Structural decompositions in module theory and their constraints

9th International Algebraic Conference in Ukraine
Lviv, July 8, 2013

Jan Trlifaj (Univerzita Karlova, Praha)
Overview

Part I: Decomposable classes
Part I: Decomposable classes (the rare jewels)
Overview

Part I: Decomposable classes (the rare jewels)

Classic decomposition theorems.
Overview

- **Part I: Decomposable classes** *(the rare jewels)*
 - Classic decomposition theorems.

- **Part II: Deconstructible classes**
Overview

- **Part I: Decomposable classes** *(the rare jewels)*
 - Classic decomposition theorems.

- **Part II: Deconstructible classes** *(the ubiquitous mainstream)*
Overview

- **Part I: Decomposable classes** *(the rare jewels)*
 - Classic decomposition theorems.

- **Part II: Deconstructible classes** *(the ubiquitous mainstream)*
 - Filtrations and transfinite extensions.
 - Deconstructibility and approximations.
Overview

- **Part I: Decomposable classes** *(the rare jewels)*
 1. Classic decomposition theorems.

- **Part II: Deconstructible classes** *(the ubiquitous mainstream)*
 1. Filtrations and transfinite extensions.
 2. Deconstructibility and approximations.

- **Part III: Non-deconstructibility**
Overview

- **Part I: Decomposable classes** (the rare jewels)
 1. Classic decomposition theorems.

- **Part II: Deconstructible classes** (the ubiquitous mainstream)
 1. Filtrations and transfinite extensions.
 2. Deconstructibility and approximations.

- **Part III: Non-deconstructibility** (reaching the limits)
Overview

- **Part I: Decomposable classes** *(the rare jewels)*
 1. Classic decomposition theorems.

- **Part II: Deconstructible classes** *(the ubiquitous mainstream)*
 1. Filtrations and transfinite extensions.
 2. Deconstructibility and approximations.

- **Part III: Non-deconstructibility** *(reaching the limits)*
 1. The basic example: Mittag-Leffler modules.
 2. Trees and locally free modules.
 3. Non-deconstructibility and infinite dimensional tilting theory.
Part I: Decomposable classes
Part I: Decomposable classes

(blocks put in a row)
Definition

A class of modules \mathcal{C} is **decomposable**, provided there is a cardinal κ such that each module in \mathcal{C} is a direct sum of $< \kappa$-generated modules from \mathcal{C}.
Definition

A class of modules \mathcal{C} is **decomposable**, provided there is a cardinal κ such that each module in \mathcal{C} is a direct sum of $< \kappa$-generated modules from \mathcal{C}.

Some classic examples
Definition

A class of modules \mathcal{C} is **decomposable**, provided there is a cardinal κ such that each module in \mathcal{C} is a direct sum of $< \kappa$-generated modules from \mathcal{C}.

Some classic examples

[Gruson-Jensen’73], [Huisgen-Zimmermann’79]

Mod-R is decomposable, iff R is right pure-semisimple.

Uniformly: $\kappa = \aleph_0$ sufficient for all such R;

uniqueness by Krull-Schmidt-Azumaya.
Definition

A class of modules \mathcal{C} is decomposable, provided there is a cardinal κ such that each module in \mathcal{C} is a direct sum of $< \kappa$-generated modules from \mathcal{C}.

Some classic examples

[Gruson-Jensen’73], [Huisgen-Zimmermann’79]

$\text{Mod-} R$ is decomposable, iff R is right pure-semisimple.

Uniformly: $\kappa = \aleph_0$ sufficient for all such R; uniqueness by Krull-Schmidt-Azumaya.

[Kaplansky’58] The class \mathcal{P}_0 is decomposable.

Uniformly: $\kappa = \aleph_1$ sufficient for all R, but no uniqueness in general.

E.g., $I \oplus I^{-1} \cong R^{(2)}$ for each non-principal ideal I of a Dedekind domain R.

(IACU’2013)
Constraints for structural decompositions 4 / 27
Definition

A class of modules \(C \) is decomposable, provided there is a cardinal \(\kappa \) such that each module in \(C \) is a direct sum of \(< \kappa \)-generated modules from \(C \).

Some classic examples

[Gruson-Jensen’73], [Huisgen-Zimmermann’79]
Mod-\(R \) is decomposable, iff \(R \) is right pure-semisimple.
Uniformly: \(\kappa = \aleph_0 \) sufficient for all such \(R \);
uiqueness by Krull-Schmidt-Azumaya.

[Kaplansky’58]
The class \(\mathcal{P}_0 \) **is decomposable.**
Uniformly: \(\kappa = \aleph_1 \) sufficient for all \(R \), but no uniqueness in general.
E.g., \(I \oplus I^{-1} \cong R^{(2)} \) for each non-principal ideal \(I \) of a Dedekind domain \(R \).

[Faith-Walker’67]
The class \(\mathcal{I}_0 \) **of all injective modules is decomposable, iff \(R \) is right noetherian.**
Here, \(\kappa \) depends \(R \); uniqueness by Krull-Schmidt-Azumaya.
Part II: Deconstructible classes
Part II: Deconstructible classes

(blocks put on top of other blocks)
Definition

Let \(C \subseteq \text{Mod-}R \). A module \(M \) is \(C \)-filtered (or a transfinite extension of the modules in \(C \)), provided that there exists an increasing sequence \((M_\alpha \mid \alpha \leq \sigma) \) consisting of submodules of \(M \) such that \(M_0 = 0, M_\sigma = M \),

- \(M_\alpha = \bigcup_{\beta < \alpha} M_\beta \) for each limit ordinal \(\alpha \leq \sigma \), and
- for each \(\alpha < \sigma \), \(M_{\alpha+1}/M_\alpha \) is isomorphic to an element of \(C \).
Definition

Let \(C \subseteq \text{Mod-} R \). A module \(M \) is \(C \)-filtered (or a transfinite extension of the modules in \(C \)), provided that there exists an increasing sequence \((M_\alpha \mid \alpha \leq \sigma) \) consisting of submodules of \(M \) such that \(M_0 = 0, M_\sigma = M \),

- \(M_\alpha = \bigcup_{\beta < \alpha} M_\beta \) for each limit ordinal \(\alpha \leq \sigma \), and
- for each \(\alpha < \sigma \), \(M_{\alpha+1} / M_\alpha \) is isomorphic to an element of \(C \).

Notation: \(M \in \text{Filt}(C) \).

A class \(\mathcal{A} \) is **closed** under transfinite extensions, if \(\text{Filt}(\mathcal{A}) \subseteq \mathcal{A} \).
Definition

Let $\mathcal{C} \subseteq \text{Mod-} R$. A module M is \mathcal{C}-filtered (or a transfinite extension of the modules in \mathcal{C}), provided that there exists an increasing sequence $(M_\alpha \mid \alpha \leq \sigma)$ consisting of submodules of M such that $M_0 = 0$, $M_\sigma = M$,

- $M_\alpha = \bigcup_{\beta < \alpha} M_\beta$ for each limit ordinal $\alpha \leq \sigma$, and
- for each $\alpha < \sigma$, $M_{\alpha + 1}/M_\alpha$ is isomorphic to an element of \mathcal{C}.

Notation: $M \in \text{Filt}(\mathcal{C})$.

A class \mathcal{A} is **closed** under transfinite extensions, if $\text{Filt}(\mathcal{A}) \subseteq \mathcal{A}$.

Eklof Lemma

The class $\perp \mathcal{C} := \text{KerExt}^1_R (-, \mathcal{C})$ is closed under transfinite extensions for each class of modules \mathcal{C}.

In particular, so are the classes \mathcal{P}_n and \mathcal{F}_n of all modules of projective and flat dimension $\leq n$, for each $n < \omega$.
The ubiquity of deconstructible classes
The ubiquity of deconstructible classes

Definition (Eklof’06)

A class of modules \mathcal{A} is deconstructible, provided there is a cardinal κ such that $\mathcal{A} \subseteq \text{Filt}(\mathcal{A}^{<\kappa})$, where $\mathcal{A}^{<\kappa}$ denotes the class of all $< \kappa$-presented modules from \mathcal{A}.

(IACU’2013)

Constraints for structural decompositions 7 / 27
The ubiquity of deconstructible classes

Definition (Eklof’06)

A class of modules \mathcal{A} is **deconstructible**, provided there is a cardinal κ such that $\mathcal{A} \subseteq \text{Filt}(\mathcal{A}^{<\kappa})$, where $\mathcal{A}^{<\kappa}$ denotes the class of all $< \kappa$-presented modules from \mathcal{A}.

All decomposable classes are deconstructible (but not vice versa).
The ubiquity of deconstructible classes

Definition (Eklof’06)

A class of modules \mathcal{A} is **deconstructible**, provided there is a cardinal κ such that $\mathcal{A} \subseteq \text{Filt}(\mathcal{A}^{<\kappa})$, where $\mathcal{A}^{<\kappa}$ denotes the class of all $< \kappa$-presented modules from \mathcal{A}.

All decomposable classes are deconstructible (but not vice versa).

[Enochs et al.’01]

For each $n < \omega$, the classes \mathcal{P}_n and \mathcal{F}_n are deconstructible.
The ubiquity of deconstructible classes

Definition (Eklof’06)
A class of modules \(\mathcal{A} \) is deconstructible, provided there is a cardinal \(\kappa \) such that \(\mathcal{A} \subseteq \text{Filt}(\mathcal{A}^{<\kappa}) \), where \(\mathcal{A}^{<\kappa} \) denotes the class of all \(< \kappa \)-presented modules from \(\mathcal{A} \).

All decomposable classes are deconstructible (but not vice versa).

[Enochs et al.’01]
For each \(n < \omega \), the classes \(\mathcal{P}_n \) and \(\mathcal{F}_n \) are deconstructible.

[Eklof-T.’01], [Štovíček-T.’09]
For each set of modules \(\mathcal{S} \), the class \(\perp(\mathcal{S}^{\perp}) \) is deconstructible. Here, \(\mathcal{S}^{\perp} := \ker \text{Ext}^1_R(S, -) \).
Approximations of modules
Approximations of modules

A class of modules \mathcal{A} is **precovering** if for each module M there is $f \in \text{Hom}_R(A, M)$ with $A \in \mathcal{A}$ such that each $f' \in \text{Hom}_R(A', M)$ with $A' \in \mathcal{A}$ has a factorization through f:

\[\begin{array}{ccc}
A & \xrightarrow{f} & M \\
\uparrow & & \downarrow \\
A' & \xrightarrow{f'} & M
\end{array} \]

The map f is called an \mathcal{A}–precover of M.
A class of modules \mathcal{A} is **precovering** if for each module M there is $f \in \text{Hom}_R(A, M)$ with $A \in \mathcal{A}$ such that each $f' \in \text{Hom}_R(A', M)$ with $A' \in \mathcal{A}$ has a factorization through f:

\[
\begin{array}{ccc}
A & \xrightarrow{f} & M \\
\downarrow & & \downarrow \\
A' & \xrightarrow{f'} & \\
\end{array}
\]

The map f is called an \mathcal{A}–precover of M.

[Saorín-Šťovíček’11], [Enochs’12]

All deconstructible classes closed under transfinite extensions are precovering.

In particular, so are the classes $\perp(S\perp)$ for all sets of modules S.
Some questions
Some questions

Is each class of modules closed under transfinite extensions deconstructible/precovering?
Some questions

Is each class of modules closed under transfinite extensions deconstructible/precovering?

What about the classes of the form \(\perp C \)?
Part III: Non-deconstructible classes
Part III: Non-deconstructible classes

(no block pattern at all)
First examples
First examples

[Eklof-Shelah’03]

Let \(\mathcal{W} := \perp \{\mathbb{Z}\} \) denote the class of all Whitehead groups. It is independent of ZFC whether \(\mathcal{W} \) is precovering (or deconstructible).
Let \(\mathcal{W} := \perp \{ \mathbb{Z} \} \) denote the class of all Whitehead groups. It is independent of ZFC whether \(\mathcal{W} \) is precovering (or deconstructible).
First examples

[Eklof-Shelah’03]

Let $W := \perp \{\mathbb{Z}\}$ denote the class of all Whitehead groups. It is independent of ZFC whether W is precovering (or deconstructible).

A result in ZFC

A module M is flat Mittag-Leffler provided the functor $M \otimes_R -$ is exact, and for each system of left R-modules $(N_i \mid i \in I)$, the canonical map $M \otimes_R \prod_{i \in I} N_i \to \prod_{i \in I} M \otimes_R N_i$ is monic.
First examples

[Eklof-Shelah’03]

Let $W := \perp\{\mathbb{Z}\}$ denote the class of all Whitehead groups. It is independent of ZFC whether W is precovering (or deconstructible).

A result in ZFC

A module M is flat Mittag-Leffler provided the functor $M \otimes_R -$ is exact, and for each system of left R-modules $(N_i \mid i \in I)$, the canonical map $M \otimes_R \prod_{i \in I} N_i \rightarrow \prod_{i \in I} M \otimes_R N_i$ is monic.

Assume that R is not right perfect.

- [Herbera-T.’12] The class \mathcal{FM} of all flat Mittag-Leffler modules is closed under transfinite extensions, but it is not deconstructible.
- [Šaroch-T.’12], [Bazzoni-Štovíček’12] If R is countable, then \mathcal{FM} is not precovering.
Further questions
Further questions

Is non-deconstructibility a more general phenomenon?
Further questions

Is non-deconstructibility a more general phenomenon?

Still open

Can the class $\bot C$ be non-deconstructible/non-precovering in ZFC?
Locally \mathcal{F}-free modules
Locally \mathcal{F}-free modules

Let R be a ring, and \mathcal{F} a class of countably presented modules.
Let R be a ring, and \mathcal{F} a class of countably presented modules.

Definition

A module M is **locally \mathcal{F}-free**, if M possesses a subset S consisting of countably \mathcal{F}-filtered modules, such that

- each countable subset of M is contained in an element of S,
- $0 \in S$, and S is closed under unions of countable chains.
Locally \mathcal{F}-free modules

Let R be a ring, and \mathcal{F} a class of countably presented modules.

Definition

A module M is locally \mathcal{F}-free, if M possesses a subset S consisting of countably \mathcal{F}-filtered modules, such that

- each countable subset of M is contained in an element of S,
- $0 \in S$, and S is closed under unions of countable chains.

Let \mathcal{L} denote the class of all locally \mathcal{F}-free modules.
Locally \mathcal{F}-free modules

Let R be a ring, and \mathcal{F} a class of countably presented modules.

Definition

A module M is **locally \mathcal{F}-free**, if M possesses a subset S consisting of countably \mathcal{F}-filtered modules, such that

- each countable subset of M is contained in an element of S,
- $0 \in S$, and S is closed under unions of countable chains.

Let \mathcal{L} denote the class of all locally \mathcal{F}-free modules.

Note: If M is countably generated, then M is locally \mathcal{F}-free, iff M is countably \mathcal{F}-filtered.
Flat Mittag-Leffler modules are locally \mathcal{F}-free
Flat Mittag-Leffler modules are locally \mathcal{F}-free

Theorem (Herbera-T.’12)

Let \mathcal{F} be the class of all countably presented projective modules. Then the notions of a locally \mathcal{F}-free module and a flat Mittag-Leffler module coincide for any ring R.

(IACU'2013) Constraints for structural decompositions 14 / 27
Flat Mittag-Leffler modules are locally \mathcal{F}-free

Theorem (Herbera-T.’12)

Let \mathcal{F} be the class of all countably presented projective modules. Then the notions of a locally \mathcal{F}-free module and a flat Mittag-Leffler module coincide for any ring R.

For instance, if $R = \mathbb{Z}$, then an abelian group A is flat Mittag-Leffler, iff all countable subgroups of A are free.

In particular, the Baer-Specker group \mathbb{Z}^κ is flat Mittag-Leffler for each κ, but not free.
Trees for locally \mathcal{F}-free modules
Let κ be an infinite cardinal, and T_κ be the set of all finite sequences of ordinals $< \kappa$, so

$$T_\kappa = \{ \tau : n \to \kappa \mid n < \omega \}.$$
Trees for locally \mathcal{F}-free modules

Let κ be an infinite cardinal, and T_κ be the set of all finite sequences of ordinals $< \kappa$, so

$$T_\kappa = \{ \tau : n \rightarrow \kappa \mid n < \omega \}.$$

Partially ordered by inclusion, T_κ is a tree, called the tree on κ.
Trees for locally \mathcal{F}-free modules

Let κ be an infinite cardinal, and T_κ be the set of all finite sequences of ordinals $< \kappa$, so

$$T_\kappa = \{ \tau : n \to \kappa \mid n < \omega \}.$$

Partially ordered by inclusion, T_κ is a tree, called the tree on κ.

Let $\text{Br}(T_\kappa)$ denote the set of all branches of T_κ. Each $\nu \in \text{Br}(T_\kappa)$ can be identified with an ω-sequence of ordinals $< \kappa$:

$$\text{Br}(T_\kappa) = \{ \nu : \omega \to \kappa \}.$$
Trees for locally \mathcal{F}-free modules

Let κ be an infinite cardinal, and T_κ be the set of all finite sequences of ordinals $< \kappa$, so

$$T_\kappa = \{ \tau : n \rightarrow \kappa \mid n < \omega \}.$$

Partially ordered by inclusion, T_κ is a tree, called the tree on κ.

Let $\text{Br}(T_\kappa)$ denote the set of all branches of T_κ. Each $\nu \in \text{Br}(T_\kappa)$ can be identified with an ω-sequence of ordinals $< \kappa$:

$$\text{Br}(T_\kappa) = \{ \nu : \omega \rightarrow \kappa \}.$$

$\text{card } T_\kappa = \kappa$ and $\text{card } \text{Br}(T_\kappa) = \kappa^\omega$.

Notation: $\ell(\tau)$ denotes the length of τ for each $\tau \in T_\kappa$.
The Bass modules
Let R be a ring, and \mathcal{F} be a class of countably presented modules.
Let R be a ring, and \mathcal{F} be a class of countably presented modules. $\lim_{\longrightarrow}^{\omega} \mathcal{F}$ denotes the class of all Bass modules, i.e., the modules N that are countable direct limits of the modules from \mathcal{F}. W.l.o.g., such N is the direct limit of a chain

$$F_0 \xrightarrow{g_0} F_1 \xrightarrow{g_1} \ldots \xrightarrow{g_{i-1}} F_i \xrightarrow{g_i} F_{i+1} \xrightarrow{g_{i+1}} \ldots$$

with $F_i \in \mathcal{F}$ and $g_i \in \text{Hom}_R(F_i, F_{i+1})$ for all $i < \omega$.

Let R be a ring, and \mathcal{F} be a class of countably presented modules.

$\lim_{\to} \mathcal{F}$ denotes the class of all **Bass modules**, i.e., the modules N that are countable direct limits of the modules from \mathcal{F}. W.l.o.g., such N is the direct limit of a chain

$$F_0 \overset{g_0}{\to} F_1 \overset{g_1}{\to} \ldots \overset{g_{i-1}}{\to} F_i \overset{g_i}{\to} F_{i+1} \overset{g_{i+1}}{\to} \ldots$$

with $F_i \in \mathcal{F}$ and $g_i \in \text{Hom}_R(F_i, F_{i+1})$ for all $i < \omega$.

Example

Let \mathcal{F} be the class of all countably generated projective modules. Then the Bass modules coincide with the countably presented flat modules.
Decorating trees by Bass modules
Decorating trees by Bass modules

Let $D := \bigoplus_{\tau \in T_\kappa} F_\ell(\tau)$, and $P := \prod_{\tau \in T_\kappa} F_\ell(\tau)$.
Decorating trees by Bass modules

Let $D := \bigoplus_{\tau \in T_\kappa} F_{\ell(\tau)}$, and $P := \prod_{\tau \in T_\kappa} F_{\ell(\tau)}$.

For $\nu \in \text{Br}(T_\kappa)$, $i < \omega$, and $x \in F_i$, we define $x_{\nu i} \in P$ by

$$\pi_{\nu}|_i(x_{\nu i}) = x,$$

$$\pi_{\nu}|_j(x_{\nu i}) = g_{j-1} \ldots g_i(x) \text{ for each } i < j < \omega,$$

$$\pi_{\tau}(x_{\nu i}) = 0 \text{ otherwise},$$

where $\pi_{\tau} \in \text{Hom}_R(P, F_{\ell(\tau)})$ denotes the τth projection for each $\tau \in T_\kappa$.

(IACU'2013)

Constraints for structural decompositions
Decorating trees by Bass modules

Let $D := \bigoplus_{\tau \in T_\kappa} F_{\ell(\tau)}$, and $P := \prod_{\tau \in T_\kappa} F_{\ell(\tau)}$.

For $\nu \in \text{Br}(T_\kappa)$, $i < \omega$, and $x \in F_i$, we define $x_{\nu i} \in P$ by

$$\pi_{\nu \upharpoonright i}(x_{\nu i}) = x,$$

$$\pi_{\nu \upharpoonright j}(x_{\nu i}) = g_{j-1} \ldots g_i(x) \text{ for each } i < j < \omega,$$

$$\pi_{\tau}(x_{\nu i}) = 0 \text{ otherwise},$$

where $\pi_{\tau} \in \text{Hom}_R(P, F_{\ell(\tau)})$ denotes the τth projection for each $\tau \in T_\kappa$.

Let $X_{\nu i} := \{x_{\nu i} \mid x \in F_i\}$. Then $X_{\nu i}$ is a submodule of P isomorphic to F_i.
The locally \mathcal{F}-free module L
The locally \mathcal{F}-free module L

Let $X_\nu := \sum_{i<\omega} X_{\nu i}$, and $L := \sum_{\nu \in \text{Br}(T_\kappa)} X_\nu$.
The locally \mathcal{F}-free module L

Let $X_\nu := \sum_{i<\omega} X_{\nu_i}$, and $L := \sum_{\nu \in \text{Br}(T_\kappa)} X_\nu$.

Lemma

- $D \subseteq L \subseteq P$.
- $L/D \cong N(\text{Br}(T_\kappa))$.
- L is locally \mathcal{F}-free.
The locally \mathcal{F}-free module L

Let $X_{\nu} := \sum_{i<\omega} X_{\nu i}$, and $L := \sum_{\nu \in \text{Br}(T_\kappa)} X_{\nu}$.

Lemma
- $D \subseteq L \subseteq P$.
- $L/D \cong N(\text{Br}(T_\kappa))$.
- L is locally \mathcal{F}-free.

Lemma (Slávik-T.)
- \mathcal{L} is closed under transfinite extensions.
- $\mathcal{L}^\perp \subseteq (\lim_{\omega} \mathcal{F})^\perp$.

(IACU’2013) Constraints for structural decompositions
Non-deconstructibility of locally \mathcal{F}-free modules
Non-deconstructibility of locally \mathcal{F}-free modules

- \mathcal{F} a class of countably presented modules,
- \mathcal{L} the class of all locally \mathcal{F}-free modules,
- \mathcal{D} the class of all direct summands of the modules M that fit into an exact sequence
 \[0 \to F' \to M \to C' \to 0, \]
where F' is a free module, and C' is countably \mathcal{F}-filtered.
Non-deconstructibility of locally \mathcal{F}-free modules

- \mathcal{F} a class of countably presented modules,
- \mathcal{L} the class of all locally \mathcal{F}-free modules,
- \mathcal{D} the class of all direct summands of the modules M that fit into an exact sequence

$$0 \to F' \to M \to C' \to 0,$$

where F' is a free module, and C' is countably \mathcal{F}-filtered.

Theorem (Slávik-T.)

Assume there exists a Bass module $N \notin \mathcal{D}$. Then the class \mathcal{L} is not deconstructible.
Flat Mittag-Leffler modules revisited
Corollary

\mathcal{FM} is not deconstructible for each non-right perfect ring R.
Corollary

\(\mathcal{FM} \) is not deconstructible for each non-right perfect ring \(R \).

Proof: If \(R \) a non-right perfect ring, then there is a strictly decreasing chain of principal left ideals

\[
R a_0 \supsetneq \cdots \supsetneq R a_n \cdots a_0 \supsetneq R a_{n+1} a_n \cdots a_0 \supsetneq \ldots
\]
Corollary

\(\mathcal{FM} \) is not deconstructible for each non-right perfect ring \(R \).

Proof: If \(R \) a non-right perfect ring, then there is a strictly decreasing chain of principal left ideals

\[
Ra_0 \supsetneq \cdots \supsetneq Ra_n \cdots a_0 \supsetneq Ra_{n+1}a_n \cdots a_o \supsetneq \cdots
\]

Let \(\mathcal{F} \) be the class of all countably presented projective modules. Consider the Bass module \(N \) which is a direct limit of the chain

\[
R \to^{a_0} R \to^{a_1} \cdots \to^{a_{i-1}} R \to^{a_i} R \to^{a_{i+1}} \cdots
\]
Flat Mittag-Leffler modules revisited

Corollary

\(FM\) is not deconstructible for each non-right perfect ring \(R\).

Proof: If \(R\) a non-right perfect ring, then there is a strictly decreasing chain of principal left ideals

\[
Ra_0 \supsetneq \cdots \supsetneq Ra_n \cdots a_0 \supsetneq Ra_{n+1}a_n \cdots a_0 \supsetneq \cdots
\]

Let \(F\) be the class of all countably presented projective modules. Consider the Bass module \(N\) which is a direct limit of the chain

\[
R \xrightarrow{a_0} R \xrightarrow{a_1} \cdots \xrightarrow{a_{i-1}} R \xrightarrow{a_i} R \xrightarrow{a_{i+1}} \cdots
\]

Then there is a non-split pure-exact sequence

\[
0 \rightarrow R^{(\omega)} \xrightarrow{f} R^{(\omega)} \rightarrow N \rightarrow 0,
\]

where \(f(1_i) = 1_i - a_i.1_{i+1}\) for all \(i < \omega\). Then \(N \notin D = P_0\).
Infinite dimensional tilting modules
Infinite dimensional tilting modules

Definition

T is a tilting module provided that

- T has finite projective dimension,
- $\text{Ext}_R^i(T, T^{(\kappa)}) = 0$ for each cardinal κ, and
- there exists an exact sequence $0 \rightarrow R \rightarrow T_0 \rightarrow \cdots \rightarrow T_r \rightarrow 0$ such that $r < \omega$, and for each $i < r$, $T_i \in \text{Add}(T)$, i.e., T_i is a direct summand of a (possibly infinite) direct sum of copies of T.\[\text{Add}(T)\]
Infinite dimensional tilting modules

Definition

T is a tilting module provided that

- T has finite projective dimension,
- $\text{Ext}^i_R(T, T^{(\kappa)}) = 0$ for each cardinal κ, and
- there exists an exact sequence $0 \to R \to T_0 \to \cdots \to T_r \to 0$ such that $r < \omega$, and for each $i < r$, $T_i \in \text{Add}(T)$, i.e., T_i is a direct summand of a (possibly infinite) direct sum of copies of T.

$\mathcal{B}_T := \{ T \}^{\perp_\infty} = \bigcap_{1 < i} \text{KerExt}^i_R(T, -)$ the right tilting class of T.

(IACU’2013) Constraints for structural decompositions 21 / 27
Infinite dimensional tilting modules

Definition

T is a tilting module provided that

- T has finite projective dimension,
- $\text{Ext}^i_R(T, T^{(\kappa)}) = 0$ for each cardinal κ, and
- there exists an exact sequence $0 \to R \to T_0 \to \cdots \to T_r \to 0$ such that $r < \omega$, and for each $i < r$, $T_i \in \text{Add}(T)$, i.e., T_i is a direct summand of a (possibly infinite) direct sum of copies of T.

$\mathcal{B}_T := \{ T \}^{\perp_\infty} = \bigcap_{1<i} \ker \text{Ext}^i_R(T, -)$ the right tilting class of T.

$\mathcal{A}_T := \perp \mathcal{B}_T$ the left tilting class of T.
Some infinite dimensional tilting theory
Some infinite dimensional tilting theory

Theorem (A model-theoretic characterization of right tilting classes)

Tilting classes are exactly the classes of finite type, i.e., the classes of the form S^\perp, where S is a set of strongly finitely presented modules of bounded projective dimension.
Theorem (A model-theoretic characterization of right tilting classes)

Tilting classes are exactly the classes of finite type, i.e., the classes of the form S^\perp, where S is a set of strongly finitely presented modules of bounded projective dimension.

Let $S_T := \mathcal{A}_T \cap \text{mod-}R$ and $\bar{\mathcal{A}}_T := \lim S$. Then \mathcal{A}_T is the class of all direct summands of S_T-filtered modules, and $\mathcal{A}_T \subseteq \bar{\mathcal{A}}_T$.
Some infinite dimensional tilting theory

Theorem (A model-theoretic characterization of right tilting classes)

Tilting classes are exactly the classes of finite type, i.e., the classes of the form S^\perp, where S is a set of strongly finitely presented modules of bounded projective dimension.

Let $S_T := A_T \cap \text{mod-}R$ and $\bar{A}_T := \varprojlim S$. Then A_T is the class of all direct summands of S_T-filtered modules, and $A_T \subseteq \bar{A}_T$.

Definition

The tilting module T is Σ-pure split provided that $\bar{A}_T = A_T$, that is, the left tilting class of T is closed under direct limits. Equivalently: Each pure embedding $T_0 \hookrightarrow T_1$ such that $T_0, T_1 \in \text{Add}(T)$ splits.
Some infinite dimensional tilting theory

Theorem (A model-theoretic characterization of right tilting classes)

Tilting classes are exactly the classes of finite type, i.e., the classes of the form S^\perp, where S is a set of strongly finitely presented modules of bounded projective dimension.

Let $S_T := \mathcal{A}_T \cap \text{mod-}R$ and $\bar{\mathcal{A}}_T := \lim_{\longrightarrow} S$. Then \mathcal{A}_T is the class of all direct summands of S_T-filtered modules, and $\mathcal{A}_T \subseteq \bar{\mathcal{A}}_T$.

Definition

The tilting module T is \sum-pure split provided that $\bar{\mathcal{A}}_T = \mathcal{A}_T$, that is, the left tilting class of T is closed under direct limits. Equivalently: Each pure embedding $T_0 \hookrightarrow T_1$ such that $T_0, T_1 \in \text{Add}(T)$ splits.

Example (Bass)

Let $T = R$. Then T is a tilting module of projective dimension 0, and T is \sum-pure split, iff R is a right perfect ring.
Locally free modules and tilting
Locally free modules and tilting

The setting

Let R be a countable ring, and T be a non-\sum-pure-split tilting module. Let \mathcal{F}_T be the class of all countably presented modules from \mathcal{A}_T, and \mathcal{L}_T the class of all locally \mathcal{F}_T-free modules.
The setting

Let R be a countable ring, and T be a non-\sum-pure-split tilting module. Let \mathcal{F}_T be the class of all countably presented modules from \mathcal{A}_T, and \mathcal{L}_T the class of all locally \mathcal{F}_T-free modules.

Theorem (Slávik-T.)

Assume that $\mathcal{L}_T \subseteq \mathcal{P}_1$, \mathcal{L}_T is closed under direct summands, and $M \in \mathcal{L}_T$ whenever $M \subseteq L \in \mathcal{L}_T$ and $L/M \in \mathcal{A}_T$. Then the class \mathcal{L}_T is not precovering.
Locally free modules and tilting

The setting
Let R be a countable ring, and T be a non-\sum-pure-split tilting module. Let \mathcal{F}_T be the class of all countably presented modules from \mathcal{A}_T, and \mathcal{L}_T the class of all locally \mathcal{F}_T-free modules.

Theorem (Slávik-T.)
Assume that $\mathcal{L}_T \subseteq \mathcal{P}_1$, \mathcal{L}_T is closed under direct summands, and $M \in \mathcal{L}_T$ whenever $M \subseteq L \in \mathcal{L}_T$ and $L/M \in \tilde{\mathcal{A}}_T$. Then the class \mathcal{L}_T is not precovering.

Corollary
If R is countable and non-right perfect, then \mathcal{FM} is not precovering.
Finite dimensional hereditary algebras
Finite dimensional hereditary algebras

Let R be an indecomposable hereditary artin algebra of infinite representation type, with the Auslander-Reiten translation τ. Then there is a partition of all indecomposable finitely generated modules into three sets:

$q :=$ indecomposable preinjective modules
(i.e., indecomposable injectives and their τ-shifts),

$p :=$ indecomposable preprojective modules
(i.e., indecomposable projectives and their τ^{-}-shifts),

$t :=$ regular modules (the rest).
The Lukas tilting module and the Baer modules
The Lukas tilting module and the Baer modules

p^\perp is a right tilting class.
$M \in p^\perp$ iff M has no non-zero direct summands from p.
The Lukas tilting module and the Baer modules

p^\perp is a right tilting class. $M \in p^\perp$ iff M has no non-zero direct summands from p.

The tilting module L inducing p^\perp is called the Lukas tilting module. The left tilting class of L is the class of all Baer modules.
\(p^\perp \) is a right tilting class.
\(M \in p^\perp \) iff \(M \) has no non-zero direct summands from \(p \).

The tilting module \(L \) inducing \(p^\perp \) is called the Lukas tilting module. The left tilting class of \(L \) is the class of all Baer modules.

\[\text{[Angeleri-Kerner-T.'10]} \]

The class of all Baer modules coincides with \(\text{Filt}(p) \).

The Lukas tilting module \(L \) is countably generated, but has no finite dimensional direct summands, and it is not \(\sum \)-pure split.
Non-deconstructibility in the realm of artin algebras
Non-deconstructibility in the realm of artin algebras

Let F_L be the class of all countably presented Baer modules. The elements of L_L are called the locally Baer modules.
Non-deconstructibility in the realm of artin algebras

Let \mathcal{F}_L be the class of all countably presented Baer modules. The elements of \mathcal{L}_L are called the locally Baer modules.

Theorem (Slávik-T.)

Let R be a countable indecomposable hereditary artin algebra of infinite representation type. Then the class \mathcal{L}_L is not precovering (and hence not deconstructible).
A conjecture
A conjecture

A ring \(R \) is right pure-semisimple, iff each class of right \(R \)-modules closed under transfinite extensions and direct summands is deconstructible.