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1. Modern methods for an ancient problem

Over the centuries tremendous energy has been devoted to the basic problem of
solving a set of N linear algebraic equations, expressed as Ax = b, for the unknown
vector x. High school students learn Gaussian elimination to, in principle, resolve
all such equations when a unique solution exists, while the criteria for solvability is
the centerpiece of first courses in linear algebra. Research interest in this problem
derives from the size of the matrices needed in contemporary applications. The
challenge is longstanding: in the late 1600s Wallis tackled a 25×25 matrix that arose
from his design for a flat roof for Wren’s Sheldonian Theatre at Oxford [30]. He
could accomplish this feat because most entries in the matrix were zero (reflecting
the connectivity of struts in his truss); such a matrix is sparse. The same is true
for many matrices from current science and engineering problems, but now these
systems routinely have millions or billions of unknowns. The nonzero pattern of A,
though often quite intricate, enables fast matrix-vector product calculations that
form the critical kernel of modern algorithms.

For a generic system of dimension n, Gaussian elimination requires O(n3) arith-
metic operations to produce an exact solution, with no information about x pro-
vided until the final stage of computation. In contrast iterative methods incre-
mentally refine an approximate solution, allowing a user to quit the process as
soon as the solution attains the accuracy demanded by the motivating application
(where Ax = b is usually an approximation, such as a discretization of a par-
tial differential equation); see, e.g., [27]. Classical “stationary” iterations, such as
the Jacobi, Gauss–Seidel, and Successive Over-Relaxation (SOR) methods, were
favorites when computers were humans who could tune parameters to accelerate
convergence. These methods remain staples of many numerical analysis courses,
but over the past forty years they have been displaced in practice by the more
powerful methods that are the subject of the book under review.

Polynomial iterative methods are motivated by a corollary of the Cayley–
Hamilton theorem: for any invertible A there exists a polynomial q of degree n− 1
such that q(A) = A−1. This polynomial interpolates 1/z at the eigenvalues of A;
in many cases a polynomial of much lower degree can give accurate approximations
to 1/z at these points, and hence to A−1. Even better, one can tailor the approx-
imation to the right-hand side b (which might have larger components in certain
eigenvectors than others). Such approximations could be constructed manually,
given estimates of the spectrum of A, but better algorithms (implicitly) build a se-
quence of improving polynomials automatically. The first modern method was the
conjugate gradient algorithm proposed in 1952 by Hestenes and Stiefel for symmet-
ric positive definite A [16]. Such matrices define the inner product (x, y)A = y∗Ax

and norm ‖x‖A =
√
(x, x)A. At its kth step the conjugate gradient method uses

a three-term recurrence to build the iterate xk that minimizes the A-norm of the
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error,

(1.1) ‖x− xk‖A = min
deg(q)<k

‖x− q(A)b‖A = min
x̂∈Kk(A,b)

‖x− x̂‖A,

over the kth Krylov subspace

Kk(A, b) = {q(A)b : deg(q) < k} = span{b, Ab, . . . , Ak−1b}.
The resulting algorithm is unusual, for like classical iterative methods it produces
a sequence of improving approximations, but like Gaussian elimination it gives the
exact solution at the nth step, since x ∈ Kn(A, b). In some experiments this method
converged early, while other cases took more than n iterations to reduce rounding
errors. In a history beautifully chronicled by Liesen and Strakoš, this odd behavior
kept the conjugate gradient method on the algorithmic sidelines until the 1970s,
when application problems grew to sufficient size for its often rapid convergence
to be recognized, and needed. Soon the MINRES algorithm followed [20], using a
three-term recurrence to minimize the Euclidean norm of the residual,

(1.2) ‖b−Axk‖2 = min
x̂∈Kk(A,b)

‖b−Ax̂‖2,

for symmetric A. In a creative burst in the 1980s and early 1990s, many new meth-
ods were proposed for nonsymmetric A. These methods are central to science and
engineering simulations, consuming many cycles of the world’s fastest computers.
Despite the popularity of these methods, fundamental mathematical questions re-
main about their performance, questions that have spurred diverse work in linear
algebra and approximation theory for several decades.

2. A projection taxonomy for optimal methods

The Krylov optimization problems in (1.1) and (1.2) produce different approx-
imate solutions xk, and one might imagine other methods that minimize different
measures of error. To organize such algorithms, Saad and Schultz proposed a pro-
jection framework [22], and in a similar spirit Liesen and Strakoš classify optimal
Krylov algorithms in their Chapter 2. For simplicity we assume the initial approx-
imation x0 = 0. The iterates xk are drawn from the k-dimensional approximation
space Sk, leaving the residual rk = b−Axk ∈ b−ASk. From Sk the method selects xk

to be orthogonal in the Euclidean inner product to the constraint space Ck. Differ-
ent algorithms follow from different choices for Sk and Ck. For conjugate gradients,
Sk = Ck = Kk(A, b). MINRES and its nonsymmetric generalization, GMRES [23],
take Sk = Kk(A, b) and Ck = AKk(A, b). For symmetric A, SYMMLQ [20] uses
Sk = AKk(A, b) and Ck = Kk(A, b), thus minimizing the Euclidean norm of the
error, ‖x − xk‖2. Fletcher’s BiCG (biconjugate gradient) algorithm [12] for non-

symmetric A uses Sk = Kk(A, b) and Ck = Kk(A
∗, b̃), where A∗ denotes the adjoint

and b̃ is an auxiliary vector whose role remains somewhat obscure. Like many
methods for nonsymmetric A, BiCG does not satisfy a simple optimality property.

3. Arnoldi and Lanczos

When implementing a Krylov subspace method, such as the one suggested by
(1.2), a practical problem emerges: as k grows, the basis vectors Ajb for Kk(A, b)
increasingly align with the dominant eigenvector(s) of A, causing the rapid onset of
numerical instabilities in any code that builds this power basis. For better behavior
construct an orthonormal basis for Kk(A, b) starting with v1 = b/‖b‖; then at
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the kth step use Gram–Schmidt to orthogonalize Avk against the previous basis
vectors v1, . . . , vk, mimicking the usual construction of orthogonal polynomials.
The resulting Arnoldi process [3] gives

(3.1) vk+1 =
1

hk+1,k

(
I − v1v

∗
1 − · · · − vkv

∗
k

)
Avk,

where hk+1,k normalizes the projected vector. (The work increases at every step,
as there are more vectors to orthogonalize against.) Rewrite (3.1) as

Avk = h1,kv1 + h2,kv2 + · · ·+ hk,kvk + hk+1,kvk+1

with hj,k = v∗jAvk, and stack these relations together in columns to get

(3.2) AVk = VkHk + hk+1,kvk+1e
∗
k,

where

Vk = [v1 v2 · · · vk]

and Hk = V ∗
k AVk is upper Hessenberg : hj,k = 0 when j > k + 1. When A is

symmetric, so too is Hk, implying that hj,k = 0 with j < k − 1. Thus Hk is
tridiagonal, reducing (3.1) to the efficient three-term recurrence

vk+1 =
1

hk+1,k

(
Avk − (v∗k−1Avk)vk−1 − (v∗kAvk)vk

)
.

This approach, proposed by Lanczos in 1950 [17], predates Arnoldi’s general de-
composition. The Lanczos method naturally parallels the three-term recurrence
used to construct orthogonal polynomials over a real domain, where the reality of
the domain gives the short recurrence in the same way A = A∗ does. In their
third chapter, Liesen and Strakoš devote nearly 100 pages to the many connections
between this three-term recurrence and orthogonal polynomials, Gauss–Christoffel
quadrature, continued fractions, moment matching model reduction, and inverse
eigenvalue problems for Jacobi matrices. These deep, elegant connections have
been often studied (e.g., the 1952 conjugate gradient paper [16] and Fischer’s 1996
monograph [11]), but Liesen and Strakoš provide an especially thorough treatment.
We briefly sketch the connections to discrete measures and moment matching.

Given symmetric A with distinct eigenvalues λ1 < λ2 < · · · < λn and unit
eigenvectors y1, . . . , yn, and ‖b‖2 = 1, construct

ω(λ) =
n∑

j=1

|y∗j b|2χ(−∞,λj ](λ),

where χS is the indicator function for S ⊂ �. Let θ
(k)
1 , . . . , θ

(k)
k denote the eigen-

values of Hk with corresponding unit eigenvectors q
(k)
1 , . . . , q

(k)
k , and let e1 be the

first column of the k × k identity matrix. Then

ωk(λ) =
k∑

j=1

|(q(k)j )∗e1|2χ(−∞,θ
(k)
j ]

(λ)

approximates ω in the following sense. The points θ
(k)
1 , . . . , θ

(k)
k are the roots of the

kth orthogonal polynomial for the inner product (f, g) =
∫
f(λ)g(λ) dω(λ), and
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these roots give nodes of the k-point Gaussian quadrature rule for∫
f(λ) dω(λ) =

n∑
j=1

|y∗j b|2f(λj) ≈
k∑

j=1

|(q(k)j )∗e1|2f(θ(k)j ) =

∫
f(λ) dωk(λ),

which is exact when f is a polynomial of degree 2k− 1 or less. This approximation
has a close connection to model order reduction for dynamical systems [2], for the
quadrature result implies

b∗Ajb = e∗1H
j
ke1, j = 0, . . . , 2k − 1.

Thus the transfer function e∗1(z−Hk)
−1e1 for the k-dimensional dynamical system

x̂′(t) = Hkx̂(t) + e1u(t), ŷ(t) = e∗1x̂(t),

matches the first 2k moments (as z → ∞) of the transfer function b∗(z−A)−1b for
the n-dimensional system

x′(t) = Ax(t) + bu(t), y(t) = b∗x(t).

This theory enriches our understanding of iterative methods for symmetric ma-
trices. Only a weak shadow of these results extends to the nonsymmetric case,
resulting in a theory that is more fragmented and far less complete.

4. No short recurrences for nonsymmetric matrices

In the early 1980s, the burgeoning success of Krylov algorithms for symmetric
matrices (with the underlying Lanczos three-term recurrence) led to a quest for
a similarly efficient optimal algorithm for all nonsymmetric matrices. To spur
research, money was put on the table at the 1981 Gatlinburg Symposium [1]:

“A prize of $500 has been offered by Gene Golub for the con-
struction of a 3-term conjugate gradient like descent method for
non-symmetric real matrices or a proof that there can be no such
method.”

In a landmark 1984 paper, Faber and Manteuffel resolved the question in the nega-
tive [10] (and subsequently collected the payout); related contemporaneous results
were obtained by Voevodin and Tyrtyshnikov. Putting Golub’s bet into precise
terms turns out to be quite subtle. Liesen, Strakoš, and coauthors have explicated
and illuminated the Faber–Mantueffel result in a series of recent papers, and the
neat synthesis in Chapter 4 of their book should become the first place students
turn to understand this fundamental result. Crucial to the argument is the defini-
tion of “gradient like descent method.” The iterate xk should minimize the error
‖x − xk‖ over the kth Krylov subspace Kk(A, b) in a norm induced by an inner
product that can depend on A but not b. To build this iterate, one needs a basis
{v1, . . . , vk} for Kk(A, b), which should be extended at the next step by orthogo-
nalizing Avk against the previous basis vectors (in the specified inner product). In
this context Golub’s problem amounts to finding those A that permit such orthog-
onalization with a three-term recurrence. Aside from a few minor special cases, the
Faber–Manteuffel Theorem says that no such recurrence exists unless the matrix is
diagonalizable with all its eigenvalues on a line in the complex plane.

After completely treating the main result, Liesen and Strakoš explore intriguing
questions on the margins of Golub’s bet. Relaxing the method for constructing the
basis for Kk(A, b) opens the door to Gragg’s isometric Arnoldi process (an early
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contribution to the theory of orthogonal polynomials on the unit circle [24]), which
applies when A is unitary (or in a small class of related matrices); special techniques
also exist for low-rank perturbations of symmetric matrices [5]. Alternatively, one
could optimize over other subspaces, such as generalized Krylov subspaces generated
by products of both A and A∗ [8]. Unfortunately, none of these clever variations
have yet led to fast algorithms applicable to a broad class of nonsymmetric matrices.

The Faber–Manteuffel result gave license for two developments: optimal methods
with long recurrences (e.g., GMRES), and suboptimal methods with short recur-
rences (e.g., restarted GMRES, CGS, QMR, TFQMR, BiCGSTAB, IDR).

5. Convergence theory

In the past twenty years the field has moved from rapid algorithmic invention
to refined theoretical work for nonsymmetric matrices. While the methods are
relatively easy to describe and have proved enormously powerful in important large-
scale applications, their convergence properties remain inscrutable, even for the
optimal GMRES algorithm. The performance of these methods in finite precision
arithmetic adds another layer of complexity. In their final chapter Liesen and
Strakoš address key theoretical and practical aspects of convergence.

The behavior of methods for symmetric A is completely understood via poly-
nomial approximation problems on the spectrum. When A is nonsymmetric (and,
especially, nonnormal: A lacks an orthonormal basis of eigenvectors), the conver-
gence theory must be more sophisticated. Two striking results make this clear.

Greenbaum, Pták, Strakoš [15] (with some later refinements) proved that any
nonincreasing convergence curve is possible for GMRES (1.2). More precisely, given
any set {‖b−Axk‖2}n−1

k=0 and any n nonzero eigenvalues, one can construct A with
the desired spectrum and b for which the GMRES iterates {xk} give the specified
residual norms. Thus, no convergence theory can be based on eigenvalues alone.

The first step to analyzing a residual-minimizing method (1.2) is the inequality

(5.1) ‖b− Axk‖2 = min
deg(p)≤k
p(0)=1

‖p(A)b‖2 ≤ min
deg(p)≤k
p(0)=1

‖p(A)‖2‖b‖2,

which separates A from b. Given A, does there always exist some b for which
equality is attained? The answer turns out to be “yes” for normal A, but not in
general. With a striking family of 4×4 matrices, Toh [26] showed that the left-hand
side of (5.1) could be arbitrarily smaller than the right-hand side for all b. Given
the complexity of incorporating b into convergence analysis and the perceived rarity
of examples like Toh’s, work has proceeded to bound the “Ideal GMRES” problem

min
deg(p)≤k
p(0)=1

‖p(A)‖2,

typically optimizing p over sets in the complex plane such as the spectrum, pseudo-
spectra, polynomial numerical hulls, and numerical range. A recent contribution is
Crouzeix’s Theorem: for any f analytic on the numerical range W (A),

‖f(A)‖ ≤ 11.08 max
z∈W (A)

|f(z)|,

with the enticing conjecture that 11.08 can be replaced by 2 [7].
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6. Context and outlook

Liesen and Strakoš open and close their book with an essential point that is
easy to overlook in theoretical studies: the equation Ax = b arises as part of a
larger problem-solving process that begins with mathematical modeling and data
collection, and concludes with some answer derived from x. These diverse steps in-
cur all varieties of error: in instrumentation, modeling, linearization, discretization,
convergence tolerance, floating-point precision, interpretation. Framing Ax = b in
this context informs the norm in which one computes, the convergence criterion
to which one iterates, and the nature of b. For example, if A and b arise from
discretization of a differential equation, the Fourier coefficients of b are likely to
decay, unlike those of a random b, and this will influence convergence.

This thoughtful perspective runs throughout the book. The topics within its
purview—classification of algorithms; orthogonal polynomials, continued fractions,
and moment problems; the Faber–Manteuffel theorem; convergence theory in exact
and finite precision—are covered with inspiring clarity, precision, and thoroughness.
Of particular note are the rich historical details that illuminate overlooked early
contributions, such as Vorobyev’s monograph on the moment problem [29].

This book makes an important contribution to the growing monograph literature
on Krylov subspace methods. Since the 1990s numerous books have appeared on the
subject, often oriented toward practitioners and suitable for broad graduate courses;
see, e.g., [4,13,19,21,28]. Those seeking a survey of algorithms and preconditioners
are well served by these texts. The book under review places less emphasis on
algorithmic variety, especially suboptimal methods for nonsymmetric matrices. (For
example, the popular restarted variant of GMRES is only tangentially mentioned.)
This selectivity allows Liesen and Strakoš to cover topics in sufficient detail to
reward engaged readers with a great depth of understanding. The book is an
excellent resource for established scholars and research students entering the field,
and for focused study in a graduate seminar.

To conclude, we mention several problems in the spirit of the book but beyond
its contents, which remain challenges going forward.

The eigenvalues of the compression Hk = V ∗
k AVk in (3.2) are Rayleigh–Ritz

eigenvalue estimates for A from the Krylov subspace. For symmetric A these Ritz
values interlace the spectrum. Progress is just beginning on inverse numerical range
problems, which study how Ritz values distribute over W (A); see, e.g., [6, 18]. No
work yet addresses the important analogous question for the harmonic Rayleigh–
Ritz values that are the roots of the GMRES residual polynomial.

At present there are rather more questions than answers about the convergence
of suboptimal iterations for nonsymmetric A. Intriguing results hint at the complex
behavior still remaining to be understood, such as Greenbaum’s theorem on the role

of the vector b̃ in the BiCG algorithm [14], and the exotic dynamics of restarted
GMRES [9]. This challenging area would benefit from creative new approaches.

In recent years interest has grown in large-scale Lyapunov and Sylvester matrix
equations, AX + XB = C, for the unknown matrix X. This equation can be
expressed as (I⊗A+BT ⊗I)vec(X) = vec(C), but the dimensions usually prohibit
even storage of vec(X), thus ruling out methods like GMRES before they even
begin. The Sylvester equation is only tractable because X often has accurate low-
rank approximations. Krylov projection still plays an important role [25].
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Krylov subspace methods have a rich history, essential applications, and a mul-
titude of outstanding challenges: Liesen and Strakoš honor the subject admirably.
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