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Overview

Part I: Decomposable classes (the rare jewels)
1 Classic decomposition theorems.

Part II: Deconstructible classes (the ubiquitous mainstream)
1 Filtrations and transfinite extensions.

2 Deconstructibility and approximations.

Part III: Non-deconstructibility (reaching the limits)
1 The basic example: Mittag-Leffler modules.

2 Trees and locally free modules.

3 Non-deconstructibility and infinite dimensional tilting theory.
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Some classic examples

[Gruson-Jensen’73], [Huisgen-Zimmermann’79]
Mod-R is decomposable, iff R is right pure-semisimple.

Uniformly: κ = ℵ0 sufficient for all such R;
uniqueness by Krull-Schmidt-Azumaya.
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A class of modules C is decomposable, provided there is a cardinal κ such
that each module in C is a direct sum of < κ-generated modules from C.

Some classic examples

[Gruson-Jensen’73], [Huisgen-Zimmermann’79]
Mod-R is decomposable, iff R is right pure-semisimple.

Uniformly: κ = ℵ0 sufficient for all such R;
uniqueness by Krull-Schmidt-Azumaya.

[Kaplansky’58] The class P0 is decomposable.

Uniformly: κ = ℵ1 sufficient for all R, but no uniqueness in general.
E.g., I ⊕ I−1 ∼= R(2) for each non-principal ideal I of a Dedekind domain R.

[Faith-Walker’67] The class I0 of all injective modules is

decomposable, iff R is right noetherian.

Here, κ depends R; uniqueness by Krull-Schmidt-Azumaya.
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Definition

Let C ⊆ Mod-R. A module M is C-filtered (or a transfinite extension
of the modules in C), provided that there exists an increasing sequence
(Mα | α ≤ σ) consisting of submodules of M such that M0 = 0, Mσ = M,

Mα =
⋃

β<α Mβ for each limit ordinal α ≤ σ, and

for each α < σ, Mα+1/Mα is isomorphic to an element of C.
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Definition

Let C ⊆ Mod-R. A module M is C-filtered (or a transfinite extension
of the modules in C), provided that there exists an increasing sequence
(Mα | α ≤ σ) consisting of submodules of M such that M0 = 0, Mσ = M,

Mα =
⋃

β<α Mβ for each limit ordinal α ≤ σ, and

for each α < σ, Mα+1/Mα is isomorphic to an element of C.

Notation: M ∈ Filt(C).
A class A is closed under transfinite extensions, if Filt(A) ⊆ A.

Eklof Lemma

The class ⊥C := KerExt1R (−, C) is closed under transfinite extensions for
each class of modules C.

In particular, so are the classes Pn and Fn of all modules of projective and
flat dimension ≤ n, for each n < ω.
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The ubiquity of deconstructible classes

Definition (Eklof’06)

A class of modules A is deconstructible, provided there is a cardinal κ
such that A ⊆ Filt(A<κ), where A<κ denotes the class of all
< κ-presented modules from A.
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The ubiquity of deconstructible classes

Definition (Eklof’06)

A class of modules A is deconstructible, provided there is a cardinal κ
such that A ⊆ Filt(A<κ), where A<κ denotes the class of all
< κ-presented modules from A.

All decomposable classes are deconstructible (but not vice versa).

[Enochs et al.’01]

For each n < ω, the classes Pn and Fn are deconstructible.

[Eklof-T.’01], [Šťov́ıček-T.’09]

For each set of modules S, the class ⊥(S⊥) is deconstructible.
Here, S⊥ := KerExt1R (S,−).
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Approximations of modules

A class of modules A is precovering if for each module M there is
f ∈ HomR(A, M) with A ∈ A such that each f ′ ∈ HomR(A′, M) with
A′ ∈ A has a factorization through f :

A
f

// M

A′

OO�

�

� f ′

>>}}}}}}}

The map f is called an A–precover of M.
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A class of modules A is precovering if for each module M there is
f ∈ HomR(A, M) with A ∈ A such that each f ′ ∈ HomR(A′, M) with
A′ ∈ A has a factorization through f :

A
f

// M

A′

OO�

�

� f ′

>>}}}}}}}

The map f is called an A–precover of M.

[Saoŕın-Šťov́ıček’11], [Enochs’12]

All deconstructible classes closed under transfinite extensions are
precovering.

In particular, so are the classes ⊥(S⊥) for all sets of modules S.
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Some questions

Is each class of modules closed under transfinite extensions
deconstructible/precovering?

What about the classes of the form ⊥C?

(IACU’2013) Constraints for structural decompositions 9 / 27



Part III: Non-deconstructible classes
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Part III: Non-deconstructible classes

(no block pattern at all)
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First examples

[Eklof-Shelah’03]

Let W := ⊥{Z} denote the class of all Whitehead groups.
It is independent of ZFC whether W is precovering (or deconstructible).
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[Eklof-Shelah’03]

Let W := ⊥{Z} denote the class of all Whitehead groups.
It is independent of ZFC whether W is precovering (or deconstructible).

A result in ZFC

A module M is flat Mittag-Leffler provided the functor M ⊗R − is exact,
and for each system of left R-modules (Ni | i ∈ I ), the canonical map
M ⊗R

∏
i∈I Ni →

∏
i∈I M ⊗R Ni is monic.
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First examples

[Eklof-Shelah’03]

Let W := ⊥{Z} denote the class of all Whitehead groups.
It is independent of ZFC whether W is precovering (or deconstructible).

A result in ZFC

A module M is flat Mittag-Leffler provided the functor M ⊗R − is exact,
and for each system of left R-modules (Ni | i ∈ I ), the canonical map
M ⊗R

∏
i∈I Ni →

∏
i∈I M ⊗R Ni is monic.

Assume that R is not right perfect.

[Herbera-T.’12] The class FM of all flat Mittag-Leffler modules is
closed under transfinite extensions, but it is not deconstructible.

[Šaroch-T.’12], [Bazzoni-Šťov́ıček’12] If R is countable, then FM is
not precovering.
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Further questions

Is non-deconstructibility a more general phenomenon?

Still open

Can the class ⊥C be non-deconstructible/non-precovering in ZFC?
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Locally F-free modules

Let R be a ring, and F a class of countably presented modules.
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Locally F-free modules

Let R be a ring, and F a class of countably presented modules.

Definition

A module M is locally F-free, if M possesses a subset S consisting of
countably F-filtered modules, such that

each countable subset of M is contained in an element of S,

0 ∈ S, and S is closed under unions of countable chains.
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Locally F-free modules

Let R be a ring, and F a class of countably presented modules.

Definition

A module M is locally F-free, if M possesses a subset S consisting of
countably F-filtered modules, such that

each countable subset of M is contained in an element of S,

0 ∈ S, and S is closed under unions of countable chains.

Let L denote the class of all locally F-free modules.

Note: If M is countably generated, then M is locally F-free, iff M is
countably F-filtered.
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Flat Mittag-Leffler modules are locally F-free

Theorem (Herbera-T.’12)

Let F = be the class of all countably presented projective modules. Then
the notions of a locally F-free module and a flat Mittag-Leffler module
coincide for any ring R.
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Flat Mittag-Leffler modules are locally F-free

Theorem (Herbera-T.’12)

Let F = be the class of all countably presented projective modules. Then
the notions of a locally F-free module and a flat Mittag-Leffler module
coincide for any ring R.

For instance, if R = Z, then an abelian group A is flat Mittag-Leffler,
iff all countable subgroups of A are free.

In particular, the Baer-Specker group Zκ is flat Mittag-Leffler for each κ,
but not free.
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Trees for locally F-free modules

Let κ be an infinite cardinal, and Tκ be the set of all finite sequences of
ordinals < κ, so

Tκ = {τ : n → κ | n < ω}.
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Let κ be an infinite cardinal, and Tκ be the set of all finite sequences of
ordinals < κ, so

Tκ = {τ : n → κ | n < ω}.

Partially ordered by inclusion, Tκ is a tree, called the tree on κ.

Let Br(Tκ) denote the set of all branches of Tκ. Each ν ∈ Br(Tκ) can be
identified with an ω-sequence of ordinals < κ:

Br(Tκ) = {ν : ω → κ}.
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Trees for locally F-free modules

Let κ be an infinite cardinal, and Tκ be the set of all finite sequences of
ordinals < κ, so

Tκ = {τ : n → κ | n < ω}.

Partially ordered by inclusion, Tκ is a tree, called the tree on κ.

Let Br(Tκ) denote the set of all branches of Tκ. Each ν ∈ Br(Tκ) can be
identified with an ω-sequence of ordinals < κ:

Br(Tκ) = {ν : ω → κ}.

card Tκ = κ and card Br(Tκ) = κω.

Notation: ℓ(τ) denotes the length of τ for each τ ∈ Tκ.
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The Bass modules

Let R be a ring, and F be a class of countably presented modules.

lim
−→ω

F denotes the class of all Bass modules, i.e., the modules N that are
countable direct limits of the modules from F . W.l.o.g., such N is the
direct limit of a chain

F0
g0
→ F1

g1
→ . . .

gi−1
→ Fi

gi→ Fi+1
gi+1
→ . . .

with Fi ∈ F and gi ∈ HomR(Fi , Fi+1) for all i < ω.
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The Bass modules

Let R be a ring, and F be a class of countably presented modules.

lim
−→ω

F denotes the class of all Bass modules, i.e., the modules N that are
countable direct limits of the modules from F . W.l.o.g., such N is the
direct limit of a chain

F0
g0
→ F1

g1
→ . . .

gi−1
→ Fi

gi→ Fi+1
gi+1
→ . . .

with Fi ∈ F and gi ∈ HomR(Fi , Fi+1) for all i < ω.

Example

Let F be the class of all countably generated projective modules. Then
the Bass modules coincide with the countably presented flat modules.
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Decorating trees by Bass modules

Let D :=
⊕

τ∈Tκ

Fℓ(τ), and P :=
∏

τ∈Tκ

Fℓ(τ).
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Decorating trees by Bass modules

Let D :=
⊕

τ∈Tκ

Fℓ(τ), and P :=
∏

τ∈Tκ

Fℓ(τ).

For ν ∈ Br(Tκ), i < ω, and x ∈ Fi , we define xνi ∈ P by

πν↾i (xνi ) = x ,

πν↾j(xνi ) = gj−1 . . . gi (x) for each i < j < ω,

πτ (xνi ) = 0 otherwise,

where πτ ∈ HomR(P, Fℓ(τ)) denotes the τ th projection for each τ ∈ Tκ.
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Decorating trees by Bass modules

Let D :=
⊕

τ∈Tκ

Fℓ(τ), and P :=
∏

τ∈Tκ

Fℓ(τ).

For ν ∈ Br(Tκ), i < ω, and x ∈ Fi , we define xνi ∈ P by

πν↾i (xνi ) = x ,

πν↾j(xνi ) = gj−1 . . . gi (x) for each i < j < ω,

πτ (xνi ) = 0 otherwise,

where πτ ∈ HomR(P, Fℓ(τ)) denotes the τ th projection for each τ ∈ Tκ.

Let Xνi := {xνi | x ∈ Fi}. Then Xνi is a submodule of P isomorphic to Fi .
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The locally F-free module L

Let Xν :=
∑

i<ω Xνi , and L :=
∑

ν∈Br(Tκ) Xν .
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The locally F-free module L

Let Xν :=
∑

i<ω Xνi , and L :=
∑

ν∈Br(Tκ) Xν .

Lemma

D ⊆ L ⊆ P.

L/D ∼= N(Br(Tκ)).

L is locally F-free.

(IACU’2013) Constraints for structural decompositions 18 / 27



The locally F-free module L

Let Xν :=
∑

i<ω Xνi , and L :=
∑

ν∈Br(Tκ) Xν .

Lemma

D ⊆ L ⊆ P.

L/D ∼= N(Br(Tκ)).

L is locally F-free.

Lemma (Slávik-T.)

L is closed under transfinite extensions.

L⊥ ⊆ (lim
−→ω

F)⊥.
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Non-deconstructibility of locally F-free modules

• F a class of countably presented modules,
• L the class of all locally F-free modules,
• D the class of all direct summands of the modules M that fit into an
exact sequence

0 → F ′ → M → C ′ → 0,

where F ′ is a free module, and C ′ is countably F-filtered.
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Non-deconstructibility of locally F-free modules

• F a class of countably presented modules,
• L the class of all locally F-free modules,
• D the class of all direct summands of the modules M that fit into an
exact sequence

0 → F ′ → M → C ′ → 0,

where F ′ is a free module, and C ′ is countably F-filtered.

Theorem (Slávik-T.)

Assume there exists a Bass module N /∈ D. Then the class L is not
deconstructible.
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Flat Mittag-Leffler modules revisited

Corollary

FM is not deconstructible for each non-right perfect ring R.

Proof: If R a non-right perfect ring, then there is a strictly decreasing
chain of principal left ideals

Ra0 ) · · · ) Ran . . . a0 ) Ran+1an . . . ao ) . . .
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Flat Mittag-Leffler modules revisited

Corollary

FM is not deconstructible for each non-right perfect ring R.

Proof: If R a non-right perfect ring, then there is a strictly decreasing
chain of principal left ideals

Ra0 ) · · · ) Ran . . . a0 ) Ran+1an . . . ao ) . . .

Let F be the class of all countably presented projective modules. Consider
the Bass module N which is a direct limit of the chain

R
a0.→ R

a1.→ . . .
ai−1.
→ R

ai .→ R
ai+1.
→ . . .
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Flat Mittag-Leffler modules revisited

Corollary

FM is not deconstructible for each non-right perfect ring R.

Proof: If R a non-right perfect ring, then there is a strictly decreasing
chain of principal left ideals

Ra0 ) · · · ) Ran . . . a0 ) Ran+1an . . . ao ) . . .

Let F be the class of all countably presented projective modules. Consider
the Bass module N which is a direct limit of the chain

R
a0.→ R

a1.→ . . .
ai−1.
→ R

ai .→ R
ai+1.
→ . . .

Then there is a non-split pure-exact sequence

0 → R(ω) f
→ R(ω) → N → 0,

where f (1i ) = 1i − ai .1i+1 for all i < ω. Then N /∈ D = P0.
(IACU’2013) Constraints for structural decompositions 20 / 27



Infinite dimensional tilting modules
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Infinite dimensional tilting modules

Definition

T is a tilting module provided that

T has finite projective dimension,

ExtiR (T , T (κ)) = 0 for each cardinal κ, and

there exists an exact sequence 0 → R → T0 → · · · → Tr → 0 such
that r < ω, and for each i < r , Ti ∈ Add(T ), i.e., Ti is a direct
summand of a (possibly infinite) direct sum of copies of T .
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ExtiR (T , T (κ)) = 0 for each cardinal κ, and

there exists an exact sequence 0 → R → T0 → · · · → Tr → 0 such
that r < ω, and for each i < r , Ti ∈ Add(T ), i.e., Ti is a direct
summand of a (possibly infinite) direct sum of copies of T .

BT := {T}⊥∞ =
⋂

1<i KerExtiR (T ,−) the right tilting class of T .
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Infinite dimensional tilting modules

Definition

T is a tilting module provided that

T has finite projective dimension,

ExtiR (T , T (κ)) = 0 for each cardinal κ, and

there exists an exact sequence 0 → R → T0 → · · · → Tr → 0 such
that r < ω, and for each i < r , Ti ∈ Add(T ), i.e., Ti is a direct
summand of a (possibly infinite) direct sum of copies of T .

BT := {T}⊥∞ =
⋂

1<i KerExtiR (T ,−) the right tilting class of T .

AT := ⊥BT the left tilting class of T .

(IACU’2013) Constraints for structural decompositions 21 / 27



Some infinite dimensional tilting theory
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Some infinite dimensional tilting theory

Theorem (A model-theoretic characterization of right tilting classes)

Tilting classes are exactly the classes of finite type, i.e., the classes of the
form S⊥, where S is a set of strongly finitely presented modules of
bounded projective dimension.
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Some infinite dimensional tilting theory

Theorem (A model-theoretic characterization of right tilting classes)

Tilting classes are exactly the classes of finite type, i.e., the classes of the
form S⊥, where S is a set of strongly finitely presented modules of
bounded projective dimension.
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−→

S. Then AT is the class of all
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−→

S. Then AT is the class of all

direct summands of ST -filtered modules, and AT ⊆ ĀT .

Definition

The tilting module T is
∑

-pure split provided that ĀT = AT , that is,
the left tilting class of T is closed under direct limits. Equivalently:
Each pure embedding T0 →֒ T1 such that T0, T1 ∈ Add(T ) splits.
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Some infinite dimensional tilting theory

Theorem (A model-theoretic characterization of right tilting classes)

Tilting classes are exactly the classes of finite type, i.e., the classes of the
form S⊥, where S is a set of strongly finitely presented modules of
bounded projective dimension.

Let ST := AT ∩ mod-R and ĀT := lim
−→

S. Then AT is the class of all

direct summands of ST -filtered modules, and AT ⊆ ĀT .

Definition

The tilting module T is
∑

-pure split provided that ĀT = AT , that is,
the left tilting class of T is closed under direct limits. Equivalently:
Each pure embedding T0 →֒ T1 such that T0, T1 ∈ Add(T ) splits.

Example (Bass)

Let T = R. Then T is a tilting module of projective dimension 0, and
T is

∑
-pure split, iff R is a right perfect ring.
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Locally free modules and tilting

The setting

Let R be a countable ring, and T be a non-
∑

-pure-split tilting module.
Let FT be the class of all countably presented modules from AT , and
LT the class of all locally FT -free modules.
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Let R be a countable ring, and T be a non-
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-pure-split tilting module.
Let FT be the class of all countably presented modules from AT , and
LT the class of all locally FT -free modules.

Theorem (Slávik-T.)

Assume that LT ⊆ P1, LT is closed under direct summands, and
M ∈ LT whenever M ⊆ L ∈ LT and L/M ∈ ĀT .
Then the class LT is not precovering.
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Locally free modules and tilting

The setting

Let R be a countable ring, and T be a non-
∑

-pure-split tilting module.
Let FT be the class of all countably presented modules from AT , and
LT the class of all locally FT -free modules.

Theorem (Slávik-T.)

Assume that LT ⊆ P1, LT is closed under direct summands, and
M ∈ LT whenever M ⊆ L ∈ LT and L/M ∈ ĀT .
Then the class LT is not precovering.

Corollary

If R is countable and non-right perfect, then FM is not precovering.
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Finite dimensional hereditary algebras

Let R be an indecomposable hereditary artin algebra of infinite
representation type, with the Auslander-Reiten translation τ .
Then there is a partition of all indecomposable finitely generated modules
into three sets:

q := indecomposable preinjective modules
(i.e., indecomposable injectives and their τ -shifts),

p := indecomposable preprojective modules
(i.e., indecomposable projectives and their τ−-shifts),

t := regular modules (the rest).

�
� . . .

. . . �
�. . .

. . .

p t q
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The Lukas tilting module and the Baer modules

p⊥ is a right tilting class.
M ∈ p⊥ iff M has no non-zero direct summands from p.
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The left tilting class of L is the class of all Baer modules.
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The Lukas tilting module and the Baer modules

p⊥ is a right tilting class.
M ∈ p⊥ iff M has no non-zero direct summands from p.

The tilting module L inducing p⊥ is called the Lukas tilting module.
The left tilting class of L is the class of all Baer modules.

[Angeleri-Kerner-T.’10]

The class of all Baer modules coincides with Filt(p).

The Lukas tilting module L is countably generated, but has no finite
dimensional direct summands, and it is not

∑
-pure split.
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Non-deconstructibility in the realm of artin algebras
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Non-deconstructibility in the realm of artin algebras

Let FL be the class of all countably presented Baer modules.
The elements of LL are called the locally Baer modules.
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Non-deconstructibility in the realm of artin algebras

Let FL be the class of all countably presented Baer modules.
The elements of LL are called the locally Baer modules.

Theorem (Slávik-T.)

Let R be a countable indecomposable hereditary artin algebra of infinite
representation type. Then the class LL is not precovering (and hence not
deconstructible).
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A conjecture

(IACU’2013) Constraints for structural decompositions 27 / 27



A conjecture

A ring R is right pure-semisimple, iff each class of right R-modules closed
under transfinite extensions and direct summands is deconstructible.
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