \otimes_S T)$.
Tilting classes and definability
Let R be a ring, $n < \omega$, and \mathcal{T} be a class of modules.
Let R be a ring, $n < \omega$, and \mathcal{T} be a class of modules. Then \mathcal{T} is n–tilting, iff there is a set S consisting of strongly finitely presented modules of projective dimension $\leq n$ such that $\mathcal{T} = S^\perp$ (i.e., \mathcal{T} is of finite type).
Let R be a ring, $n < \omega$, and \mathcal{T} be a class of modules.

Then \mathcal{T} is n–tilting, iff there is a set S consisting of strongly finitely presented modules of projective dimension $\leq n$ such that $\mathcal{T} = S^\perp$ (i.e., \mathcal{T} is of finite type).

In particular, each tilting class is definable, i.e., closed under direct products, direct limits, and pure submodules.
Tilting for commutative noetherian domains: the one-dimensional case
Theorem

Let \(R \) be a commutative noetherian domain of Krull dimension 1. Then tilting classes are parametrized by the subsets of \(\text{mSpec}(R) \).
Tilting for commutative noetherian domains: the one-dimensional case

Theorem

Let R be a commutative noetherian domain of Krull dimension 1. Then tilting classes are parametrized by the subsets of $\text{mSpec}(R)$.

Given a $P \subseteq \text{mSpec}(R)$, the corresponding tilting class is

$$I_P = \{ M \in \text{Mod}-R \mid M \cdot p = M \text{ for all } p \in P \}.$$
Theorem

Let R be a commutative noetherian domain of Krull dimension 1. Then tilting classes are parametrized by the subsets of $m\text{Spec}(R)$.

Given a $P \subseteq m\text{Spec}(R)$, the corresponding tilting class is

$$T_P = \{ M \in \text{Mod-}R \mid M \cdot \mathfrak{p} = M \text{ for all } \mathfrak{p} \in P \}.$$

This class is induced by the **Bass tilting module**, i.e., the tilting module $T_P = R_P \oplus R_P/R$ where $R_P = \bigcap_{q \in m\text{Spec}(R) \setminus P} R_q$ and R_q denotes the localization of R at q.
Fuchs tilting modules
Fuchs tilting modules

Definition
Definition

Let R be a valuation domain and P be a prime ideal in R.
Fuchs tilting modules

Definition

Let R be a valuation domain and P be a prime ideal in R. Define

$$F_P = F/G$$
Fuchs tilting modules

Definition

Let \(R \) be a valuation domain and \(P \) be a prime ideal in \(R \). Define

\[F_P = F / G \]

where \(F \) is the free module with the basis of all sequences \((s_0, \ldots, s_n)\)
Fuchs tilting modules

Definition

Let R be a valuation domain and P be a prime ideal in R. Define

$$F_P = F/G$$

where F is the free module with the basis of all sequences (s_0, \ldots, s_n) where $n \geq 0$, and $s_i \in R \setminus P$ for all $i \leq n$, and the empty sequence $w = ()$.
Fuchs tilting modules

Definition

Let R be a valuation domain and P be a prime ideal in R. Define

$$F_P = F/G$$

where F is the free module with the basis of all sequences (s_0, \ldots, s_n) where $n \geq 0$, and $s_i \in R \setminus P$ for all $i \leq n$, and the empty sequence $w = ()$, and G is the submodule of F generated by all $(s_0, \ldots, s_n)s_n - (s_0, \ldots, s_{n-1})$.
Definition

Let R be a valuation domain and P be a prime ideal in R. Define

$$F_P = F/G$$

where F is the free module with the basis of all sequences (s_0, \ldots, s_n) where $n \geq 0$, and $s_i \in R \setminus P$ for all $i \leq n$, and the empty sequence $w = ()$, and

G is the submodule of F generated by all $(s_0, \ldots, s_n)s_n - (s_0, \ldots, s_{n-1})$ where $0 < n$ and $s_i \in R \setminus P$ for all $i \leq n$.

Fuchs tilting modules

Definition

Let R be a valuation domain and P be a prime ideal in R. Define

$$F_P = F/G$$

where F is the free module with the basis of all sequences (s_0, \ldots, s_n) where $n \geq 0$, and $s_i \in R \setminus P$ for all $i \leq n$, and the empty sequence $w = ()$, and G is the submodule of F generated by all $(s_0, \ldots, s_n)s_n - (s_0, \ldots, s_{n-1})$ where $0 < n$ and $s_i \in R \setminus P$ for all $i \leq n$, and by $(s)s - w$ where $s \in R \setminus P$.
Definition

Let \(R \) be a valuation domain and \(P \) be a prime ideal in \(R \). Define

\[
F_P = F / G
\]

where \(F \) is the free module with the basis of all sequences \((s_0, \ldots, s_n)\) where \(n \geq 0 \), and \(s_i \in R \setminus P \) for all \(i \leq n \), and the empty sequence \(w = () \), and

\(G \) is the submodule of \(F \) generated by all \((s_0, \ldots, s_n)s_n - (s_0, \ldots, s_{n-1})\)

where \(0 < n \) and \(s_i \in R \setminus P \) for all \(i \leq n \), and by \((s)s - w\) where \(s \in R \setminus P \).

The module \(F_P \) is a tilting module of projective dimension \(\leq 1 \),
Fuchs tilting modules

Definition

Let \(R \) be a valuation domain and \(P \) be a prime ideal in \(R \). Define

\[
F_P = F/G
\]

where \(F \) is the free module with the basis of all sequences \((s_0, \ldots, s_n)\) where \(n \geq 0 \), and \(s_i \in R \setminus P \) for all \(i \leq n \), and the empty sequence \(w = () \), and

\(G \) is the submodule of \(F \) generated by all \((s_0, \ldots, s_n)s_n - (s_0, \ldots, s_{n-1})\) where \(0 < n \) and \(s_i \in R \setminus P \) for all \(i \leq n \), and by \((s)s - w\) where \(s \in R \setminus P \).

The module \(F_P \) is a tilting module of projective dimension \(\leq 1 \), called the **Fuchs tilting module** for \(P \).
Theorem
Theorem

Let R be a valuation domain.
Let R be a valuation domain. The Fuchs tilting modules are F_P where P runs over all prime ideals in R,
Theorem

Let \(R \) be a valuation domain. The Fuchs tilting modules modules \(F_P \) where \(P \) runs over all prime ideals in \(R \), classify all tilting modules up to equivalence.
Tilting modules over valuation domains

Theorem

Let R be a valuation domain. The Fuchs tilting modules \mathcal{F}_P where P runs over all prime ideals in R, classify all tilting modules up to equivalence.

The corresponding tilting classes are

$$\mathcal{T}_P = \{ M \in \text{Mod}-R \mid M_s = M \text{ for all } s \in R \setminus P \}.$$
A generalization: Localizing systems of ideals
A generalization: Localizing systems of ideals

Definition
Definition

Let R be a Prüfer domain with the quotient field Q.
Definition

Let R be a Prüfer domain with the quotient field Q. A filter \mathcal{L} of non–zero ideals of R is a \textit{finitely generated localizing system} provided that
A generalization: Localizing systems of ideals

Definition

Let R be a Prüfer domain with the quotient field Q. A filter \mathcal{L} of non–zero ideals of R is a **finitely generated localizing system** provided that

1. \mathcal{L} has a basis consisting of finitely generated ideals, and
A generalization: Localizing systems of ideals

Definition

Let R be a Prüfer domain with the quotient field Q. A filter \mathcal{L} of non–zero ideals of R is a **finitely generated localizing system** provided that:

1. \mathcal{L} has a basis consisting of finitely generated ideals, and
2. \mathcal{L} is multiplicatively closed.
A generalization: Localizing systems of ideals

Definition

Let R be a Prüfer domain with the quotient field Q. A filter \mathcal{L} of non–zero ideals of R is a finitely generated localizing system provided that

1. \mathcal{L} has a basis consisting of finitely generated ideals, and
2. \mathcal{L} is multiplicatively closed.

Note: Condition (2) can equivalently be requested in the following form:
A generalization: Localizing systems of ideals

Definition

Let R be a Prüfer domain with the quotient field Q. A filter \mathcal{L} of non-zero ideals of R is a **finitely generated localizing system** provided that

1. \mathcal{L} has a basis consisting of finitely generated ideals, and
2. \mathcal{L} is multiplicatively closed.

Note: Condition (2) can equivalently be requested in the following form:

\[J \in \mathcal{L} \text{ whenever } J \text{ is an ideal of } R \text{ such that there exists } I \in \mathcal{L} \text{ with} \]

(3) \[J \subseteq I \]
A generalization: Localizing systems of ideals

Definition

Let R be a Prüfer domain with the quotient field Q. A filter \mathcal{L} of non–zero ideals of R is a \textit{finitely generated localizing system} provided that

1. \mathcal{L} has a basis consisting of finitely generated ideals, and
2. \mathcal{L} is multiplicatively closed.

Note: Condition (2) can equivalently be requested in the following form:

$$J \in \mathcal{L} \text{ whenever } J \text{ is an ideal of } R \text{ such that there exists } I \in \mathcal{L} \text{ with } \{r \in R \mid ir \in J\} \in \mathcal{L} \text{ for all } i \in I.$$
Definition

\[\mathcal{L}_f = \text{the set of all finitely generated ideals in a finitely generated localizing system } \mathcal{L}. \]
Salce tilting modules

Definition

\[\mathcal{L}_f = \text{the set of all finitely generated ideals in a finitely generated localizing system } \mathcal{L}. \ \Lambda = \text{the set of all finite sequences of elements of } \mathcal{L}_0 \text{ (including the empty sequence } \emptyset). \]
Salce tilting modules

Definition

$\mathcal{L}_f = \text{the set of all finitely generated ideals in a finitely generated localizing system } \mathcal{L}$. $\Lambda = \text{the set of all finite sequences of elements of } \mathcal{L}_0$ (including the empty sequence \emptyset). Let $G_\emptyset = R$ and for $\emptyset \neq \lambda = (I_0, \ldots, I_k) \in \Lambda$, define
Salce tilting modules

Definition

$\mathcal{L}_f = \text{the set of all finitely generated ideals in a finitely generated localizing system } \mathcal{L}.$ $\Lambda = \text{the set of all finite sequences of elements of } \mathcal{L}_0 \text{ (including the empty sequence } \emptyset).$ Let $G_\emptyset = R$ and for $\emptyset \neq \lambda = (I_0, \ldots, I_k) \in \Lambda,$ define $G_\lambda = I_0^{-1} \ldots I_k^{-1} \subseteq Q.$
Salce tilting modules

Definition

$\mathcal{L}_f = \text{the set of all finitely generated ideals in a finitely generated localizing system } \mathcal{L}$. $\Lambda = \text{the set of all finite sequences of elements of } \mathcal{L}_0$ (including the empty sequence \emptyset). Let $G_{\emptyset} = R$ and for $\emptyset \neq \lambda = (I_0, \ldots, I_k) \in \Lambda$, define $G_\lambda = I_0^{-1} \ldots I_k^{-1} \subseteq Q$ and $\lambda^- = (I_0, \ldots, I_{k-1})$ for $k > 0$ and $\lambda^- = \emptyset$ otherwise.
Salce tilting modules

Definition

\(\mathcal{L}_f \) = the set of all finitely generated ideals in a finitely generated localizing system \(\mathcal{L} \). \(\Lambda \) = the set of all finite sequences of elements of \(\mathcal{L}_0 \) (including the empty sequence \(\emptyset \)). Let \(G_\emptyset = R \) and for \(\emptyset \neq \lambda = (I_0, \ldots, I_k) \in \Lambda \), define \(G_\lambda = I_0^{-1} \cdots I_k^{-1} \subseteq Q \) and \(\lambda^- = (I_0, \ldots, I_{k-1}) \) for \(k > 0 \) and \(\lambda^- = \emptyset \) otherwise. Let \(G = \bigoplus_{\lambda \in \Lambda} G_\lambda \).
Salce tilting modules

Definition

\mathcal{L}_f = the set of all finitely generated ideals in a finitely generated localizing system \mathcal{L}. Λ = the set of all finite sequences of elements of \mathcal{L}_0 (including the empty sequence \emptyset). Let $G_\emptyset = R$ and for $\emptyset \neq \lambda = (l_0, \ldots, l_k) \in \Lambda$, define $G_\lambda = l_0^{-1} \cdots l_k^{-1} \subseteq Q$ and $\lambda^- = (l_0, \ldots, l_{k-1})$ for $k > 0$ and $\lambda^- = \emptyset$ otherwise. Let $G = \bigoplus_{\lambda \in \Lambda} G_\lambda$.

Let H be the submodule of G generated by the elements $\{x_\sigma \mid \sigma \in \Lambda\} \in G$.
Definition

\mathcal{L}_f = the set of all finitely generated ideals in a finitely generated localizing system \mathcal{L}. Λ = the set of all finite sequences of elements of \mathcal{L}_0 (including the empty sequence \emptyset). Let $G_\emptyset = R$ and for $\emptyset \neq \lambda = (I_0, \ldots, I_k) \in \Lambda$, define $G_\lambda = I_0^{-1} \ldots I_k^{-1} \subseteq Q$ and $\lambda^- = (I_0, \ldots, I_{k-1})$ for $k > 0$ and $\lambda^- = \emptyset$ otherwise. Let $G = \bigoplus_{\lambda \in \Lambda} G_\lambda$.

Let H be the submodule of G generated by the elements $\{x_\sigma \mid \sigma \in \Lambda\} \in G$ such that there exists $\emptyset \neq \lambda \in \Lambda$ with $x_{\lambda^-} = -x_\lambda$.
Definition

\(\mathcal{L}_f = \) the set of all finitely generated ideals in a finitely generated localizing system \(\mathcal{L} \). \(\Lambda = \) the set of all finite sequences of elements of \(\mathcal{L}_0 \) (including the empty sequence \(\emptyset \)). Let \(G_\emptyset = R \) and for \(\emptyset \neq \lambda = (I_0, \ldots, I_k) \in \Lambda \), define \(G_\lambda = I_0^{-1} \cdots I_k^{-1} \subseteq Q \) and \(\lambda^- = (I_0, \ldots, I_{k-1}) \) for \(k > 0 \) and \(\lambda^- = \emptyset \) otherwise. Let \(G = \bigoplus_{\lambda \in \Lambda} G_\lambda \).

Let \(H \) be the submodule of \(G \) generated by the elements \(\{ x_\sigma \mid \sigma \in \Lambda \} \in G \) such that there exists \(\emptyset \neq \lambda \in \Lambda \) with \(x_{\lambda^-} = -x_\lambda \) and \(x_\sigma = 0 \) for all \(\sigma \neq \lambda^-, \lambda \).
Salce tilting modules

Definition

\(\mathcal{L}_f = \) the set of all finitely generated ideals in a finitely generated localizing system \(\mathcal{L} \). \(\Lambda = \) the set of all finite sequences of elements of \(\mathcal{L}_0 \) (including the empty sequence \(\emptyset \)). Let \(G_\emptyset = R \) and for \(\emptyset \neq \lambda = (I_0, \ldots, I_k) \in \Lambda \), define \(G_\lambda = I_0^{-1} \ldots I_k^{-1} \subseteq Q \) and \(\lambda^- = (I_0, \ldots, I_{k-1}) \) for \(k > 0 \) and \(\lambda^- = \emptyset \) otherwise. Let \(G = \bigoplus_{\lambda \in \Lambda} G_\lambda \).

Let \(H \) be the submodule of \(G \) generated by the elements \(\{x_\sigma \mid \sigma \in \Lambda\} \in G \) such that there exists \(\emptyset \neq \lambda \in \Lambda \) with \(x_{\lambda^-} = -x_\lambda \) and \(x_\sigma = 0 \) for all \(\sigma \neq \lambda^-, \lambda \).

Define \(S_\mathcal{L} = G/H \).
Salce tilting modules

Definition

L_f = the set of all finitely generated ideals in a finitely generated localizing system L. Λ = the set of all finite sequences of elements of L_0 (including the empty sequence \emptyset). Let $G_\emptyset = R$ and for $\emptyset \neq \lambda = (I_0, \ldots, I_k) \in \Lambda$, define $G_\lambda = I_0^{-1} \cdots I_k^{-1} \subseteq Q$ and $\lambda^- = (I_0, \ldots, I_{k-1})$ for $k > 0$ and $\lambda^- = \emptyset$ otherwise. Let $G = \bigoplus_{\lambda \in \Lambda} G_\lambda$.

Let H be the submodule of G generated by the elements $\{x_\sigma \mid \sigma \in \Lambda\} \in G$ such that there exists $\emptyset \neq \lambda \in \Lambda$ with $x_{\lambda^-} = -x_\lambda$ and $x_\sigma = 0$ for all $\sigma \neq \lambda^-, \lambda$.

Define $S_L = G/H$.

Then S_L is a tilting module of projective dimension ≤ 1,
Salce tilting modules

Definition

\(\mathcal{L}_f = \) the set of all finitely generated ideals in a finitely generated localizing system \(\mathcal{L} \). \(\Lambda = \) the set of all finite sequences of elements of \(\mathcal{L}_0 \) (including the empty sequence \(\emptyset \)). Let \(G_\emptyset = R \) and for \(\emptyset \neq \lambda = (I_0, \ldots, I_k) \in \Lambda \), define \(G_\lambda = I_0^{-1} \cdots I_k^{-1} \subseteq Q \) and \(\lambda^- = (I_0, \ldots, I_{k-1}) \) for \(k > 0 \) and \(\lambda^- = \emptyset \) otherwise. Let \(G = \bigoplus_{\lambda \in \Lambda} G_\lambda \).

Let \(H \) be the submodule of \(G \) generated by the elements \(\{x_\sigma \mid \sigma \in \Lambda\} \in G \) such that there exists \(\emptyset \neq \lambda \in \Lambda \) with \(x_{\lambda^-} = -x_\lambda \) and \(x_\sigma = 0 \) for all \(\sigma \neq \lambda^-, \lambda \).

Define \(S_\mathcal{L} = G/H \).

Then \(S_\mathcal{L} \) is a tilting module of projective dimension \(\leq 1 \), called the Salce tilting module for \(\mathcal{L} \).
Tilting modules over Prüfer domains
Theorem
Theorem

Let R be a Prüfer domain.
Tilting modules over Prüfer domains

Theorem

Let R be a Prüfer domain. The Salce tilting modules S_L
Theorem

Let R be a Prüfer domain. The Salce tilting modules S_L where L runs over all finitely generated localizing systems in R,
Theorem

Let R be a Prüfer domain. The Salce tilting modules S_L where L runs over all finitely generated localizing systems in R, classify all tilting modules up to equivalence.
Theorem

Let R be a Prüfer domain. The Salce tilting modules S_L where L runs over all finitely generated localizing systems in R, classify all tilting modules up to equivalence.

The corresponding tilting classes are

$$\mathcal{T}_L = \{ M \in \text{Mod–}R \mid MI = M \text{ for all } I \in L \}.$$
Theorem

Let R be a Prüfer domain. The Salce tilting modules $S_\mathcal{L}$ where \mathcal{L} runs over all finitely generated localizing systems in R, classify all tilting modules up to equivalence.

The corresponding tilting classes are

$$\mathcal{T}_\mathcal{L} = \{ M \in \text{Mod–}R \mid MI = M \text{ for all } I \in \mathcal{L} \}.$$

Remark: These are exactly the special preenveloping torsion classes in $\text{Mod–}R$.
Tilting for commutative noetherian rings:
1–Gorenstein rings
Tilting for commutative noetherian rings: 1–Gorenstein rings
Let R be a 1–Gorenstein ring. Then tilting classes are parametrized by the subsets of the set P_1 of all prime ideals of height 1.
Let R be a 1–Gorenstein ring. Then tilting classes are parametrized by the subsets of the set P_1 of all prime ideals of height 1. Given $P \subseteq P_1$, the corresponding tilting class is

$$\mathcal{T}_P = \{ M \in \text{Mod-}R \mid \text{Ext}^1_R(E(R/p), M) = 0 \text{ for all } p \in P \}.$$
Let R be a 1–Gorenstein ring. Then tilting classes are parametrized by the subsets of the set P_1 of all prime ideals of height 1. Given $P \subseteq P_1$, the corresponding tilting class is

$$
T_P = \{ M \in \text{Mod-}R \mid \text{Ext}^1_R(E(R/p), M) = 0 \text{ for all } p \in P \}.
$$

This class is induced by the tilting module $T_P = R_P \oplus \bigoplus_{p \in P} E(R/p)$ where R_P is the subring of $Q_{cl}(R)$ containing R and satisfying $R_P/R \cong \bigoplus_{p \in P} E(R/p)$.
Let \(R \) be a 1–Gorenstein ring. Then tilting classes are parametrized by the subsets of the set \(P_1 \) of all prime ideals of height 1. Given \(P \subseteq P_1 \), the corresponding tilting class is

\[
\mathcal{T}_P = \{ M \in \text{Mod-}R \mid \text{Ext}^1_R(E(R/p), M) = 0 \text{ for all } p \in P \}.
\]

This class is induced by the tilting module \(T_P = R_P \oplus \bigoplus_{p \in P} E(R/p) \) where \(R_P \) is the subring of \(Q_{cl}(R) \) containing \(R \) and satisfying \(R_P/R \cong \bigoplus_{p \in P} E(R/p) \). The \(T_P \) is called the Bass tilting module.
Let R be a 1–Gorenstein ring. Then tilting classes are parametrized by the subsets of the set P_1 of all prime ideals of height 1.

Given $P \subseteq P_1$, the corresponding tilting class is

$$T_P = \{ M \in \text{Mod-}R \mid \text{Ext}^1_R(E(R/p), M) = 0 \text{ for all } p \in P \}.$$

This class is induced by the tilting module $T_P = R_P \oplus \bigoplus_{p \in P} E(R/p)$ where R_P is the subring of $Q_{cl}(R)$ containing R and satisfying $R_P/R \cong \bigoplus_{p \in P} E(R/p)$. The T_P is called the Bass tilting module.

Moreover, $T_P = S_P^{\perp}$, where $S_P = \{ F_p \mid p \in P \}$, and F_p is the Auslander–Buchweitz approximation of R/p.
Tilting for regular rings of Krull dimension two
Tilting for regular rings of Krull dimension two

The representing tilting modules have been characterized only in the local case.
The representing tilting modules have been characterized only in the local case.

There are of three kinds:
The representing tilting modules have been characterized only in the local case.

There are of three kinds:

1. ordinary 1–dimensional (= generalized Fuchs tilting modules),
2. ordinary 2–dimensional (obtained by localization), and
3. two exceptional tilting modules T_e and T_f.
The representing tilting modules have been characterized only in the local case.

There are of three kinds:

1. ordinary 1–dimensional (= generalized Fuchs tilting modules),
2. ordinary 2–dimensional (obtained by localization), and
3. two exceptional tilting modules T_e and T_f.

Example

The tilting class \mathcal{I}_1 is induced by an exceptional tilting module T_e such that T_e is countably generated, torsionfree, and $\text{pd} T_e = 1$.
The dual setting
The dual setting

Definition

Let R be a ring and $n < \omega$. A left R–module C is n–cotilting provided

(C1) $\text{id}_R(C) \leq n$.

(C2) $\text{Ext}^i_R(C^\kappa, C) = 0$ for all $1 \leq i$ and all cardinals κ.

(C3) There is an injective cogenerator W and a long exact sequence

$$0 \to C_n \to C_{n-1} \to \cdots \to C_0 \to W \to 0,$$

with $C_i \in \text{Prod}C$.

The class $\perp C = \{ M \in R\text{-Mod} \mid \text{Ext}^i_R(M, C) = 0$ for all $i \geq 1 \}$ is the cotilting class induced by C.

The cotilting modules C and C' are equivalent if $\perp C = \perp C'$.
Duality: formal versus explicit
The notions of a cotilting and tilting module are formally dual, but there is also an explicit duality:
The notions of a cotilting and tilting module are formally dual, but there is also an explicit duality:

Let R be a ring, $n \geq 0$, and T be an n–tilting right R–module. Then the dual module $C = T^* = \text{Hom}_\mathbb{Z}(T, \mathbb{Q}/\mathbb{Z})$ is an n–cotilting left R–module.
The notions of a cotilting and tilting module are formally dual, but there is also an explicit duality:

Let R be a ring, $n \geq 0$, and T be an n–tilting right R–module. Then the dual module $C = T^* = \text{Hom}_\mathbb{Z}(T, \mathbb{Q}/\mathbb{Z})$ is an n–cotilting left R–module.

The tilting right R–modules T and T' are equivalent, iff the dual modules T^* and $(T')^*$ are equivalent cotilting left R–modules.
The notions of a cotilting and tilting module are formally dual, but there is also an explicit duality:

Let \(R \) be a ring, \(n \geq 0 \), and \(T \) be an \(n \)–tilting right \(R \)–module. Then the dual module \(C = T^* = \text{Hom}_\mathbb{Z}(T, \mathbb{Q}/\mathbb{Z}) \) is an \(n \)–cotilting left \(R \)–module.

The tilting right \(R \)–modules \(T \) and \(T' \) are equivalent, iff the dual modules \(T^* \) and \((T')^* \) are equivalent cotilting left \(R \)–modules.

Moreover, if \(S \) is a set consisting of strongly finitely presented modules of projective dimension \(\leq n \) such that \(T^\perp = S^\perp \) is the tilting class induced by \(T \), then

\[
\perp T^* = S^T = \{ N \in R\text{-Mod} \mid \text{Tor}_i^R(S, N) = 0 \text{ for all } i \geq 1 \text{ and } S \in S \}
\]

is the cotilting class induced by \(T^* \).
Cofinite type
Cofinite type

The cotilting modules and classes of the form T^* and $\perp T^*$, respectively, are called of cofinite type.
The cotilting modules and classes of the form T^* and $\perp T^*$, respectively, are called of cofinite type.

The map $T \mapsto T^*$ induces a bijection between equivalence classes of tilting modules on the one hand, and equivalence classes of cotilting modules of cofinite type on the other hand.
Cofinite type

The cotilting modules and classes of the form \(T^* \) and \(\perp T^* \), respectively, are called of \textbf{cofinite type}. The map \(T \mapsto T^* \) induces a bijection between equivalence classes of tilting modules on the one hand, and equivalence classes of cotilting modules of cofinite type on the other hand.

Similarly, the maps

\[
T \mapsto (\perp T \cap \text{mod-}R)^T
\]

and

\[
C \mapsto (T^C \cap \text{mod-}R)^\perp
\]

provide for a 1–1 correspondence between tilting classes, and cotilting classes of cofinite type.
Valuation domains and cofinite type

Theorem

Let R be a valuation domain. Then all cotilting classes are of cofinite type, iff R is strongly discrete (that is, R has no non–zero idempotent prime ideals).
Valuation domains and cofinite type

Theorem

Let R be a valuation domain. Then all cotilting classes are of cofinite type, iff R is strongly discrete (that is, R has no non–zero idempotent prime ideals).

Example

Let R be a maximal valuation domain with an idempotent maximal ideal m. Then the class of all modules M whose torsion part is annihilated by m is 1–cotilting, but not of cofinite type.
The role of associated primes in the noetherian setting
A subset $P \subseteq \text{Spec}(R)$ is closed under generalization provided that (P, \subseteq) is a lower subset in $(\text{Spec}(R), \subseteq)$.
A subset $P \subseteq \text{Spec}(R)$ is **closed under generalization** provided that (P, \subseteq) is a lower subset in $(\text{Spec}(R), \subseteq)$.

Theorem (The structure of 1–cotilting classes)
A subset \(P \subseteq \text{Spec}(R) \) is **closed under generalization** provided that \((P, \subseteq)\) is a lower subset in \((\text{Spec}(R), \subseteq)\).

Theorem (The structure of 1–cotilting classes)

Let \(R \) be a commutative noetherian ring. Then there is a 1–1 correspondence between

1. the 1–cotilting classes \(\mathcal{C} \) in \(\text{Mod}-R \), and
2. the subsets \(P \) of \(\text{Spec}(R) \) containing \(\text{Ass}(R) \) and closed under generalization.
A subset $P \subseteq \text{Spec}(R)$ is **closed under generalization** provided that (P, \subseteq) is a lower subset in $(\text{Spec}(R), \subseteq)$.

Theorem (The structure of 1–cotilting classes)

Let R be a commutative noetherian ring. Then there is a 1–1 correspondence between

1. the 1–cotilting classes \mathcal{C} in $\text{Mod-}R$, and
2. the subsets P of $\text{Spec}(R)$ containing $\text{Ass}(R)$ and closed under generalization.

It is given by the inverse assignments $\mathcal{C} \mapsto \text{Ass}(\mathcal{C})$ and $P \mapsto \{M \in \text{Mod-}R \mid \text{Ass}(M) \subseteq P\}$.
The Auslander–Bridger transpose
Let $C \in \text{mod–}R$ and $P_1 \xrightarrow{f} P_0 \rightarrow C \rightarrow 0$ be a projective presentation of C. The transpose of C, denoted by $\text{Tr}(C)$, is the cokernel of f^+, where $(-)^+ = \text{Hom}_R(-, R)$.
Let $C \in \text{mod–} R$ and $P_1 \xrightarrow{f} P_0 \rightarrow C \rightarrow 0$ be a projective presentation of C. The transpose of C, denoted by $\text{Tr}(C)$, is the cokernel of f^+, where $(-)^+ = \text{Hom}_R(-, R)$. That is, we have an exact sequence

$$P_0^+ \xrightarrow{f^+} P_1^+ \rightarrow \text{Tr}(C) \rightarrow 0.$$
Let $C \in \text{mod–}R$ and $P_1 \xrightarrow{f} P_0 \to C \to 0$ be a projective presentation of C. The transpose of C, denoted by $\text{Tr}(C)$, is the cokernel of f^+, where $(-)^+ = \text{Hom}_R(-, R)$. That is, we have an exact sequence

$$P_0^+ \xrightarrow{f^+} P_1^+ \to \text{Tr}(C) \to 0.$$

$\text{Tr}(C)$ is uniquely determined up to adding or splitting off a projective summand.
The Auslander–Bridger transpose

Let \(C \in \text{mod–}R \) and \(P_1 \xrightarrow{f} P_0 \rightarrow C \rightarrow 0 \) be a projective presentation of \(C \). The transpose of \(C \), denoted by \(\text{Tr}(C) \), is the cokernel of \(f^+ \), where \((-)^+ = \text{Hom}_R(-, R)\).

That is, we have an exact sequence

\[
P_0^+ \xrightarrow{f^+} P_1^+ \rightarrow \text{Tr}(C) \rightarrow 0.
\]

\(\text{Tr}(C) \) is uniquely determined up to adding or splitting off a projective summand.

Lemma

Let \(p \in \text{Spec}(R) \) be such that \(\text{Ass}(R) \cap V(p) = \emptyset \). Then

(i) \(pd_R(\text{Tr}(R/p)) \leq 1 \);

(ii) \(\text{Hom}_R(R/p, -) \) and \(\text{Tor}_1^R(\text{Tr}(R/p), -) \) are isomorphic functors.
A classification of 1–tilting classes
Corollary

Let R be a commutative noetherian ring. Then all 1–cotilting classes are of cofinite type, so there is a bijection between 1–tilting classes and the subsets P of $\text{Spec}(R)$ containing $\text{Ass}(R)$ and closed under generalization.
A classification of 1–tilting classes

Corollary

Let R be a commutative noetherian ring. Then all 1–cotilting classes are of cofinite type, so there is a bijection between 1–tilting classes and the subsets P of $\text{Spec}(R)$ containing $\text{Ass}(R)$ and closed under generalization. For such P, the corresponding 1–tilting class is

$$T = \bigcap_{q \in \text{Spec}(R) \setminus P} \text{Tr}(R/q)^\perp.$$
Characteristic sequences
Definition

Let R be a commutative noetherian ring. A sequence $\mathcal{P} = (P_0, \ldots, P_{n-1})$ of subsets of $\text{Spec}(R)$ is called characteristic provided that

(i) P_i is closed under generalization for all $i < n$,
(ii) $P_0 \subseteq P_1 \subseteq \cdots \subseteq P_{n-1}$, and
(iii) $\text{Ass}(\Omega^{-i}(R)) \subseteq P_i$ for all $i < n$.

Characteristic sequences

Definition

Let R be a commutative noetherian ring. A sequence $\mathcal{P} = (P_0, \ldots, P_{n-1})$ of subsets of $\text{Spec}(R)$ is called characteristic provided that

(i) P_i is closed under generalization for all $i < n$,

(ii) $P_0 \subseteq P_1 \subseteq \cdots \subseteq P_{n-1}$, and

(iii) $\text{Ass}(\Omega^{-i}(R)) \subseteq P_i$ for all $i < n$.

For each characteristic sequence \mathcal{P}, we define the class of modules

$$
\mathcal{C}_\mathcal{P} = \{ M \in \text{Mod-}R \mid \text{Ass}(\Omega^{-i}(M)) \subseteq P_i \text{ for all } i < n \}
$$
A classification of n–cotilting classes
A classification of n–cotilting classes

Theorem

Let R be a commutative noetherian ring, $n \geq 1$, and $P = (P_0, \ldots, P_{n-1})$ be a characteristic sequence.
Theorem

Let R be a commutative noetherian ring, $n \geq 1$, and $\mathcal{P} = (P_0, \ldots, P_{n-1})$ be a characteristic sequence. Then $\mathcal{C}_\mathcal{P}$ is an n–cotilting class,
A classification of n–cotilting classes

Theorem

Let R be a commutative noetherian ring, $n \geq 1$, and $\mathcal{P} = (P_0, \ldots, P_{n-1})$ be a characteristic sequence. Then $\mathcal{C}_\mathcal{P}$ is an n–cotilting class, and the assignments

$$\mathcal{C} \mapsto (\text{Ass}(\mathcal{C}_0), \ldots, \text{Ass}(\mathcal{C}_{n-1}))$$

and

$$\mathcal{P} = (P_0, \ldots, P_{n-1}) \mapsto \mathcal{C}_\mathcal{P}$$

are inverse bijections.
A classification of \(n\)-cotilting classes

Theorem

Let \(R\) be a commutative noetherian ring, \(n \geq 1\), and \(\mathcal{P} = (P_0, \ldots, P_{n-1})\) be a characteristic sequence. Then \(C_{\mathcal{P}}\) is an \(n\)-cotilting class, and the assignments

\[C \mapsto (\text{Ass}(C_0), \ldots, \text{Ass}(C_{n-1})) \]

and

\[\mathcal{P} = (P_0, \ldots, P_{n-1}) \mapsto C_{\mathcal{P}} \]

are inverse bijections.

Lemma

Let \(R\) be a ring and \(C\) be an \(n\)-cotilting module with the induced class \(C\). For each \(i \leq n\), let \(C_i = \bot \Omega^{-i}(C)\).

Jan Trlifaj (Univerzita Karlova, Praha)
Tilting for commutative rings
A classification of \(n \)-cotilting classes

Theorem

Let \(R \) be a commutative noetherian ring, \(n \geq 1 \), and \(\mathcal{P} = (P_0, \ldots, P_{n-1}) \) be a characteristic sequence. Then \(C_{\mathcal{P}} \) is an \(n \)-cotilting class, and the assignments

\[
\mathcal{C} \mapsto (\text{Ass}(C_0), \ldots, \text{Ass}(C_{n-1}))
\]

and

\[
\mathcal{P} = (P_0, \ldots, P_{n-1}) \mapsto C_{\mathcal{P}}
\]

are inverse bijections.

Lemma

Let \(R \) be a ring and \(C \) be an \(n \)-cotilting module with the induced class \(\mathcal{C} \). For each \(i \leq n \), let \(C_i = \bot \Omega^{-i}(C) \). Then \(C_i \) is an \((n - i)\)-cotilting class.
The transpose revisited
Lemma

Let $\mathfrak{p} \in \text{Spec}(R)$ and $n \geq 1$ such that $\text{Ass}(\Omega^{-i}(R)) \cap V(\mathfrak{p}) = \emptyset$ for each $i < n$. Then

(i) $pd_R(\text{Tr}(R/\mathfrak{p})) \leq n$.

(ii) $\text{Ext}^{n-1}_R(R/\mathfrak{p}, -)$ and $\text{Tor}_1^R(\text{Tr}(\Omega^{(n-1)}(R/\mathfrak{p})), -)$ are isomorphic functors.

(iii) $\text{Ext}_R^1(\Omega^{(n-1)}(R/\mathfrak{p})), -)$ and $\text{Tor}_{n-1}^R(R/\mathfrak{p}, -)$ are isomorphic functors.
Complete classification for commutative noetherian rings
Theorem

Let $n \geq 1$. Then there are bijections between:

(i) the characteristic sequences in $\text{Spec}(R)$,
(ii) n–tilting classes \mathcal{T},
(iii) n–cotilting classes \mathcal{C}.
Theorem

Let $n \geq 1$. Then there are bijections between:

(i) the characteristic sequences in $\text{Spec}(R)$,

(ii) n–tilting classes \mathcal{T},

(iii) n–cotilting classes \mathcal{C}.

A characteristic sequence (P_0, \ldots, P_{n-1}) corresponds to the n–tilting class

$$\mathcal{T} = \{ M \in \text{Mod–}R \mid \text{Tor}_i^R(R/p, M) = 0 \forall i < n \forall p \notin P_i \} =$$

$$\{ M \in \text{Mod–}R \mid \text{Ext}_1^R(\text{Tr}(\Omega^{(i)}(R/p)), M) = 0 \forall i < n \forall p \notin P_i \}.$$
Theorem

Let $n \geq 1$. Then there are bijections between:

(i) the characteristic sequences in $\text{Spec}(R)$,
(ii) n–tilting classes \mathcal{T},
(iii) n–cotilting classes \mathcal{C}.

A characteristic sequence (P_0, \ldots, P_{n-1}) corresponds to the n–tilting class

$$\mathcal{T} = \{ M \in \text{Mod}_R | \text{Tor}_i^R(R/p, M) = 0 \forall i < n \forall p \notin P_i \} =$$

$$\{ M \in \text{Mod}_R | \text{Ext}_R^1(\text{Tr}(\Omega^i(R/p)), M) = 0 \forall i < n \forall p \notin P_i \},$$

and the n–cotilting class

$$\mathcal{C} = \{ M \in \text{Mod}_R | \text{Ext}_i^R(R/p, M) = 0 \forall i < n \forall p \notin P_i \} =$$

$$\{ M \in \text{Mod}_R | \text{Tor}_1^R(\text{Tr}(\Omega^i(R/p)), M) = 0 \forall i < n \forall p \notin P_i \}.$$
Minimal cotilting modules
Definition
A cotilting module C is \textit{minimal} provided that C is a direct summand in each cotilting module equivalent to C.

Definition

A cotilting module C is **minimal** provided that C is a direct summand in each cotilting module equivalent to C.

Lemma (uniqueness)

*If C and C' are minimal cotilting modules such that C is equivalent to C', then $C \cong C'$.***
Definition

A cotilting module C is **minimal** provided that C is a direct summand in each cotilting module equivalent to C.

Lemma (uniqueness)

If C and C' are minimal cotilting modules such that C is equivalent to C', then $C \cong C'$.

Example

Let R be a commutative noetherian ring and $C = \bigoplus_{m \in \text{Spec}(R)} E(R/m)$. Then C is a minimal 0-cotilting module (= minimal injective cogenerator).
Iterated injective covers
Iterated injective covers

Definition

Let R be commutative noetherian, and $\mathcal{P} = (P_0, \ldots, P_{n-1})$ be a characteristic sequence. Define $P_{-1} = \emptyset$ and $P_n = \text{Spec}(R)$.
Definition

Let R be commutative noetherian, and $\mathcal{P} = (P_0, \ldots, P_{n-1})$ be a characteristic sequence. Define $P_{-1} = \emptyset$ and $P_n = \text{Spec}(R)$.

For each $i < n$, let $\mathcal{I}(P_i)$ be the class of all injective modules I with $\text{Ass}(I) \subseteq P_i$.
Iterated injective covers

Definition

Let R be commutative noetherian, and $\mathcal{P} = (P_0, \ldots, P_{n-1})$ be a characteristic sequence. Define $P_{-1} = \emptyset$ and $P_n = \text{Spec}(R)$.

For each $i < n$, let $\mathcal{I}(P_i)$ be the class of all injective modules I with $\text{Ass}(I) \subseteq P_i$.

For each $i < n$ and each non-empty subset $S \subseteq P_i \setminus P_{i-1}$, let $E_S = \bigoplus_{p \in S} E(R/p)$ and consider the long exact sequence

$$
0 \to C_S \to E_0 \xrightarrow{\varphi_0} E_1 \xrightarrow{\varphi_1} \ldots \xrightarrow{\varphi_{i-2}} E_{i-1} \xrightarrow{\varphi_{i-1}} E_S \to 0
$$
Iterated injective covers

Definition

Let \(R \) be commutative noetherian, and \(\mathcal{P} = (P_0, \ldots, P_{n-1}) \) be a characteristic sequence. Define \(P_{-1} = \emptyset \) and \(P_n = \text{Spec}(R) \).

For each \(i < n \), let \(\mathcal{I}(P_i) \) be the class of all injective modules \(I \) with \(\text{Ass}(I) \subseteq P_i \).

For each \(i < n \) and each non-empty subset \(S \subseteq P_i \setminus P_{i-1} \), let \(E_S = \bigoplus_{p \in S} E(R/p) \) and consider the long exact sequence

\[
0 \to C_S \to E_0 \xrightarrow{\varphi_0} E_1 \xrightarrow{\varphi_1} \ldots \xrightarrow{\varphi_{i-2}} E_{i-1} \xrightarrow{\varphi_{i-1}} E_S \to 0
\]

such that \(\varphi_{i-1} \) is a \(\mathcal{I}(P_{i-1}) \)-cover of \(E_S \), and for each \(0 < j < i - 1 \), \(\varphi_j = \mu_j \circ \psi_j \), where \(\mu_j \) is the inclusion of \(K_j = \text{Ker}(\varphi_{j+1}) \) into \(E_{j+1} \), and \(\psi_j : E_j \to K_j \) is a \(\mathcal{I}(P_j) \)-cover.
The structure of minimal cotilting modules
The structure of minimal cotilting modules

Theorem

Let R be a commutative noetherian ring. Let $\mathcal{P} = (P_0, \ldots, P_{n-1})$ be a characteristic sequence and \mathcal{C} be the corresponding n-cotilting class.
The structure of minimal cotilting modules

Theorem

Let R be a commutative noetherian ring. Let $\mathcal{P} = (P_0, \ldots, P_{n-1})$ be a characteristic sequence and \mathcal{C} be the corresponding n-cotilting class.

There is a minimal n-cotilting module C inducing \mathcal{C}.
The structure of minimal cotilting modules

Theorem

Let R be a commutative noetherian ring. Let $\mathcal{P} = (P_0, \ldots, P_{n-1})$ be a characteristic sequence and \mathcal{C} be the corresponding n-cotilting class.

There is a minimal n-cotilting module C inducing \mathcal{C}.

Moreover, $C \cong C_{S_0} \oplus \cdots \oplus C_{S_n}$ where S_i is the set of all maximal elements in $P_i \setminus P_{i-1}$, for all $i \leq n$.
Cotilting and colocalization
Cotilting and colocalization

Troubles with localization of cotilting modules ...
Cotilting and colocalization

Troubles with localization of cotilting modules ...

Definition

Let R be a commutative ring, M an R-module, and $m \in \text{mSpec}(R)$. Denote by M^m the R_m-module $\text{Hom}_R(R_m, M)$; it is called the colocalization of M at m.
Cotilting and colocalization

Troubles with localization of cotilting modules ...

Definition

Let R be a commutative ring, M an R-module, and $m \in m\text{Spec}(R)$. Denote by M^m the R_m-module $\text{Hom}_R(R_m, M)$; it is called the **colocalization** of M at m.

Theorem

Let R be a commutative noetherian ring, $n < \omega$, and C be an n-cotilting R-module.
Cotilting and colocalization

Troubles with localization of cotilting modules ...

Definition
Let R be a commutative ring, M an R-module, and $m \in \text{mSpec}(R)$. Denote by M^m the R_m-module $\text{Hom}_R(R_m, M)$; it is called the colocalization of M at m.

Theorem
Let R be a commutative noetherian ring, $n < \omega$, and C be an n-cotilting R-module.

Then for each $m \in \text{mSpec}(R)$, C^m is an n-cotilting R_m-module, and $D = \prod_{m \in \text{mSpec}(R)} C^m$ is an n-cotilting R-module equivalent to C.
Cotilting and colocalization

Troubles with localization of cotilting modules ...

Definition

Let R be a commutative ring, M an R-module, and $m \in \text{mSpec}(R)$. Denote by M^m the R_m-module $\text{Hom}_R(R_m, M)$; it is called the **colocalization** of M at m.

Theorem

Let R be a commutative noetherian ring, $n < \omega$, and C be an n-cotilting R-module. Then for each $m \in \text{mSpec}(R)$, C^m is an n-cotilting R_m-module, and $D = \prod_{m \in \text{mSpec}(R)} C^m$ is an n-cotilting R-module equivalent to C. Moreover, $(C^m | m \in \text{mSpec}(R))$ is a **compatible family** of n-cotilting modules, and cotilting R-modules correspond 1-1 to such compatible families.
Theorem

Let R be a commutative ring, $n < \omega$, and T be an n-tilting R-module. Then for each $m \in \text{mSpec}(R)$, T_m is an n-tilting R_m-module.
Tilting and localization

Theorem

Let R be a commutative ring, $n < \omega$, and T be an n-tilting R-module. Then for each $m \in \text{mSpec}(R)$, T_m is an n-tilting R_m-module.

Remark

If R is moreover noetherian, then $(T_m \mid m \in \text{mSpec}(R))$ is a compatible family of n-tilting modules. Tilting R-modules correspond 1-1 to such compatible families.
Tilting and localization

Theorem

Let R be a commutative ring, $n < \omega$, and T be an n-tilting R-module. Then for each $m \in \text{mSpec}(R)$, T_m is an n-tilting R_m-module.

Remark

If R is moreover noetherian, then $(T_m \mid m \in \text{mSpec}(R))$ is a compatible family of n-tilting modules. Tilting R-modules correspond 1-1 to such compatible families. However, there is no simple way to recover T from the compatible family $(T_m \mid m \in \text{mSpec}(R))$. !!!!
A research outlook
1. Describe the structure of tilting modules over commutative noetherian rings.
A research outlook

1. Describe the structure of tilting modules over commutative noetherian rings.

Known only in very particular cases: for one dimensional rings (the Bass tilting modules), and for regular local rings of Krull dimension two.
1. Describe the structure of tilting modules over commutative noetherian rings.

Known only in very particular cases: for one dimensional rings (the Bass tilting modules), and for regular local rings of Krull dimension two. However, the two dimensional (global) regular case is open.
1. Describe the structure of tilting modules over commutative noetherian rings.

Known only in very particular cases: for one dimensional rings (the Bass tilting modules), and for regular local rings of Krull dimension two. However, the two dimensional (global) regular case is open.

2. Describe the structure of tilting and cotilting modules over Matlis domains.
A research outlook

1. Describe the structure of tilting modules over commutative noetherian rings.

Known only in very particular cases: for one dimensional rings (the Bass tilting modules), and for regular local rings of Krull dimension two. However, the two dimensional (global) regular case is open.

2. Describe the structure of tilting and cotilting modules over Matlis domains.

The APD and Prüfer cases are done.
References

