
Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM REVIEW © 2024 Society for Industrial and Applied Mathematics
Vol. 66, No. 1, pp. 125–146

A Simple Formula for the Generalized
Spectrum of Second Order Self-Adjoint
Differential Operators\ast 

Bjørn Fredrik Nielsen\dagger 
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Abstract. We analyze the spectrum of the operator \Delta  - 1[\nabla \cdot (K\nabla u)] subject to homogeneous Dirich-
let or Neumann boundary conditions, where \Delta denotes the Laplacian and K = K(x, y)
is a symmetric tensor. Our main result shows that this spectrum can be derived from
the spectral decomposition K = Q\Lambda QT , where Q = Q(x, y) is an orthogonal matrix and
\Lambda = \Lambda (x, y) is a diagonal matrix. More precisely, provided that K is continuous, the spec-
trum equals the convex hull of the ranges of the diagonal function entries of \Lambda . The domain
involved is assumed to be bounded and Lipschitz. In addition to studying operators defined
on infinite-dimensional Sobolev spaces, we also report on recent results concerning their
discretized finite-dimensional counterparts. More specifically, even though \Delta  - 1[\nabla \cdot (K\nabla u)]
is not compact, it turns out that every point in the spectrum of this operator can, to an
arbitrary accuracy, be approximated by eigenvalues of the associated generalized algebraic
eigenvalue problems arising from discretizations. Our theoretical investigations are illu-
minated by numerical experiments. The results presented in this paper extend previous
analyses which have addressed elliptic differential operators with scalar coefficient func-
tions. Our investigation is motivated by both preconditioning issues (efficient numerical
computations) and the need to further develop the spectral theory of second order PDEs
(core analysis).
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1. Main Result. For simple domains, the eigenfunctions and eigenvalues of the
Laplacian \Delta can be characterized in terms of trigonometric functions. Similar analytic
information is not available for general second order differential operators \nabla \cdot (K\nabla u).
However, in [9, 20] the authors show that the spectrum of the preconditioned operator

(1.1) \Delta  - 1[\nabla \cdot (k\nabla u)] for (x, y) \in \Omega ,
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where k is a uniformly positive scalar function, can be analyzed in detail. More
specifically, if k is continuous, then the range

k(\Omega ) = \{ k(x, y), (x, y) \in \Omega \} 

of k is contained in the spectrum of the operator (1.1). Here, \Omega \subset \BbbR 2 is a bounded
Lipschitz domain, k = k(x, y), u = u(x, y), and one employs homogeneous Dirich-
let boundary conditions. Furthermore, for discretized problems, assuming that k is
bounded and piecewise continuous, the function values of k over the patches defined by
the discretization basis functions provide accurate approximations of the generalized
eigenvalues.

This raises two questions. First, using homogeneous Dirichlet or Neumann
boundary conditions, can the whole spectrum of the operator (1.1) be expressed in
terms of a simple formula and can such a result be further extended? Second, what
is the relationship between the spectrum of the preconditioned differential operator
and the generalized eigenvalues of its discrete counterpart? The main purpose of this
paper is to address these two questions.

Concerning the first question, we extend the results published in [9, 20] to second
order differential operators which involve a symmetric tensor K(x, y) instead of a
scalar function k(x, y): Consider a symmetric real valued tensor function K : \Omega \rightarrow 
\BbbR 2\times 2 with bounded Lebesgue integrable functions entries and with the spectral
decomposition

(1.2)

K(x, y) = Q(x, y)\Lambda (x, y)QT (x, y), (x, y) \in \Omega ,

\Lambda (x, y) =

\biggl[ 
\kappa 1(x, y) 0

0 \kappa 2(x, y)

\biggr] 
, QQT = QTQ = I.

Defining the operators \scrL , \scrA : H1
0 (\Omega ) \mapsto \rightarrow H - 1(\Omega ) as

\langle \scrL \phi , \psi \rangle =
\int 
\Omega 

\nabla \phi \cdot \nabla \psi , \phi , \psi \in H1
0 (\Omega ),(1.3)

\langle \scrA \phi , \psi \rangle =
\int 
\Omega 

K\nabla \phi \cdot \nabla \psi , \phi , \psi \in H1
0 (\Omega ),(1.4)

we characterize the spectrum of the preconditioned operator

(1.5) \scrL  - 1\scrA : H1
0 (\Omega ) \rightarrow H1

0 (\Omega ),

defined as

(1.6) sp(\scrL  - 1\scrA ) \equiv 
\bigl\{ 
\lambda \in \BbbC ; \lambda \scrI  - \scrL  - 1\scrA does not have a bounded inverse

\bigr\} 
.

More specifically, this paper proves the following result, which contains the formula
referred to in its title.1

Theorem 1.1 (spectrum of the preconditioned operator). Consider an open and
bounded Lipschitz domain \Omega \subset \BbbR 2. Assume that the tensor K is symmetric and
continuous throughout the closure \Omega . Then the spectrum of the operator \scrL  - 1\scrA , defined
in (1.3)--(1.6), equals

(1.7) sp(\scrL  - 1\scrA ) = Conv(\kappa 1(\Omega ) \cup \kappa 2(\Omega )),

1Homogeneous Neumann boundary conditions are treated in section 6.
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where

(1.8) Conv(\kappa 1(\Omega ) \cup \kappa 2(\Omega )) =
\biggl[ 

inf
(x,y)\in \Omega 

min
i=1,2

\kappa i(x, y), sup
(x,y)\in \Omega 

max
i=1,2

\kappa i(x, y)

\biggr] 
.

Note that this theorem extends the results in [20] in several ways. It holds for
second order differential operators with definite, indefinite, and semidefinite tensors.
Moreover, instead of the inclusion proved for the scalar case in [20], it shows that the
spectrum actually equals the interval (1.8) determined by K(x, y). This answers the
first question posed above.

As for the second question, let L\bfn and A\bfn be the matrices that arise from dis-
cretizations of the operators (1.3) and (1.4), respectively, using an n-dimensional
subspace of H1

0 (\Omega ). Then the numerical approximation of sp(\scrL  - 1\scrA ) is typically com-
puted via the generalized algebraic eigenvalue problem

(1.9) A\bfn v = \lambda L\bfn v, v \in \BbbR n.

In the numerical PDE literature, this generalized algebraic eigenvalue problem is often
associated with the generalized PDE eigenvalue problem

\nabla \cdot (K\nabla u) = \lambda \Delta u for (x, y) \in \Omega ,

u = 0 for (x, y) \in \partial \Omega .
(1.10)

The relationship among (1.9), (1.10), and the numerical approximation of the whole
spectrum (1.6) is, however, rather involved: The point spectrum of a noncompact
operator represents only a part of its spectrum. This is, in particular, true for contin-
uously invertible operators defined on infinite-dimensional Hilbert (Sobolev) spaces,
which cannot be compact. Therefore, the generalized eigenvalue problem (1.10) does
not determine the whole spectrum (1.6). On the other hand, the eigenvalues of the
generalized eigenvalue problem (1.9) do asymptotically approximate the whole spec-
trum (1.6). We will discuss these issues in section 8.

2. Introduction to the Broader Context. Recall that the Laplacian \Delta has
eigenfunctions that can be expressed in terms of trigonometric functions and that
the associated eigenvalues form an unbounded sequence.2 Therefore, the Laplacian,
regarded as an operator from \scrC 2(\Omega ) to \scrC (\Omega ), both spaces endowed with the sup-
norm, is unbounded.3 This property is inherited by discretizations in the sense that
the size of the smallest interval containing all of the eigenvalues of the associated (stiff-
ness) matrices will increase, without any upper bound, as the mesh parameter h > 0
decreases.

It may seem that using a different setting in which second order differential oper-
ators are coercive and bounded will resolve this matter. This is unfortunately not
the case: Motivated by the weak/variational form of boundary value problems, one
may consider \nabla \cdot (K(x)\nabla u) as a mapping from H1

0 (\Omega ) onto its dual H - 1(\Omega ); see
(1.4). Let K(x) be a real symmetric (diffusion) tensor that is bounded and uniformly
positive definite over the closure of the solution domain \Omega . Within this setting, \scrA not
only becomes bounded, but is an homeomorphism. Still, a standard Galerkin finite

2For example, sin(i\pi x) sin(j\pi y) is an eigenfunction with eigenvalue  - (i2+j2)\pi 2 of the Laplacian
on the unit square when homogeneous Dirichlet boundary conditions are employed.

3Recall that \scrC 2(\Omega ) is not complete, and therefore it is not a Hilbert space. The Hellinger--Toeplitz
theorem does not apply.
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element discretization yields symmetric positive definite stiffness matrices with the
ratio \kappa of the largest to the smallest eigenvalue, called the condition number, growing
proportionally to h - 2.

The numerical treatment of elliptic boundary value problems therefore becomes
difficult because refining the discretization results in eigenvalues spread throughout
a large interval. This led in the works of Axelsson, Evans, Concus, Golub, O'Leary,
Meierink, van der Vorst, and many others to the development of preconditioners
defined by, e.g., matrix splittings and incomplete Cholesky factorization techniques.
This reduces the spreading of the eigenvalues, but the size of the smallest interval
containing all of the eigenvalues of the preconditioned matrices will still increase,
without any bound, as h\rightarrow 0.

In order to obtain h-robust bounds for all the eigenvalues, one can employ operator
preconditioning: The preconditioner, on the infinite-dimensional Hilbert space level,
is then defined in terms of a bounded linear mapping from H - 1(\Omega ) to H1

0 (\Omega ). For
example, for second order elliptic PDEs, the inverse of the Laplacian, \Delta  - 1, is a proto-
typical operator preconditioner, which leads to our interest in the spectral properties
of \Delta  - 1\nabla \cdot (K\nabla u) with suitable boundary conditions. In this case, not only do we
obtain h-independent bounds for the eigenvalues on the discrete level, but also the
entire spectrum, in the infinite-dimensional setting, can be characterized in terms of
the spectral decomposition of K; see (1.7)--(1.8).

Theorem 1.1 can be illustrated by the following experiment. We consider three
test problems with diagonal tensors (1.2) (i.e., Q = I) defined on the domain \Omega \equiv 
(0, 1)\times (0, 1), where

(2.1)

(P1) : \kappa 1(x, y) = 1, \kappa 2(x, y) = 10,

(P2) : \kappa 1(x, y) = 1 + 0.5(x+ y), \kappa 2(x, y) = 10 - 0.5(x+ y),

(P3) : \kappa 1(x, y) = 1 + 3(x+ y), \kappa 2(x, y) = 10 - 2(x+ y)

for (x, y) \in \Omega . We discretize the operators (1.3) and (1.4) using a uniform triangular
mesh with piecewise linear discretization basis functions; see [9] for the scalar case
analogy. Figure 1 presents the eigenvalues of the resulting generalized algebraic eigen-
value problem of size 381. We observe that the spectrum of the discretized problem
not only covers the union of the ranges \kappa 1(\Omega )\cup \kappa 2(\Omega ), but in the case that \kappa 1(\Omega ) and
\kappa 2(\Omega ) do not overlap, it surprisingly covers the whole interval (1.8).

Using the suggestive term preconditioning has led to some misinterpretations,
because reducing the condition number of matrices arising from discretizations has
become incorrectly associated with always leading to faster convergence behavior of
Krylov subspace methods such as the conjugate gradient (CG) method. This flaw,
ignoring the distribution of the eigenvalues between their maximum and minimum,
has unfortunately become a common false wisdom spread throughout the literature,
including many textbooks. In fact, the convergence behavior of CG is often deter-
mined by the entire spectral distribution functions of the linear systems involved; see,
e.g., [11, 18]. Hence, the analysis presented in this paper can be employed to better
understand the performance of CG when the inverse of the Laplacian (or some vari-
ant incorporating it) is applied as a preconditioner to solve discretized second order
elliptic PDEs. Further details on this matter are presented in [9], which contains an
instructive example analyzing the behavior of CG applied to a model problem. Also,
constant-coefficient preconditioners may be of particular interest when the isogeomet-
ric analysis (IgA) approach is employed to discretize both PDEs and the computa-
tional domains involved in terms of B-splines [12, 13, 25]. For examples that use ideas
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Fig. 1 Eigenvalues of the discretized problems (P1)--(P3), defined in (2.1), spread over the entire
interval [1, 10]; the ranges of entries of the diagonal tensor are as follows: (P1): \kappa 1(\Omega ) =
1, \kappa 2(\Omega ) = 10; (P2): \kappa 1(\Omega ) = [1, 2], \kappa 2(\Omega ) = [9, 10]; (P3): \kappa 1(\Omega ) = [1, 7], \kappa 2(\Omega ) = [6, 10].
Horizontal axis: the indices of the increasingly ordered eigenvalues. Vertical axis: the size
of the eigenvalues.

inspired by [9] for developing a complementary approach that has now been applied
to engineering problems, we refer the reader to the recent works [16, 22, 17, 15].

This paper is organized as follows. For clarity of exposition, we restrict our-
selves in sections 3 and 4 to problems with diagonal tensors. In section 3 we present
auxiliary lemmas generalizing, step by step, the results in [20]. Section 4 contains
the proof of the main result for problems with diagonal tensors, and in section 5 we
generalize the lemmas from previous sections to nondiagonal symmetric tensors and
give the proof of the main result, Theorem 1.1. In section 6 we comment on prob-
lems with homogeneous Neumann boundary conditions. The numerical experiments
in section 7 illustrate the results of the analysis. Furthermore, our results concerning
\Delta  - 1\nabla \cdot (K\nabla u) lead us to the question of whether, in a more general operator theo-
retical setting, the entire spectrum of a preconditioned operator can be approximated
by the eigenvalues of its discretizations, which is analyzed in [10]. The answer to
this question, known in spectral approximation theory as lower semicontinuity of the
operator spectrum, is ``yes."" We discuss some of the results presented in [10] in sec-
tion 8. This further shows the importance of determining the spectrum of infinitely
dimensional problems in order to forecast the behavior of iterative schemes applied to
discretized operator preconditioned boundary value problems. The text closes with a
brief discussion of some open problems in section 9.

Since \langle \scrA u, v\rangle = \langle \scrA v, u\rangle for all u, v \in H1
0 (\Omega ), which is a consequence of the sym-

metry of the tensor K, the preconditioned operator (1.5) is self-adjoint with respect
to the inner product associated with the Laplacian:

(u, v)\scrL \equiv \langle \scrL u, v\rangle =
\int 
\Omega 

\nabla u \cdot \nabla v, u, v \in H1
0 (\Omega ),(2.2)

(\scrL  - 1\scrA u, v)\scrL = \langle \scrA u, v\rangle = \langle \scrA v, u\rangle = (\scrL  - 1\scrA v, u)\scrL .(2.3)
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Consequently, sp(\scrL  - 1\scrA ) \subset \BbbR . The inner product (2.2) defines the norm

\| u\| 2\scrL \equiv (u, u)\scrL = \langle \scrL u, u\rangle =
\int 
\Omega 

\| \nabla u\| 2 =

\int 
\Omega 

\| ux\| 22 + \| uy\| 22, u \in H1
0 (\Omega ),

used in the proofs below.

3. Auxiliary Results. We will start by considering diagonal tensors, i.e.,

(3.1) K(x, y) =

\biggl[ 
\kappa 1(x, y) 0

0 \kappa 2(x, y)

\biggr] 
.

This will allow us to explain with full clarity the main difference between the scalar
case studied in [9, 20] and the tensor case analyzed in this paper.

3.1. Function Values at Points of Continuity Belong to the Spectrum. The
following lemma generalizes statement (a) in Theorem 3.1 in [20].

Lemma 3.1. Assume that K is a diagonal tensor, where the entries \kappa 1 and \kappa 2
are bounded and Lebesgue integrable functions on \Omega . The following holds for i = 1, 2:
If \kappa i is continuous at (x0, y0) \in \Omega , then

\kappa i(x0, y0) \in sp(\scrL  - 1\scrA ).

Proof. Assume that \kappa 1 is continuous at (x0, y0), and let

\lambda \equiv \kappa 1(x0, y0).

We will construct parametrized functions vr and ur = (\lambda \scrI  - \scrL  - 1\scrA )vr such that

(3.2) lim
r\rightarrow 0

\| vr\| \scrL \not = 0 and lim
r\rightarrow 0

\| ur\| \scrL = 0,

which is not possible if \lambda \scrI  - \scrL  - 1\scrA has a bounded inverse: vr = (\lambda \scrI  - \scrL  - 1\scrA ) - 1ur
and limr\rightarrow 0 \| ur\| \scrL = 0 imply that limr\rightarrow 0 \| vr\| \scrL = 0. (The norm \| \cdot \| \scrL is the norm
induced by the inner product (2.2).)

The functions vr can be constructed, e.g., in the following way. Consider, for a
sufficiently small r > 0, the following closed neighborhood of the point (x0, y0):

(3.3) Rr = [x0  - r2, x0 + r2]\times [y0  - r, y0 + r] \subset \Omega .

For (x, y) \in Rr, define

(3.4) vr(x, y) =
\surd 
rmin

\Bigl\{ 
1 - | x - x0| 

r2 , 1
r  - | y - y0| 

r2

\Bigr\} 
,

and vr(x, y) = 0 otherwise. It can be verified (see Appendix A) that

(3.5)
4 - 4r \leq \| (vr)x\| 2L2(\Omega ) \leq 4,

\| (vr)y\| 2L2(\Omega ) \leq 4r.

Consequently,

(3.6) lim
r\rightarrow 0

\| vr\| \scrL = lim
r\rightarrow 0

\Bigl( 
\| (vr)x\| 2L2(\Omega ) + \| (vr)y\| 2L2(\Omega )

\Bigr) 1/2

= 2.
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Considering that

(3.7) ur = (\lambda \scrI  - \scrL  - 1\scrA )vr, i.e., \scrL ur = (\lambda \scrL  - \scrA )vr,

we get

\| ur\| 2\scrL = \langle \scrL ur, ur\rangle = \langle (\lambda \scrL  - \scrA )vr, ur\rangle 

=

\int 
\Omega 

(\lambda I  - K)\nabla vr \cdot \nabla ur

\leq 
\biggl( \int 

\Omega 

| (\lambda I  - K)\nabla vr| 2
\biggr) 1/2

\| ur\| \scrL .

Using the fact that supp(vr) = Rr and (3.5),

\| ur\| 2\scrL \leq \| (\lambda  - \kappa 1)(vr)x\| 2L2(\Omega ) + \| (\lambda  - \kappa 2)(vr)y\| 2L2(\Omega )

\leq 4 sup
(x,y)\in Rr

| \kappa 1(x0, y0) - \kappa 1(x, y)| 2 + 4r(\| \kappa 1\| L\infty (\Omega ) + \| \kappa 2\| L\infty (\Omega ))
2,

and from the continuity of \kappa 1(x, y) at (x0, y0),

(3.8) lim
r\rightarrow 0

\| ur\| \scrL = 0.

From (3.6) and (3.8) we conclude that we can construct functions vr and ur =
(\lambda \scrI  - \scrL  - 1\scrA )vr such that (3.2) holds. We conclude that \kappa 1(x0, y0)\scrI  - \scrL  - 1\scrA cannot
have a bounded inverse.

The proof that \kappa 2(x0, y0) belongs to the spectrum if \kappa 2 is continuous at (x0, y0)
is trivially analogous.

If \kappa i \in \scrC (\Omega ), i = 1, 2, then Lemma 3.1 gives a diagonal tensor case analogy of
Theorem 3.1, statement (b), in [20]. As is shown next, in the tensor case the spectrum
of the preconditioned operator \scrL  - 1\scrA can, however, also contain numbers that do not
belong to any of the individual ranges of the functions \kappa 1 and \kappa 2.

3.2. Disjoint Ranges Extend the Spectrum. An unexpected case occurs when
the ranges of \kappa 1 and \kappa 2 are disjoint:

\kappa 1(\Omega ) \cap \kappa 2(\Omega ) = \emptyset .

We begin by presenting the following facts that will be used in the proofs.

3.2.1. Dirichlet Problem for the Wave Equation. Note that for any integer n,

(3.9) \phi (x, y) = sin(n\pi cl - 1(y  - y0)) sin(n\pi l
 - 1(x - x0))

solves the following Dirichlet problem for the wave equation:

\phi yy = c2\phi xx in \Sigma l,

\phi = 0 on \partial \Sigma l,
(3.10)

where l is a positive constant which determines the size of the solution domain

\Sigma l = (x0, x0 + l)\times (y0, y0 + l/c)

and c > 0 is arbitrary. We conclude that this Dirichlet problem has infinitely many
nontrivial solutions. It is also clear that \Sigma l can be made as small as needed by choosing
l > 0 sufficiently small.
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3.2.2. Tensors Constant on an Open Subdomain. Consider the generalized
eigenvalue problem (1.10) with a diagonal tensor K(x, y) (3.1) that is constant on
an open subdomain S \subset \Omega . Then we get the following lemma.

Lemma 3.2. Consider a diagonal tensor (3.1), where the bounded and Lebesgue
integrable functions \kappa i, i = 1, 2, are constant on an open subdomain S \subset \Omega . Assuming
that

(3.11) sup
(x,y)\in \Omega 

\kappa 1(x, y) < inf
(x,y)\in \Omega 

\kappa 2(x, y),

the following closed interval belongs to the spectrum of \scrL  - 1\scrA :

(3.12)

\biggl[ 
sup

(x,y)\in \Omega 

\kappa 1(x, y), inf
(x,y)\in \Omega 

\kappa 2(x, y)

\biggr] 
\subset sp(\scrL  - 1\scrA ).

The analogous statement obviously holds by interchanging the roles of \kappa 1 and \kappa 2 in
(3.11) and (3.12).

Proof. Consider an arbitrary fixed point (x0, y0) \in S. For any fixed c > 0, there
exists l > 0 such that

\Sigma l \equiv (x0, x0 + l)\times (y0, y0 + l/c) \subset S.

Since K(x, y) is constant on \Sigma l, we can rewrite (1.10) as

(3.13) (\lambda  - k1)vxx + (\lambda  - k2)vyy = 0 in \Sigma l,

where k1 and k2 are constants, and

K(x, y) =

\biggl[ 
k1 0

0 k2

\biggr] 
, (x, y) \in \Sigma l.

Consider an arbitrary \lambda in the interval (k1, k2). Then (3.13) represents, with

c2 =
\lambda  - k1

k2  - \lambda 
> 0,

the wave equation (3.10). Taking any nontrivial solution \phi of (3.10), the function v
defined on \Omega as

v(x, y) =

\biggl\{ 
\phi (x, y), (x, y) \in \Sigma l,
0, (x, y) /\in \Sigma l,

solves the weak form of the generalized eigenvalue problem (1.10): Using

0 = \langle \scrA v, \psi \rangle  - \lambda \langle \scrL v, \psi \rangle = \langle \scrL (\scrL  - 1\scrA v  - \lambda v), \psi \rangle for all \psi \in H1
0 (\Omega ),

we get \scrL  - 1\scrA v = \lambda v, i.e., \lambda is an eigenvalue and v is an eigenfunction of the precon-
ditioned operator \scrL  - 1\scrA . We conclude that (k1, k2) \subset sp(\scrL  - 1\scrA ).

Since, by construction,

k1 \leq sup
(x,y)\in \Omega 

\kappa 1(x, y) < inf
(x,y)\in \Omega 

\kappa 2(x, y) \leq k2,(3.14)

it remains to prove that if the equality is attained on any side of (3.14), then the
associated ki, i = 1 and/or i = 2, also belongs to the spectrum of \scrL  - 1\scrA . But this is
trivially true using Lemma 3.1 because ki is a function value of \kappa i(x, y) at \Sigma l, where
\kappa i is constant and therefore continuous.
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Lemma 3.2 shows that, under the given assumptions, the whole closed interval
determined by the extremal points of the disjoint ranges of \kappa 1 and \kappa 2 belongs to the
spectrum of the preconditioned operator \scrL  - 1\scrA . Moreover, each inner point of this
interval is an eigenvalue. Please note that it is not assumed here that K is continuous
throughout the closure \Omega and that the subdomain S is of an arbitrarily small size.

3.2.3. Tensors Continuous at Least at a Single Point. The following lemma
further refines the assumptions under which the statement of Lemma 3.2 holds.

Lemma 3.3. Assume that the diagonal tensor (3.1) with the bounded and Lebesgue
integrable functions \kappa i, i = 1, 2, is continuous (at least) at a single point in \Omega . If

(3.15) sup
(x,y)\in \Omega 

\kappa 1(x, y) < inf
(x,y)\in \Omega 

\kappa 2(x, y),

then the following closed interval belongs to the spectrum of \scrL  - 1\scrA :

(3.16)

\biggl[ 
sup

(x,y)\in \Omega 

\kappa 1(x, y), inf
(x,y)\in \Omega 

\kappa 2(x, y)

\biggr] 
\subset sp(\scrL  - 1\scrA ).

The analogous statement obviously holds by interchanging the roles of \kappa 1 and \kappa 2 in
(3.15) and (3.16).

Proof. We will prove the statement by contradiction. Consider

\lambda \in 
\biggl[ 

sup
(x,y)\in \Omega 

\kappa 1(x, y), inf
(x,y)\in \Omega 

\kappa 2(x, y)

\biggr] 
such that \lambda /\in sp(\scrL  - 1\scrA ), i.e., such that the operator \scrL  - 1\scrA  - \lambda \scrI has a bounded
inverse.

Let (x0, y0) \in \Omega be the point of continuity of the tensor K(x, y). Applying
Lemma 3.2 to the preconditioned operator \scrL  - 1\scrA l, where \scrA l is defined for any suffi-
ciently small l by

\langle \scrA l\phi , \psi \rangle \equiv 
\int 
\Omega 

Kl\nabla \phi \cdot \nabla \psi , \phi , \psi \in H1
0 (\Omega ),

and Kl(x, y) is a local modification of K,

Kl(x, y) \equiv 
\biggl\{ 
K(x0, y0), (x, y) \in Sl,
K(x, y), (x, y) \in \Omega \setminus Sl,

Sl = (x0, x0 + l)\times (y0, y0 + l),

yields that

(3.17) \lambda \in sp(\scrL  - 1\scrA l).

On the other hand, since we assume that \scrL  - 1\scrA  - \lambda \scrI is invertible,

\scrL  - 1\scrA l  - \lambda \scrI = (\scrL  - 1\scrA  - \lambda \scrI ) + (\scrL  - 1\scrA l  - \scrL  - 1\scrA )

= (\scrL  - 1\scrA  - \lambda \scrI )[\scrI + (\scrL  - 1\scrA  - \lambda \scrI ) - 1\scrL  - 1(\scrA l  - \scrA )].

In Appendix B we prove that for sufficiently small l > 0,

(3.18) \| (\scrL  - 1\scrA  - \lambda \scrI ) - 1\scrL  - 1(\scrA l  - \scrA )\| \scrL < 1,
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and a Neumann series argument therefore ensures that \scrL  - 1\scrA l  - \lambda \scrI has a bounded
inverse. Consequently, \lambda /\in sp(\scrL  - 1\scrA l), which contradicts (3.17). (Inequality (3.18)
holds due to the assumption that \lambda /\in sp(\scrL  - 1\scrA ) and due to the continuity of K(x, y)
at the point (x0, y0). See Appendix B for further details.)

It is worth noting that the statement of Lemma 3.3 requires continuity of the
tensor K only at an arbitrary single point belonging to \Omega .

4. Continuous Diagonal Tensors. We first complement Lemma 3.1, and Theo-
rem 3.1 in [20], by proving the ``reverse inclusion.""

4.1. The Spectrum Is a Subset of the Extremal Interval.

Lemma 4.1. Assume that the diagonal tensor (3.1) is continuous throughout the
closure \Omega . Then

(4.1) sp(\scrL  - 1\scrA ) \subset Conv(\kappa 1(\Omega ) \cup \kappa 2(\Omega )).

Proof. Using the self-adjointness (2.3) of the operator \scrL  - 1\scrA , we can take the
standard results from the theory of self-adjoint operators (see, e.g., [8, section 6.5])
and conclude that the spectrum of \scrL  - 1\scrA is real and that

sp(\scrL  - 1\scrA ) \subset 

\Biggl[ 
inf

u\in H1
0 (\Omega )

(\scrL  - 1\scrA u, u)\scrL 
(u, u)\scrL 

, sup
u\in H1

0 (\Omega )

(\scrL  - 1\scrA u, u)\scrL 
(u, u)\scrL 

\Biggr] 

=

\Biggl[ 
inf

u\in H1
0 (\Omega )

\langle \scrA u, u\rangle 
\langle \scrL u, u\rangle 

, sup
u\in H1

0 (\Omega )

\langle \scrA u, u\rangle 
\langle \scrL u, u\rangle 

\Biggr] 
.(4.2)

Moreover, the endpoints of this interval are contained in the spectrum.
It remains to bound

(4.3)
\langle \scrA u, u\rangle 
\langle \scrL u, u\rangle 

in terms of the extreme values of the scalar functions \kappa 1 and \kappa 2. Since u2x(x, y) \geq 0
and u2y(x, y) \geq 0, we can bound (4.3) as follows:

sup
u\in H1

0 (\Omega )

\langle \scrA u, u\rangle 
\langle \scrL u, u\rangle 

= sup
u\in H1

0 (\Omega )

\int 
\Omega 
K\nabla u \cdot \nabla u\int 
\Omega 
\| \nabla u\| 2

= sup
u\in H1

0 (\Omega )

\int 
\Omega 
\kappa 1u

2
x + \kappa 2u

2
y\int 

\Omega 
\| \nabla u\| 2

\leq sup
u\in H1

0 (\Omega )

\int 
\Omega 
sup(x,y)\in \Omega maxi=1,2\{ \kappa i(x, y)\} \| \nabla u\| 2\int 

\Omega 
\| \nabla u\| 2

\leq sup
(x,y)\in \Omega 

max
i=1,2

\{ \kappa i(x, y)\} .(4.4)

Similarly,

inf
u\in H1

0 (\Omega )

\langle \scrA u, u\rangle 
\langle \scrL u, u\rangle 

\geq inf
(x,y)\in \Omega 

min
i=1,2

\{ \kappa i(x, y)\} .

For K(x, y) continuous on \Omega , the infimum and supremum of its components \kappa 1(x, y)
and \kappa 2(x, y) are attained. Please note that no assumption is made about the positive
(negative) definiteness of K.

We are now ready to prove Theorem 1.1 for continuous diagonal tensors.
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4.2. Main Result—Diagonal Tensors.

Theorem 4.2. Consider an open and bounded Lipschitz domain \Omega \subset \BbbR 2. If the
diagonal tensor (3.1) is continuous throughout the closure \Omega , then

sp(\scrL  - 1\scrA ) = Conv(\kappa 1(\Omega ) \cup \kappa 2(\Omega )).

Proof. Assume that the diagonal tensor K(x, y) is continuous throughout \Omega .
Then, by Lemmas 3.1 and 3.3,

Conv(\kappa 1(\Omega ) \cup \kappa 2(\Omega )) \subset sp(\scrL  - 1\scrA ),

and due to the continuity of K(x, y) and the fact that sp(\scrL  - 1\scrA ) is a closed set (see,
e.g., [24]),

Conv(\kappa 1(\Omega ) \cup \kappa 2(\Omega )) \subset sp(\scrL  - 1\scrA ).

Finally, by Lemma 4.1,

sp(\scrL  - 1\scrA ) \subset Conv(\kappa 1(\Omega ) \cup \kappa 2(\Omega )),

which gives the statement.

5. Proof of Theorem 1.1. It remains to revisit and complete the arguments given
above for the general self-adjoint operator in (1.4). Consider the general symmetric
tensor

(5.1) K(x, y) =

\biggl[ 
k1(x, y) k3(x, y)
k3(x, y) k2(x, y)

\biggr] 
,

where k1, k2, and k3 are bounded and Lebesgue integrable functions defined on \Omega ,
with the spectral decomposition

(5.2) K(x, y) = Q(x, y)

\biggl[ 
\kappa 1(x, y) 0

0 \kappa 2(x, y)

\biggr] 
QT (x, y);

see (1.2).
The structure of the proof of Theorem 1.1 is fully analogous to the proof of

Theorem 4.2 formulated for diagonal tensors. We will now restate the associated
lemmas for the general case and comment on the technical differences that must be
considered.

For convenience, we will use, when appropriate, the column vector notation

w = (x, y)T , (x, y) \in \Omega ,

and for any function f defined on \Omega its gradient \nabla f will be considered as a column
vector.

Lemma 5.1 (see Lemma 3.1). Consider the symmetric tensor (5.1) with the spec-
tral decomposition (5.2). If the tensor K is continuous at (x0, y0) \in \Omega , then

\kappa i(x0, y0) \in sp(\scrL  - 1\scrA ), i = 1, 2.
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Proof. We will use the following notation for the spectral decomposition ofK(x, y)
at the point of continuity (x0, y0):

K0 \equiv K(x0, y0) = Q0\Lambda 0Q
T
0 , Q0 \equiv Q(x0, y0), QT

0Q0 = I,

\Lambda 0 \equiv \Lambda (x0, y0) = diag(\kappa 1(x0, y0), \kappa 2(x0, y0)).

Simple algebraic computations give that, for any (x, y) \in \Omega ,

(5.3) \kappa 1 = 1
2 (k1 + k2 +

\surd 
D), \kappa 2 = 1

2 (k1 + k2  - 
\surd 
D),

where D = (k1  - k2)
2 + 4k23. Therefore, at any point of continuity of the tensor

K(x, y), the functions \kappa 1(x, y) and \kappa 2(x, y) are also continuous.
For sufficiently small r, consider the closed neighborhood Rr defined in (3.3) and

its counterpart defined as

Sr = \{ Q0z | z \in Rr\} ,

where the choice of r in (3.3) ensures that both Rr \subset \Omega and Sr \subset \Omega . Consider the
functions

\~vr(w) \equiv vr(Q
T
0 w), w \in \Omega ,

where vr is defined in (3.4). Since | detQ| = 1, the change of variables gives

(5.4) \| \~vr\| 2\scrL =

\int 
Sr

\| \nabla \~vr(w)\| 2dw =

\int 
Rr

\| \nabla vr(z)\| 2dz = \| vr\| 2\scrL 

and, from (3.6),

(5.5) lim
r\rightarrow 0

\| \~vr\| \scrL = 2 \not = 0.

Analogously to (3.7) we consider

ur \equiv (\lambda \scrI  - \scrL  - 1\scrA )\~vr, \lambda \equiv \kappa 1(x0, y0),

with the norm

\| ur\| 2\scrL =

\int 
\Omega 

(\lambda I  - K)\nabla \~vr \cdot \nabla ur(5.6)

=

\int 
Sr

(\lambda I  - K0)\nabla \~vr \cdot \nabla ur +
\int 
Sr

(K0  - K)\nabla \~vr \cdot \nabla ur.(5.7)

Our goal is to show that if \lambda /\in sp(\scrL  - 1\scrA ), then limr\rightarrow 0 \| ur\| \scrL = 0, which contradicts
(5.5). Concerning the second integral in (5.7),\int 

Sr

(K0  - K)\nabla \~vr \cdot \nabla ur \leq sup
\bfw \in Sr

\| K0  - K(w)\| \| \~vr\| \scrL \| ur\| \scrL .

Using the continuity of K(x, y) at the point (x0, y0) and the fact that \| \~vr\| \scrL \| ur\| \scrL is
bounded, the second integral on the right-hand side of (5.7) vanishes as r \rightarrow 0. For
the remaining term in (5.7), we find that\int 

Sr

(\lambda I  - K0)\nabla \~vr \cdot \nabla ur =

\int 
Sr

Q0(\lambda I  - \Lambda 0)Q
T
0 \nabla \~vr \cdot \nabla ur

\leq 
\biggl( \int 

Sr

\| Q0(\lambda I  - \Lambda 0)Q
T
0 \nabla \~vr\| 2

\biggr) 1/2

\| ur\| \scrL .
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Applying the chain rule gives \nabla \~vr(w) = Q0\nabla vr(QT
0 w) = Q0\nabla vr(z), which together

with the orthogonality of Q0 gives (considering \lambda = \kappa 1(x0, y0))\int 
Sr

\| Q0(\lambda I  - \Lambda 0)Q
T
0 \nabla \~vr\| 2 =

\int 
Sr

\| (\lambda I  - \Lambda 0)\nabla vr(QT
0 w)\| 2

=

\int 
Rr

\| (\lambda I  - \Lambda 0)\nabla vr(z)\| 2

=

\int 
Rr

\| (\lambda  - \kappa 2(x0, y0))(vr)y(z)\| 2

\leq | \lambda  - \kappa 2(x0, y0)| \| (vr)y\| 2L2(\Omega ),

where the upper bound vanishes as r \rightarrow 0 due to (3.5).
The proof that \kappa 2(x0, y0) belongs to the spectrum of the preconditioned operator,

provided that the assumptions of the lemma hold, is trivially analogous.

The remaining part of the proof of Theorem 1.1 is a straightforward extension of
the analysis presented in section 4.

Lemma 5.2 (see Lemma 3.2). Consider a symmetric tensor (5.1) with bounded
and Lebesgue integrable functions ki, i = 1, 2, 3, which are constant on an open sub-
domain S \subset \Omega . Assuming that

(5.8) sup
(x,y)\in \Omega 

\kappa 1(x, y) < inf
(x,y)\in \Omega 

\kappa 2(x, y),

the following closed interval belongs to the spectrum of \scrL  - 1\scrA :

(5.9)

\biggl[ 
sup

(x,y)\in \Omega 

\kappa 1(x, y), inf
(x,y)\in \Omega 

\kappa 2(x, y)

\biggr] 
\subset sp(\scrL  - 1\scrA ).

The analogous statement obviously holds by interchanging the roles of \kappa 1 and \kappa 2 in
(5.8) and (5.9).

Proof. Since K(x, y) and its spectral decomposition K = \=Q\=\Lambda \=QT are constant on
S, the change of variables w = \=Qz transforms the eigenvalue problem (1.10) in the
subdomain S to the form

\nabla \bfz \cdot (\=\Lambda \nabla \bfz v) = \lambda \Delta \bfz v in R = \{ \=QTw | w \in S\} ,

where the diagonal tensor \=\Lambda is constant. Employing the argument used to prove
Lemma 3.2 finishes the proof.

Lemma 5.3 (see Lemma 3.3). Assume that the symmetric tensor (5.1) with the
bounded and Lebesgue integrable functions ki, i = 1, 2, 3, is continuous at least at a
single point in \Omega . Assuming that

(5.10) sup
(x,y)\in \Omega 

\kappa 1(x, y) < inf
(x,y)\in \Omega 

\kappa 2(x, y),

the following closed interval belongs to the spectrum of \scrL  - 1\scrA :

(5.11)

\biggl[ 
sup

(x,y)\in \Omega 

\kappa 1(x, y), inf
(x,y)\in \Omega 

\kappa 2(x, y)

\biggr] 
\subset sp(\scrL  - 1\scrA ).

The analogous statement obviously holds by interchanging the roles of \kappa 1 and \kappa 2 in
(5.10) and (5.11).
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Proof. The proof is fully analogous to the proof of Lemma 3.3.

Lemma 5.4 (see Lemma 4.1). Let the symmetric tensor (5.1) be continuous
throughout the closure \Omega . Then

sp(\scrL  - 1\scrA ) \subset Conv(\kappa 1(\Omega ) \cup \kappa 2(\Omega )).

Proof. The proof is analogous to the proof of Lemma 4.1 with the argument used
in the derivation of (4.4) now written in the form

K\nabla u \cdot \nabla u = \Lambda QT\nabla u \cdot QT\nabla u \leq sup
\bfw \in \Omega 

max
i=1,2

\{ \kappa i(w)\} \| QT\nabla u\| 2.

Due to the orthogonality of Q we get\int 
\Omega 

K\nabla u \cdot \nabla u \leq sup
\bfw \in \Omega 

max
i=1,2

\{ \kappa i(w)\} 
\int 
\Omega 

\| \nabla u\| 2

and, similarly,

inf
\bfw \in \Omega 

max
i=1,2

\{ \kappa i(w)\} 
\int 
\Omega 

\| \nabla u\| 2 \leq 
\int 
\Omega 

K\nabla u \cdot \nabla u.

The proof of Theorem 1.1 is completed by the combination of Lemmas 5.1 to 5.4;
see the proof of Theorem 4.2.

6. Neumann Boundary Conditions. Theorem 1.1 also holds for the spectrum of
the preconditioned operator \scrL  - 1\scrA with homogeneous Neumann boundary conditions.
Instead of H1

0 (\Omega ), we now employ the space

V =

\biggl\{ 
v \in H1(\Omega )| ,

\int 
\Omega 

v = 0

\biggr\} 
with the operators \scrL ,\scrA : V \rightarrow V \# defined analogously to those above (see (1.3) and
(1.4)):

\langle \scrL \phi , \psi \rangle =
\int 
\Omega 

\nabla \phi \cdot \nabla \psi , \phi , \psi \in V,

\langle \scrA \phi , \psi \rangle =
\int 
\Omega 

K\nabla \phi \cdot \nabla \psi , \phi , \psi \in V,

where \scrL has a bounded inverse operator; see, e.g., [19, Example 7.2.2, page 117].
We still use the \| \cdot \| \scrL -norm; see (2.2). For the Neumann problem, the functions vr
defined as in (3.4), and the solutions \phi of the wave equation defined as in (3.9) must
be modified to

vr  - 
\int 
\Omega 

vr and \phi  - 
\int 
\Sigma l

\phi ,

respectively. The rest will follow in an analogous way to the analysis presented in this
paper. The associated generalized PDE eigenvalue problem in this context reads

\nabla \cdot (K\nabla u) = \lambda \Delta u for (x, y) \in \Omega ,

(K  - \lambda I)\nabla u \cdot n = 0 for (x, y) \in \partial \Omega ,
(6.1)

where n denotes the outwards pointing unit normal vector of \partial \Omega .
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7. Numerical Experiments. In this section our theoretical results will be illu-
minated by numerical experiments in which the matrices A\bfn and L\bfn are constructed
using FEniCS [1]. The eigenvalues of the resulting generalized algebraic eigenvalue
problem (1.9), i.e., the eigenvalues of the discretized preconditioned operator repre-
sented in the matrix form by L\bfn 

 - 1A\bfn , are computed and visualized with MATLAB.4

If not specified otherwise, we consider the domain \Omega \equiv (0, 1) \times (0, 1), and a uniform
triangular mesh with piecewise linear discretization basis functions is used.

The examples in section 2 concern diagonal positive definite tensors. We first
complement this by performing experiments with nondiagonal indefinite tensors (5.1).
We consider three test problems with zero Dirichlet boundary conditions and with the
following entries in the symmetric tensor (5.1):

(P4) : k1(x, y) = 5, k2(x, y) =  - 5, k3(x, y) = 0,

(P5) : k1(x, y) = 3, k2(x, y) =  - 3, k3(x, y) = 4,

(P6) : k1(x, y) = 3e - 3(| x - 0.5| +| y - 0.5| ), k2(x, y) =  - k1, k3(x, y) = 4 cos(\pi (x+y - 1)
2 ).

Using (5.3) gives for problems (P4) and (P5) that \kappa 1(x, y) =  - 5 and \kappa 2(x, y) = 5.
Furthermore, for problem (P6), formula (5.3) yields

\kappa 1,2(x, y) = \pm 
\sqrt{} 
k21 + k23 = \pm 

\sqrt{} 
9e - 6(| x - 0.5| +| y - 0.5| ) + 16 cos2(\pi (x+y - 1)

2 ),

such that \kappa 1(\Omega ) =  - \kappa 2(\Omega ) = [3e - 3, 5]. As in Figure 1, the spectra visualized in
Figure 2 spread over the entire interval (1.8) defined by the nonoverlapping ranges
\kappa 1(\Omega ) and \kappa 2(\Omega ). Refining the mesh gives better approximations of the endpoints of
the interval [ - 5, 5]. The fact that the tensor (5.1) is not diagonal has no qualitative
effect on the observed experimental data. We will therefore only consider diagonal
tensors in what follows.

0 20 40 60 80
-5

0

5

(P4)
(P5)
(P6)

0 200 400 600 800
-5

0

5

(P4)
(P5)
(P6)

Fig. 2 Spectra of the discretized test problems (P4), (P5), and (P6) for N = 81 (left) and
N = 841 (right) degrees of freedom. Horizontal axis: the indices of the increasingly
ordered eigenvalues. Vertical axis: the size of the eigenvalues.

The left part of Figure 3 shows numerical results computed with homogeneous
Neumann boundary conditions (see section 6). The results with zero Dirichlet

4FEniCS version 2017.2.0 [1] and MATLAB version 9.5.0 (R2018b).
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Fig. 3 Spectra of the discretized test problems (P7) and (P8) with zero Neumann boundary condi-
tions (left) and zero Dirichlet boundary conditions (right).

boundary conditions are, for comparison, presented in the right part of Figure 3.
We consider two test problems with the diagonal tensor (3.1) defined by

(7.1)
(P7) : \kappa 1(x, y) = 10 - f(x, y), \kappa 2(x, y) = 4 + f(x, y),

(P8) : \kappa 1(x, y) = 8 + f(x, y), \kappa 2(x, y) = 6 - f(x, y),

where

f(x, y) = 4((x - 0.5)2 + (y  - 0.5)2)

is chosen such that, for both problems, \kappa 1(\Omega ) = [8, 10] and \kappa 2(\Omega ) = [4, 6]. Note that
these intervals do not overlap. The minimum (respectively, maximum) of the interval
[4, 10] is obtained by the function \kappa 1(x, y) (respectively, \kappa 2(x, y)) in the interior of
the solution domain for problem (P7), while for problem (P8) the endpoints of this
interval are attained on the boundary \partial \Omega . In the latter case the endpoints of the
interval [4, 10] are better approximated for the problem with Neumann boundary
conditions. Similar behavior was also observed for other test cases.

Numerical results for nonconvex domains are presented in Figure 4. We used the
diagonal tensor (3.1) with

(P9) : \kappa 1(x, y) = 6 - 3e - 3(| x - 0.8| +| y - 0.8| ), \kappa 2(x, y) = 6 + 3e - 3(| x - 0.2| +| y - 0.2| )

and the L-shaped domains \Omega 1 = (0, 1)2 \setminus (0, 0.6)2 and \Omega 2 = (0, 1)2 \setminus (0.4, 1)2; see the
illustration in the left part of Figure 4. We employed zero Dirichlet boundary con-
ditions. The function \kappa 1(x, y) (respectively, \kappa 2(x, y)) has its minimum (respectively,
maximum) at the point [0.8, 0.8] (respectively, [0.2, 0.2]), which is outside the domain
\Omega 2 (respectively, \Omega 1). As a result, we observe in Figure 4 that the spectra of the
discretized problems differ, depending on the ranges of functions \kappa 1(x, y) and \kappa 2(x, y)
over \Omega 1 and \Omega 2.

Finally, we present in Figure 5 numerical results for 3D problems, which in this
paper are not supported by rigorous proofs. The proofs were, however, provided after
publication of the original SINUM paper by Ivana Pultarov\'a in an unpublished note
[21]. We consider the unit cube \Omega \equiv (0, 1)3, zero Dirichlet boundary conditions, and
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\Omega 1

\Omega 2

. 0 200 400 600 800

3

4

5

6

7

8

9

Fig. 4 Left: illustration of the shapes of the domains \Omega 1 and \Omega 2. Right: spectra of the test prob-
lem (P9) associated with the domains \Omega 1 and \Omega 2. The ranges satisfy \kappa 1(\Omega 1) \subset [3, 6] and
\kappa 2(\Omega 1) \subset [6, 7] for the domain \Omega 1 and \kappa 1(\Omega 2) \subset [5, 6] and \kappa 2(\Omega 2) \subset [6, 9] for the domain
\Omega 2.

0 200 400 600

2

4

6

8

10

(P10)
(P11)
(P12)

Fig. 5 The spectra of the 3D test problems (P10)--(P12) spread over the entire interval [1, 10], while
the ranges of the function entries of the diagonal tensors are as follows: isolated points
\kappa 1(\Omega ) = 1, \kappa 2(\Omega ) = 5.5, and \kappa 3(\Omega ) = 10 for (P10); nonoverlapping intervals \kappa 1(\Omega ) =
[1, 2], \kappa 2(\Omega ) = [4.5, 6.5], and \kappa 3(\Omega ) = [9, 10] for (P11); and overlapping intervals \kappa 1(\Omega ) =
[1, 5], \kappa 2(\Omega ) = [4, 6], and \kappa 3(\Omega ) = [2, 10] for (P12).
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the diagonal tensor K(x, y, z) = diag(\kappa 1, \kappa 2, \kappa 3) defined as

(P10) : \kappa 1 = 1, \kappa 2 = 5.5, \kappa 3 = 10,

(P11) : \kappa 1 = 1 + sin2(x+ y + z), \kappa 2 = 5.5 + cos(\pi xyz), \kappa 3 = 10 - cos2(x+ y + z),

(P12) : \kappa 1 = 1 + (x+ y + z  - 1)2, \kappa 2 = 4 + xy + z, \kappa 3 = 10 - 2(x+ y + z  - 1)2.

This choice of test problems follows the same ``pattern"" as for the introductory exper-
iments presented in section 2: The ranges of the functions \kappa i(x, y, z), i = 1, 2, 3, are
for (P10) isolated points; they form nonoverlapping intervals for (P11) and overlap-
ping intervals for (P12). As for the 2D test cases, we observe that the spectra of the
discretized problems are spread over the entire interval [1, 10], irrespective of whether
or not the associated ranges overlap.

8. Convergence towards the Spectrum. As observed above, our numerical ex-
periments suggest that the eigenvalues of the discretized preconditioned operators
cover, in the limit h \rightarrow 0, the whole interval (1.8). Here, h represents the mesh
parameter. However, the convergence towards the individual points in this interval
is not uniform. This observation, mentioned as a matter of further research in our
original SINUM paper, was theoretically justified in the subsequent paper [10]. We
will now state the result regarding this matter. The proof is presented in [10, section
4, Corollary 4.3] and addresses abstract operators defined on Hilbert spaces.

Consider an infinite-dimensional Hilbert space V , its dual V \#, and bounded linear
operators \scrA ,\scrB : V \rightarrow V \# that are self-adjoint with respect to the duality pairing, and
\scrB is, in addition, coercive. Consider further a sequence of finite-dimensional subspaces
\{ Vn\} of V , where n denotes the dimensionality, satisfying the standard approximation
property

lim
n\rightarrow \infty 

inf
v\in Vn

\| w  - v\| = 0 for all w \in V,

which typically yields that Galerkin discretizations of boundary value problems are
convergent.

Theorem 8.1. Using the previous notation, let the sequences of matrices \{ An\} 
and \{ Bn\} be defined via the standard Galerkin discretization of the operators \scrA and
\scrB using the sequence of subspaces \{ Vn\} . Then all points in the spectrum of the pre-
conditioned operator

\scrB  - 1\scrA : V \rightarrow V

are approximated, to an arbitrary accuracy, by the eigenvalues of the preconditioned
matrices in the sequence \{ B - 1

n An\} . That is, for any point \lambda \in sp(\scrB  - 1\scrA ) and any
\epsilon > 0, there exists n\ast such that for all n \geq n\ast the preconditioned matrix B - 1

n An has
an eigenvalue \lambda j satisfying | \lambda  - \lambda j | < \epsilon .

From the point of view of the spectral theory of self-adjoint operators in Hilbert
spaces, this theorem expresses the lower semicontinuity of the spectrum of the pre-
conditioned operator \scrB  - 1\scrA ; cf., e.g., [7, 14, 4]. Since the setting also covers the case
when \scrB  - 1\scrA is continuously invertible on the infinite-dimensional Hilbert space V, its
finite-dimensional range approximations (that are compact) cannot converge to \scrB  - 1\scrA 
in norm. Therefore, the result relies upon a pointwise (strong) convergence and the
approximations of the individual members of sp(\scrB  - 1\scrA ) are not uniform.

From the perspective of the classical approximation theory of weakly formulated
PDE eigenvalue problems, the situation warrants the following comments:
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\bullet First, here we numerically approximate the entire spectrum of \scrB  - 1\scrA , which, in
general, is not a compact operator. In the numerical PDE literature, however,
one typically investigates the point spectrum, i.e., the eigenvalues, using the
construction of the so-called solution operator that is proven to be compact
(the Babu\v ska--Osborn theory; see [2, 3]), or one simply assumes compactness.
For a discussion of finite element approximations of noncompact eigenvalue
problems with an instructive description of related difficulties, we refer the
reader to [23].

\bullet Second, when considering the preconditioned operator \scrB  - 1\scrA , there seems to
be some ambiguity in describing the relationship among its entire spectrum,
the eigenvalue problem \scrB  - 1\scrA v = \lambda v, and the generalized eigenvalue problem
\scrA v = \lambda \scrB v. A straightforward discretization of the latter yields the general-
ized algebraic eigenvalue problem A\bfn v = \lambda B\bfn v. In the literature it seems
to be considered that the generalized algebraic eigenvalues approximate the
generalized PDE eigenvalues. Nevertheless, as Theorem 8.1 shows, within
the given setting, the generalized algebraic eigenvalues approximate the en-
tire spectrum of the preconditioned operator. A link to the PDE eigenvalue
problem is set aside.5 Babu\v ska and Osborn avoid this difficulty and present
the rigorous definition of the generalized PDE eigenvalues, eigenfunctions,
and their approximations through a construction based on compactness; see
[2, section 2]. Some of the other literature is not so precise and works with
the notion of the generalized PDE eigenvalue problem and its numerical ap-
proximation without rigorous specifications.

In relation to the results presented in this paper, it seems that the generalized PDE
eigenvalue problem, without assuming compactness, requires further investigations.

9. Open Problems. In this paper we have rigorously analyzed 2D problems. The
original SINUM paper left open the question of whether our main result, Theorem 1.1,
also holds in three or even higher dimensions. This has now been positively answered
in [21].

Another important issue mentioned in the SINUM paper is the task of ``translat-
ing"" our findings to discretized operators. This was accomplished in [9] for uniformly
elliptic operators with scalar coefficient functions. That is, [9] contains discrete ver-
sions of the results published in [20] and further progresses towards approximating
the individual eigenvalues locally. Extensions to more general preconditioners are pre-
sented in [10]. The techniques employed in [9] can be generalized to analyze discretized
second order differential operators with indefinite tensors, but such a development is
beyond the scope of this paper.

An interesting question concerns the distribution of the eigenvalues of the dis-
cretized operators within the interval (1.8). Our numerical experiments suggest that,
in the limit h \rightarrow 0, they cover the whole interval. This is justified by the results
in [10], which are briefly presented together with a short discussion on the relation-
ship to the weakly posed PDE eigenvalue problems in section 8. Nevertheless, the
approximation of the spectrum of preconditioned PDE operators should be further
explored, especially in connection with FEM discretizations, and one can potentially
benefit from recent beautiful results regarding smoothed approximations of spectral
measures for infinite-dimensional self-adjoint operators [6].

5This is true apart from Lemmas 3.2 and 5.2 which prove, provided the tensor K is constant on
an open subdomain, that a part of the spectrum of the preconditioned PDE operator is given by a
subinterval composed entirely of the generalized PDE eigenvalues.
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Fig. 6 The function vr centered at the point (0, 0) with r = 0.1.

Appendix A. Technical Details about Inequalities (3.5) in the Proof of
Lemma 3.1. We want to prove that, for sufficiently small r > 0,

4 - 4r \leq \| (vr)x\| 2L2(\Omega ) \leq 4,(A.1)

\| (vr)y\| 2L2(\Omega ) \leq 4r,(A.2)

where vr(x, y) is defined on Rr by (3.3) and (3.4). Without loss of generality, we
consider the case (x0, y0) = (0, 0). Then Rr = [ - r2, r2]\times [ - r, r] and

vr(x, y) =
\surd 
rmin

\Bigl\{ 
1 - | x| 

r2 ,
1
r  - | y| 

r2

\Bigr\} 
for (x, y) \in Rr,

with vr(x, y) = 0 elsewhere; see Figure 6.
For any 0 < r < 1, the partial derivatives of vr(x, y) are not defined at the

boundary \partial Rr of Rr, at the set of points \{ (x, y) \in Rr : | y|  - | x| = r - r2\} , and at the
set of points \{ (x, y) : x = 0, | y| < r - r2\} where vr(x, y) reaches its maximum; see the
edges of \{ vr(Rr)\} in Figure 6. Simple computations yield that within Rr,

| \partial xvr(x, y)| 2 = 0, | \partial yvr(x, y)| 2 = 1
r3 for | y|  - | x| > r  - r2, (x, y) /\in \partial Rr,

| \partial xvr(x, y)| 2 = 1
r3 , | \partial yvr(x, y)| 2 = 0 for x \not = 0, | y|  - | x| < r  - r2, (x, y) /\in \partial Rr.

The upper bound in (A.1) thus holds because

(A.3) \| (vr)x\| 2L2(\Omega ) =

\int 
Rr

| \partial xvr(x, y)| 2 \leq 
\int 
Rr

1
r3 = 2r2\cdot 2r

r3 = 4.

Moreover, denoting

Pr = \{ (x, y) : x \not = 0, | x| < r2, | y| < r  - r2\} ,
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we have
| \partial xvr(x, y)| 2 = 1

r3 , | \partial yvr(x, y)| 2 = 0 for (x, y) \in Pr.

Thus \| (vr)x\| 2L2(\Omega ) and \| (vr)y\| 2L2(\Omega ) can be bounded as follows:

\| (vr)x\| 2L2(\Omega ) =

\int 
Rr

| \partial xvr(x, y)| 2 \geq 
\int 
Pr

| \partial xvr(x, y)| 2 =

\int 
Pr

1
r3 = 2r2\cdot 2(r - r2)

r3 = 4 - 4r,

\| (vr)y\| 2L2(\Omega ) =

\int 
Rr

| \partial yvr(x, y)| 2 =

\int 
Rr\setminus Pr

| \partial yvr(x, y)| 2 \leq 
\int 
Rr\setminus Pr

1
r3 = 2r2\cdot 2r2

r3 = 4r,

which completes the proof.

Appendix B. Technical Details about the Bound (3.18) in the Proof of
Lemma 3.3. Assume that \scrL  - 1\scrA  - \lambda \scrI has a bounded inverse. We will show that,
for sufficiently small l > 0,

(B.1) \| (\scrL  - 1\scrA  - \lambda \scrI ) - 1\scrL  - 1(\scrA l  - \scrA )\| \scrL \leq \| (\scrL  - 1\scrA  - \lambda \scrI ) - 1\| \scrL \| \scrL  - 1(\scrA l  - \scrA )\| \scrL < 1.

The operator norm

\| \scrL  - 1(\scrA l  - \scrA )\| \scrL \equiv sup
u\in H1

0 (\Omega )

\| \scrL  - 1(\scrA l  - \scrA )u\| \scrL 
\| u\| \scrL 

can be expressed as (see, e.g., [5, Theorem 4.1--3])

(B.2) \| \scrL  - 1(\scrA l  - \scrA )\| \scrL = sup
u,v\in H1

0 (\Omega )

\bigm| \bigm| \bigl( \scrL  - 1(\scrA l  - \scrA )u, v
\bigr) 
\scrL 

\bigm| \bigm| 
\| u\| \scrL \| v\| \scrL 

.

Using

| 
\bigl( 
\scrL  - 1(\scrA l  - \scrA )u, v

\bigr) 
\scrL | = | \langle (\scrA l  - \scrA )u, v\rangle | 

=

\bigm| \bigm| \bigm| \bigm| \int 
Sl

(K(x0, y0) - K(x, y))\nabla u \cdot \nabla v
\bigm| \bigm| \bigm| \bigm| 

\leq 
\int 
Sl

\| K(x0, y0) - K(x, y)\| | \nabla u| \cdot | \nabla v| 

\leq sup
(x,y)\in Sl

\| K(x0, y0) - K(x, y)\| \| u\| \scrL \| v\| \scrL ,

we get the bound

\| \scrL  - 1(\scrA l  - \scrA )\| \scrL \leq sup
(x,y)\in Sl

\| K(x0, y0) - K(x, y)\| .

Since \| (\scrL  - 1\scrA  - \lambda \scrI ) - 1\| \scrL is bounded, the continuity of K(x, y) at the point (x0, y0)
ensures that l can be chosen such that (B.1) holds.
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