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When the conjugate gradient (CG) method for solving lin-
ear algebraic systems was formulated about 70 years ago by 
Lanczos, Hestenes, and Stiefel, it was considered an iterative 
process possessing a mathematical finite termination prop-
erty. With the deep insight of the original authors, CG was 
placed into a very rich mathematical context, including links 
with Gauss quadrature and continued fractions. The optimal-
ity property of CG was described via a normalized weighted 
polynomial least squares approximation to zero. This highly 
nonlinear problem explains the adaptation of CG iterates to 
the given data. Karush and Hayes immediately considered CG 
in infinite dimensional Hilbert spaces and investigated its su-
perlinear convergence. Since then, the view of CG, as well as 
other Krylov subspace methods developed in the meantime, 
has changed. Today these methods are considered primarily 
as computational tools, and their behavior is typically char-
acterized using linear upper bounds, or heuristics based on 
clustering of eigenvalues. Such simplifications limit the math-
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Rounding error analysis
Polynomial approximation problems

ematical understanding of Krylov subspace methods, and also 
negatively affect their practical application.
This paper offers a different perspective. Focusing on CG 
and the generalized minimal residual (GMRES) method, it 
presents mathematically important as well as practically rele-
vant phenomena that uncover their behavior through a discus-
sion of computed examples. These examples provide an easily 
accessible approach that enables understanding of the meth-
ods, while pointers to more detailed analyses in the literature 
are given. This approach allows readers to choose the level 
of depth and thoroughness appropriate for their intentions. 
Some of the points made in this paper illustrate well known 
facts. Others challenge mainstream views and explain exist-
ing misunderstandings. Several points refer to recent results 
leading to open problems. We consider CG and GMRES cru-
cially important for the mathematical understanding, further 
development, and practical applications also of other Krylov 
subspace methods. The paper additionally addresses the mo-
tivation of preconditioning.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC license (http://
creativecommons .org /licenses /by -nc /4 .0/).

1. Introduction

Taking the 1952 landmark paper of Hestenes and Stiefel [53] on the conjugate gradient 
method (CG) as their historical starting point, Krylov subspace methods for solving 
linear algebraic systems Ax = b have been around for more than 70 years. The work 
of Hestenes and Stiefel, together with the papers from the early 1950s by Lanczos [62–
64], which approach the same topic from a slightly different perspective, crowned the 
effort of many researchers aiming to find new ways of solving systems of linear algebraic 
equations using contemporary computers. These works were immediately followed by the 
description and investigation of the CG method in the infinite dimensional Hilbert space 
setting, for example by Karush [57] and Hayes [52].3

Over the last 70 years, tens of thousands of research articles on the derivation, analysis, 
or applications of Krylov subspace methods have been published by authors coming from 
the most diverse scientific backgrounds. Numerous different Krylov subspace methods 
have been developed. Their names typically give very brief descriptions of their algorith-
mic properties, and the methods then are referred to by acronyms that abbreviate these 
names. Examples include, besides CG, the biconjugate gradient (BiCG) method [23]
(with the idea of biconjugation going back to Lanczos [62,63]), the stabilized biconju-
gate gradient (BiCG-Stab) method [109], the full orthogonalization method (FOM) [94], 

3 Krylov subspaces are named after A. N. Krylov, who in 1931 published a paper [58] that described a 
method for solving a secular equation determining the frequency of small oscillations of mechanical systems. 
Algebraic formulations of his method were subsequently published by Luzin in 1931 [71] and Gantmacher in 
1934 [27]. A detailed account of the life and work of A. N. Krylov, and of the early development of Krylov 
subspace methods can be found, e.g., in [67, Section 2.5.7].

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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the minimal residual (MINRES) method [85], the generalized minimal residual (GM-
RES) method [97], the quasi-minimal residual (QMR) method [26], and related methods 
like the induced dimension reduction (IDR) method [112]. The majority of publications 
on Krylov subspace methods focus on algorithmic techniques, i.e., on construction of 
methods or preconditioners. A minority focus on mathematical principles and analysis 
of the methods in a wider context. Comprehensive treatments of the area can be found 
in many monographs and survey articles that are devoted entirely, or at least to a large 
extent, to Krylov subspace methods; see, e.g., [44,67,73,75,96,110] and [3,25,36,68,77], 
respectively.

Instead of adding yet another technical and algorithmic overview or taxonomy of 
Krylov subspace methods, this paper approaches the methods through investigation of 
important and practically relevant phenomena that uncover their mathematical foun-
dations. This leads to understanding their behavior, and it also allows the clarification 
of persisting misunderstandings and issues that still remain open. We use computed ex-
amples for this purpose. Many of these examples can be found scattered throughout 
the existing literature. But their presentation and organization in this paper represents 
an entirely different approach than in the monographs and survey papers mentioned 
above. We have organized everything around what we consider the main points for the 
understanding of Krylov subspace methods.

We believe that such an approach and the perspective offered by this paper can help 
students, researchers, and practitioners to gain additional insights into Krylov subspace 
methods, and that in this way insight can be gained more easily than through extensive 
technical expositions. The text gives many references to the literature containing more 
detailed descriptions and analysis. We have selected works that underline the presented 
points and provide technical and historical background for the given arguments. Readers 
can thus get involved in the subject in the way and to the depth they find appropriate.

We focus on the CG method and the GMRES method, which have evolved as the 
standard iterative methods for solving linear algebraic systems with symmetric posi-
tive definite and general (nonsymmetric) matrices, respectively. Their understanding is 
a prerequisite for understanding other Krylov subspace methods, as well as for recent 
and possible future developments that involve them. In each of the computed exam-
ples, we first describe the setup as transparently as possible. We then describe the 
phenomena observable in the computed figures, followed by an explanation that usu-
ally contains pointers to further research literature. Throughout the paper we purposely 
use simple data (matrices and right-hand sides), so that the examples can be easily 
reproduced. Clearly, difficulties that can be observed on small model problems usu-
ally do not disappear in problems coming from real-world applications. On the other 
hand, numerical efficiency demonstrated on small model problems may not materialize 
in large-scale computations. We have this in mind and aspire not to introduce distorted 
arguments.

Before starting with CG and GMRES, we would like to present a point that is often 
neglected and that is most important for the understanding of Krylov subspace meth-
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ods. We consider a linear algebraic system Ax = b and an initial vector x0. Krylov 
subspace methods are based on projecting onto (some variant of) the Krylov subspace 
Kk(A, r0) = span{r0, Ar0, . . . , Ak−1r0}, k = 1, 2, . . . , where r0 = b − Ax0; see, e.g., [96]. 
Obviously, they are nonlinear in A because Krylov subspaces are formed using repeated 
multiplications with the matrix A. But this form of nonlinearity can be attributed to any 
iteration process repeatedly applying an iteration matrix. In particular, it can obviously 
be attributed to the Chebyshev method; see, e.g., [37,38]. A principally different and 
more substantial nonlinearity with respect to A as well as to r0 comes from using projec-
tions onto Krylov subspaces, which is equivalent to enforcing some form of optimality of 
the approximate solution that requires adaptation to the data A and r0 at each iteration 
step; see, e.g., [67] for a comprehensive treatment. This essential point is frequently over-
looked with far reaching consequences. In some cases the nonlinear behavior of a Krylov 
subspace method is simply, and mathematically incorrectly, identified with widely known 
linear convergence bounds.4 In other cases, the nonlinear behavior is accepted but viewed 
primarily as an obstacle for the analysis. However, we claim the following:

Main point: The nontrivial nonlinearity is the main mathematical asset as well as 
the beauty of Krylov subspace methods, since it requires the methods to adapt to the 
hidden inner structure of the problem to be solved. This can lead to a significant 
speedup of the convergence in comparison with (linear) iterative methods that do 
not adapt to the problem.

Because of their nonlinearity, which is rooted in their optimality requiring adaptation 
to the data, Krylov subspace methods can show their advantages particularly in solving 
hard practical problems, where their behavior can not be understood using linear upper 
bounds. Neglecting the nonlinearity hampers further investigation of intricate and open 
problems, which however is critically needed for advancing the theory as well as the suc-
cessful practical application of the methods. The main point stated above will therefore 
reappear in many of the computed examples below.

The paper is organized as follows. In Section 2 we consider the CG method, and in 
Section 3 the GMRES method. Both sections start with a brief description of the methods 
(mathematical properties and standard implementations), followed by the computed 
examples. Section 4 contains concluding remarks. The Appendix contains comments on 
the modern relevance of early works on Krylov subspace methods, and on the topic of 
preconditioning.

4 For symmetric positive definite matrices this means that CG is considered equal in performance to the 
Chebyshev method with a priori knowledge of the edges of the spectrum. Sometimes the distinction between 
CG and the Chebyshev method is indeed reduced only to the fact that CG does not need any such a priori 
information. But the distinction consists of their principally different optimality properties, which is not 
linked in the Chebyshev method to an adaptation to the data; see Section 2 below. This is clear from the 
early papers by Hesteness, Stiefel, and Lanczos (see, in particular, [64,63]) mentioned above, although the 
description of the Chebyshev method came later.
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Notation and conventions Throughout the paper we consider real linear algebraic sys-
tems for simplicity of notation. Most results can be easily extended to the complex case. 
We use N for the matrix size, i.e., A ∈ RN×N , and k denotes the iteration number. 
Usually in our computed examples the right-hand side b is a normalized vector of ones, 
and the initial approximate solution is x0 = 0. We use the term “mathematical” to refer 
to cases where computations are performed exactly, i.e., in infinite precision, and the 
term “computational” to refer to finite precision computations. In some experiments we 
compare the infinite and finite precision behavior of algorithms. Finite precision com-
putations are performed using the standard double precision arithmetic in MATLAB. 
Unless otherwise specified, the mathematical (infinite precision) behavior is then simu-
lated using the Advanpix Multiprecision Computing Toolbox for MATLAB.5

2. The CG method

The CG method is well defined for any linear algebraic system Ax = b with a sym-
metric positive definite matrix A ∈ RN×N and right-hand side b ∈ RN . If x0 ∈ RN is an 
initial approximation, and d = d(A, r0) is the grade6 of the initial residual r0 = b −Ax0

with respect to A, then at every step k = 1, 2, . . . , d the CG method constructs a uniquely 
determined approximation

xk ∈ x0 + Kk(A, r0) such that rk ⊥ Kk(A, r0), (1)

where Kk(A, r0) := span{r0, Ar0, . . . , Ak−1r0} is the kth Krylov subspace generated by 
A and r0. Mathematically the method terminates with xd = x.

There are many equivalent formulations of the task that is solved by the CG method. 
For example, at step k the CG method determines the solution of the simplified Stieltjes 
moment problem (see [88]) or, equivalently, it determines the k-point Gauss quadra-
ture of the Riemann-Stieltjes integral defined by A and r0; see, e.g., [67, Section 3.5]
and [72, Section 5.2] for overviews. These connections were pointed out by Hestenes and 
Stiefel in [53] and they are important for understanding the mathematical as well as the 
computational behavior of CG.

There are also many mathematically equivalent algorithms that realize the projec-
tion process (1). The most popular variant is the original formulation of Hestenes and 
Stiefel [53], shown in Algorithm 1. This algorithm recursively updates coupled 2-term 
recurrences for the approximate solution xk+1 and residual rk+1, as well as the auxiliary 
“search direction” vector pk+1. As it turns out, this variant is also preferable computa-
tionally; see, e.g., [91,50].

5 https://www .advanpix .com.
6 The grade of r0 with respect to A is defined as the maximal dimension of the Krylov space generated 

by A and r0.

https://www.advanpix.com
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Algorithm 1 Conjugate Gradient (2-term recurrence variant).
Require: Symmetric positive definite matrix A ∈ RN×N ; right-hand side b; initial approximation x0; con-

vergence tolerance τ ; maximum number of iterations nmax.
1: r0 = b − Ax0
2: p0 = r0
3: for k = 0, 1, 2, . . . , nmax do
4: αk = (rTk rk)/(pT

k Apk)
5: xk+1 = xk + αkpk

6: rk+1 = rk − αkApk

7: Test for convergence using tolerance τ . If satisfied, then return xk+1 and stop.
8: βk+1 = (rTk+1rk+1)/(rTk rk)
9: pk+1 = rk+1 + βk+1pk

10: end for

Let A = QΛQT , with Λ = diag(λ1, . . . , λN ) and 0 < λ1 ≤ · · · ≤ λN , be an orthogonal 
diagonalization of A.7 We can represent the initial residual r0 by its components in the 
individual eigenvectors of A, stored in the columns of Q, as r0 = Q[η1, . . . , ηN ]T . The 
approximation xk ∈ x0 + Kk(A, r0) that is uniquely determined by the orthogonality 
condition in (1) satisfies the (equivalent) optimality property

‖x− xk‖A = min
p∈Pk(0)

‖p(A)(x− x0)‖A = min
p∈Pk(0)

(
N∑
i=1

η2
i

p(λi)2

λi

)1/2

, (2)

where Pk(0) denotes the set of polynomials of degree at most k with value 1 at the 
origin; see, e.g., [67, Section 5.6]. Thus, in every step the CG method solves a certain 
weighted polynomial approximation problem on the discrete set {λ1, . . . , λN}. Moreover, 
if θ(k)

1 , . . . , θ(k)
k are the k roots of the polynomial providing the minimum in (2), then we 

can easily get

‖x− xk‖2
A =

N∑
i=1

k∏
�=1

(
1 − λi

θ
(k)
�

)2
η2
i

λi
, (3)

which establishes the relationship of the roots of the minimizing polynomial in (2), called 
also the Ritz values, with the eigenvalues of the matrix A.

Note that

N∑
i=1

η2
i

λi
= rT0 A

−1r0 = (x− x0)TA(x− x0) = ‖x− x0‖2
A.

7 CG is mathematically invariant under orthogonal transformations of the basis in RN . In particular, one 
can study its mathematical behavior using the basis formed by the orthonormalized eigenvectors of A, i.e., 
using the diagonal matrix Λ instead of A. The results of Greenbaum [43] allow to view finite precision CG 
computations (apart from a small inaccuracy) as exact CG for a particular larger matrix having all its 
eigenvalues close to the eigenvalues of A. Combining this with experimental demonstrations in [47], and 
with further theoretical arguments in [67, Section 5.9.1] and [77], one can study also the computational 
behavior of CG using the diagonal matrix Λ.
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Therefore, maximizing over the values p(λi) in the minimization problem on the right-
hand side of (2) and dividing by ‖x − x0‖A gives the upper bound

‖x− xk‖A
‖x− x0‖A

≤ min
p∈Pk(0)

max
1≤i≤N

|p(λi)| (4)

It is important to note that the polynomial min-max approximation problem on the 
right-hand side of (4) only depends on A, but not on r0.

If d(A) denotes the degree of the minimal polynomial of A, then d(A) ≥ d. It was 
shown by Greenbaum [42], that for any given symmetric positive definite matrix A ∈
RN×N the bound (4) is sharp in the sense that for every step k ≤ d(A) there exists 
an initial residual r0 so that equality holds. Thus, for the given matrix A the value of 
the polynomial min-max approximation problem is an attainable worst-case bound on 
the relative A-norm of the error in the CG method at every step k ≤ d(A). (The step 
k = d(A) is trivial.) Moreover, for every k = 1, . . . , d(A) − 1, there exist k + 1 distinct 
eigenvalues λ̂1, . . . , ̂λk+1 of A, such that

min
p∈Pk(0)

max
1≤j≤N

|p(λj)| =

⎛⎜⎜⎝k+1∑
i=1

k+1∏
j=1
j �=i

λ̂j

|λ̂j − λ̂i|

⎞⎟⎟⎠
−1

. (5)

The value of the worst-case bound for CG in step k is thus expressed in terms of a 
subset of k + 1 particular eigenvalues of A. This subset is determined by the min-max 
polynomial approximation problem on the set {λ1, . . . , λN} for the polynomials of degree 
k that are normalized at the origin.8

Replacing the discrete set {λ1, . . . , λN} by the continuous interval [λ1, λN ] and us-
ing Chebyshev polynomials on this interval yields (with a small additional simplifica-
tion)

min
p∈Pk(0)

max
1≤i≤N

|p(λi)| ≤ 2
(√

κ(A) − 1√
κ(A) + 1

)k

, κ(A) = λN

λ1
. (6)

This bound represents a substantial simplification. While (5) gives a sharp upper 
bound on the relative CG error A-norms for the given (fixed) spectrum and any 
initial residual, the right hand side in (6) gives a nearly sharp upper bound for 
arbitrary eigenvalues {λ2, . . . , λN−1} in the interval [λ1, λN ] and any initial resid-
ual.

8 The whole paper [42] is worth reading. It illustrates the peculiarities of the polynomial approximation 
problem on a discrete set of points, and it derives the weights for which the normalized kth degree min-max 
polynomial on a subset {λ̂1, . . . , ̂λk+1} of the set {λ1, . . . , λN} is equal to the normalized weighted least 
squares polynomial approximation to zero on {λ̂1, . . . , ̂λk+1}.
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Combining (6) with (2) results in the frequently stated convergence bound

‖x− xk‖A
‖x− x0‖A

≤ 2
(√

κ(A) − 1√
κ(A) + 1

)k

. (7)

We will sometimes refer to (7) as the κ(A)-bound. This bound implies that if the condition 
number κ(A) is small, then a fast reduction of the A-norm of the error in the CG method 
can be expected. This bound does not imply, however, that a large condition number 
results in slow convergence of CG. In particular, preconditioners that provide smaller 
condition numbers than others do not necessarily lead to faster convergence. A convincing 
example in [30] uses standard PDE test problem and contributes towards opening a new 
line of research combining the PDE operator context with the algebraic matrix context 
arising from discretization; see further comments on this point below.

Also note that the κ(A)-bound for CG is a linear bound for a nonlinear process. 
A comparison with the value of the polynomial min-max approximation problem in (5), 
which gives the worst-case CG value in step k for the given spectrum of the matrix A, 
shows that neglecting the eigenvalue distribution of A in the interval [λ1, λN ] can mean 
a substantial loss of information. Similarly, a comparison with the actual minimization 
problem (2), which is solved by CG applied to the linear system Ax = b with the 
initial approximation x0, shows that the size of the components ηj of r0 in the invariant 
subspaces of A can be important; see also (3).

In the examples that follow, we will frequently make use of a certain class of diagonal 
matrices which is often used in the literature to illuminate the behavior of CG; see, e.g., 
[47]. For given N ≥ 3, 0 < λ1 < λN , and ρ > 0 we define

A = diag(λ1, λ2, . . . , λN−1, λN ) with λi = λ1 +
(

i− 1
N − 1

)
(λN − λ1)ρN−i, (8)

for i = 2, . . . , N −1. The parameter ρ determines the eigenvalue distribution of A. When 
ρ = 1, the eigenvalues are equally spaced between λ1 and λN . As ρ becomes smaller, the 
eigenvalues accumulate towards λ1. As mentioned above, we can use a diagonal matrix 
mathematically and computationally without any loss of generality.

2.1. Mathematical behavior of CG for different eigenvalue distributions

Main point: The CG optimality property (see (2)) depends on the positions of the 
individual eigenvalues. Therefore CG adapts without any a priori information 
not only to the spectral interval, but in a significant (and nonlinear) way also 
to the distribution of the inner eigenvalues. Acceleration of CG convergence is 
more pronounced for matrices with outlying eigenvalues, and is different when 
the outliers are small or large.
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Fig. 1. Left: Three distributions of 30 eigenvalues in [0.1, 103]. Right: The relative error in the A-norm for 
exact CG applied to the corresponding linear algebraic systems. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

Setup: We consider the behavior of CG in exact arithmetic for matrices having three 
different eigenvalue distributions. All matrices are diagonal with N = 30, λ1 = 0.1, and 
λN = 103. The first matrix is a slight modification of (8), with λi = λN − (i−1)

(N−1) (λN −
λ1)ρN−i for i = 2, . . . , N − 1 and ρ = 0.6, so that the eigenvalues accumulate on the 
right side of the spectrum. The second matrix is (8) with ρ = 0.6, so that its eigenvalues 
accumulate to the left side of the spectrum, and the third matrix is (8) with ρ = 1, 
so that its eigenvalues are equally spaced. In all cases we use b = [1, . . . , 1]T /

√
N , and 

x0 = 0.
Observations: The eigenvalue distributions are shown in the left part of Fig. 1. The 

right part of Fig. 1 shows the mathematical behavior of CG. For the matrix with eigen-
values accumulated to the right (blue), CG converges fastest. For the matrix with 
eigenvalues accumulated to the left (red), CG converges significantly slower. For the 
matrix with equally spaced eigenvalues (green), CG converges the slowest. In Fig. 2 we 
show cumulative spectral density (CSD) plots using the stepwise functions with points 
of increase at Ritz values and the size of the vertical steps equal for each Ritz value (see 
[70, Appendix C]).9

Explanation: As can be seen from (2), for equal components of the initial residual in 
the invariant subspaces, the A-norm of the error minimizes the sum of the squared values 
of the CG polynomial divided by the associated eigenvalues. For an accumulation of the 
eigenvalues to the right, the CG polynomial approximates by its roots (Ritz values) the 
small outlying eigenvalues within a few iterations, which takes care for the associated 
part of the sum. For the rest of the eigenvalues that are large and close to each other, 
the values of the polynomial do not need to be so small, because their squares are 

9 In order to illustrate the position of Ritz values (that can form tight clusters), we approximate the CSD 
defined by the spectrum of the matrix A using the CSD associated with the Ritz values. We purposefully do 
not use an approximation of the CSD defined by the spectrum of A via the Riemann-Stieltjes distribution 
functions associated with the Gauss quadrature (see, e.g., [67, Section 3.5] and [72, Section 3.2]), since 
this would not allow to observe forming clusters of Ritz values. This will be important in the next two 
subsections.
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Fig. 2. Cumulative spectral density plots for Fig. 1.

divided by the large eigenvalues. Therefore fast convergence (as if the small outlying 
eigenvalues were nonexistent) will occur within a few iterations; see [67, Theorem 5.6.9]
and the enlightening paper by van der Sluis and van der Vorst [108].10 Section 5.6.4 of 
[67], called “Outlying Eigenvalues and Superlinear Convergence”, recalls further closely 
related results by Lanczos, Rutishauser, Jennings, and others. The arguments above also 
explain why in this case the convergence rate becomes fast even when the CSD is not 
yet closely approximated.

For the eigenvalues accumulated to the left, the large outliers are also well approx-
imated by the Ritz values within a few iterations. However, since for the bulk of the 
small eigenvalues the CG polynomial must place many roots close to the left end of the 
spectrum in order to make up for the division of its squared values by the small eigen-
values, the acceleration of convergence appears much later. Therefore also the CSD must 

10 Although the paper [108] assumes exact arithmetic and focuses on spectra with small outlying eigen-
values, it also comments on the case of large outlying eigenvalues, and on the difference between the 
mathematical and computational CG behavior in such cases; see [108, p. 559] and the detailed discussion 
with further references in [67, pp. 279-280].
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be closely approximated in order to significantly decrease the CG error. For the equally 
spaced eigenvalues the CSD seems visually well approximated. But a closer look reveals 
rather slow convergence of the Ritz values to the individual eigenvalues, which proceeds 
from both edges of the spectrum. For more on the convergence of Ritz values in this case 
see [14,47], [106, Lecture 36], and, in the asymptotic case, [59]. Further interesting points 
will occur when the same experiments will be performed in finite precision arithmetic; 
see Section 2.3 below.

2.2. Mathematical behavior of CG for matrices with clustered eigenvalues

Main point: A spectrum localized in � tight clusters does not mean reaching math-
ematically a good CG approximation to the solution in � steps. The position of 
clusters is essential.

Setup: We generate three auxiliary diagonal matrices via (8) with different parameters 
ρ to control the eigenvalue distributions. All matrices have N = 10, λ1 = 0.1, and λN =
103. The first matrix uses ρ = 0.6 and a slight modification of (8) so that eigenvalues 
accumulate to the right. The second matrix uses ρ = 0.6 with eigenvalues accumulated 
to the left. The third matrix uses ρ = 1.0, which gives equally spaced eigenvalues. For 
each auxiliary matrix, we then construct a new matrix of size N = 100, which is used in 
the experiment, by replacing each of the eigenvalues (diagonal entries) by a tight cluster 
of 10 eigenvalues with spacing 10−12. Thus our matrices have 10 clusters, each with 10 
eigenvalues, with cluster diameter O(10−11). In each case we use b = [1, . . . , 1]T /

√
N

and x0 = 0.
Observations: In Fig. 3 we plot the convergence of exact CG for the three problems. 

Accompanying CSD plots are given in Fig. 4. The matrix has in each case 10 tight 
clusters of eigenvalues. When the clusters of eigenvalues are accumulated to the right 
(blue) and when they are the equally spaced (green), the relative error in the A-norm 
reaches in 10 iterations the level below 10−10. When the clusters are accumulated to the 
left (red), the relative error in the A-norm makes no progress in 10 iterations. Note that 
this behavior contradicts the widespread general claims about clustering of eigenvalues 
and CG convergence, which ignore the positions of clusters.11

Explanation: In the first 10 iterations the CG polynomials for all cases place a single 
Ritz value in each cluster. For the clusters accumulated to the right as well as equally 
spaced this is sufficient for approximating the minimal polynomial of the matrix (which 
is of degree 100) in the sense of (3). For the clusters accumulated to the left, placing 
one Ritz value in each cluster is not enough to significantly decrease the error, and the 
minimal polynomial of the matrix is in the same sense not well approximated, despite 

11 We use on purpose a very small and simple example. It is easy to find examples for which the same 
observations are substantially more pronounced.



252 E. Carson et al. / Linear Algebra and its Applications 692 (2024) 241–291
Fig. 3. The relative error in the A-norm for exact CG run on three problems with matrices having different 
distributions of 10 eigenvalue clusters, where each cluster contains 10 eigenvalues.

Fig. 4. Cumulative spectral density plots for Fig. 3.

the seemingly analogous position of Ritz values; see the CSD plots, where for k = 10
the solid lines and the associated dash-dotted lines graphically coincide. To achieve the 
desired decrease of the error for the case of clusters accumulated to the left, CG must 
place additional Ritz values in the rightmost clusters, which delays convergence. At 
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iteration 15, the five rightmost clusters contain two Ritz values each, and the dashed 
line representing the CSD for k = 15 departs from the CSD representing the matrix 
spectrum. If the computation proceeds, then this departure would become more and more 
significant because more and more Ritz values will be placed in the rightmost clusters.

This mechanism has been demonstrated in [47] and it was further thoroughly explained 
in [67, Section 5.6]. A very detailed account of the relationship between preconditioning 
and the clustering argument can be found in [6, Section 3(c)]. In order to avoid misun-
derstandings, we again emphasize that this subsection has dealt with the mathematical 
behavior of CG. The effects of rounding errors on the convergence are examined next. 
As we will see, clusters of eigenvalues will then play a specific fundamental role.

2.3. Sensitivity of CG to rounding errors

Main point: Particular eigenvalue distributions, specifically in cases of large out-
lying eigenvalues, cause CG convergence to be more susceptible to delay caused 
by finite precision errors. Convergence behavior for finite precision CG can be 
equated (up to an unimportant difference) with exact CG on a larger problem, 
whose eigenvalues are replaced by tight clusters.

Setup: We use the same three diagonal matrices and the same right-hand sides as 
in Section 2.1, but now we run CG in finite (double) precision. We plot the resulting 
convergence curves on the left in Fig. 5, and the CSDs at certain iterations for each 
problem in Fig. 6.

Then, for each diagonal matrix, we create a larger matrix by replacing each eigenvalue 
with a tight cluster of 4 eigenvalues. The spacing between eigenvalues in a cluster is 10−13. 
We run exact CG for these problems and plot the resulting convergence curves on the 
right in Fig. 5.

Observations: A comparison of the green and blue curves in Figs. 1 and 5 (left) shows 
that the convergence of CG for the matrices with eigenvalues accumulated to the right 
of the spectrum (blue) and for equally distributed eigenvalues (green) is essentially not 
affected by finite precision errors. On the other hand, for the matrix with eigenvalues 
accumulated to the left and only a few large outlying eigenvalues, the finite precision CG 
suffers from a significant delay of convergence (red curves). Moreover, a comparison of 
the two plots in Fig. 5 shows that the behavior of finite precision CG (left) is remarkably 
similar to the behavior of exact CG where the eigenvalues are replaced by tight clusters 
(right).

Explanation: There are two phenomena working against each other here. Whereas 
large outlying eigenvalues are desirable in exact arithmetic, they cause the problem to 
be more sensitive to rounding errors, which can result in convergence delay in finite 
precision computations. This phenomenon was investigated in [100], which was inspired 
by the earlier discussion by Jennings [55], who related the convergence of CG to a 



254 E. Carson et al. / Linear Algebra and its Applications 692 (2024) 241–291
Fig. 5. Left: The relative error in the A-norm for CG in finite precision run on three problems with matrices 
having different eigenvalues distributions, corresponding to those in Fig. 1. Right: The relative error in the 
A-norm for exact CG run on three problems with matrices with the same eigenvalue distributions as in the 
left plot, but with each eigenvalue replaced by a tight cluster of 4 eigenvalues.

Fig. 6. Cumulative spectral density plots for the left part of Fig. 5, i.e., the Ritz values are determined from 
the finite precision CG run. Compare with Fig. 2.

polynomial curve fitting problem. It can be nicely viewed via the CSD plots in Fig. 6. 
While for the eigenvalues accumulated to the right and for equally distributed eigenvalues 
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there is no observable difference between the exact and finite precision CG computations 
(compare the top and the bottom plots in Figs. 5 and 2), the CSDs associated with the 
eigenvalues accumulated to the left are remarkably different. There is no chance that for 
this problem the CSD determined by the eigenvalues can be closely approximated by the 
CSD generated by the Ritz values resulting from the finite precision CG computation. 
The plot in Fig. 5 shows that with increasing iteration number more and more Ritz 
values have to be placed close to the rightmost outlying eigenvalues.

A theoretical explanation is provided by the work of Greenbaum [43] that was fur-
ther thoroughly illustrated in [47] and extended by Notay [82]. Additional Ritz values 
close to the large outlying eigenvalues have to appear in order to eliminate excessively 
large gradients of the CG approximation polynomials, which would otherwise occur in 
their neighborhood; see [67, Section 5.9] and [77, Section 5]. For the accumulation of the 
eigenvalues to the right and for equally distributed eigenvalues the gradient of the CG 
approximation polynomial near all eigenvalues is sufficiently bounded without a need for 
placing additional Ritz values in their neighborhoods. This explains the numerical sta-
bility of CG for these problems; see also [6, Sections 3(b)(i)]. It is also worth recalling the 
arguments in Section 2.2 above that deal with the mathematical behavior for problems 
with tight clusters of eigenvalues.

2.4. Preconditioned CG and the condition number

Main point: The nonlinear adaptivity of CG to the location of the individual eigen-
values indicates that a smaller condition number does not necessarily lead to faster 
convergence (contrary to widespread misinterpretations of the κ(A)-bound in the 
literature). Therefore it is not recommended to use the minimization of the con-
dition number as the only criterion for the choice of preconditioners. Alternatives 
to the condition number exist, but they require deep knowledge of CG and of the 
problem to be solved.

Setup: We perform two experiments. First, we define the matrix A to be of the form 
(8) with N = 40, λ1 = 10−3, λN = 100, and ρ = 0.1. Thus, the eigenvalues accumulate 
at the lower end of the spectrum of A, and we have

κ(A) = 105.

We consider the diagonal preconditioner P so that P−1A is a diagonal matrix with 
eigenvalues equally spaced between λ1 = 10 and λN = 100, and hence

κ(P−1A) = 10.

We apply exact CG with x0 = 0 to Ax = b and P−1Ax = P−1b, where b =
[1, . . . , 1]T /

√
N .
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Second, following [78, Section 5.3], we consider the boundary value problem

−∇ · (k(x)∇u) = 0 in Ω = (−1, 1) × (−1, 1), u = uD on ∂Ω, (9)

where the domain Ω is divided into four subdomains Ω1, Ω2, Ω3, Ω4 corresponding to the 
four axis quadrants numbered counterclockwise. Let k(x) be piecewise constant on the 
individual subdomains with k1 = k3 ≈ 161.45 and k2 = k4 = 1. The Dirichlet boundary 
conditions are described in [78, Section 5.3]. We use the linear finite element discretiza-
tion with the standard uniform triangulation and N = 3969 degrees of freedom. We 
apply CG in finite (double) precision with x0 = 0 to the unpreconditioned system, and 
to preconditioned systems with the algebraic incomplete Cholesky factorization precon-
ditioning (ICHOL) of the matrix A with no fill-in, with ICHOL and the drop-off tolerance 
10−2, and with the Laplace operator preconditioning. The corresponding matrices have 
the following condition numbers:

κ(A) ≈ 6750 (unpreconditioned),

κ(P−1A) ≈ 431 (ICHOL with no fill-in),

κ(P−1A) ≈ 16 (ICHOL with drop-off tolerance 10−2),

κ(P−1A) ≈ 160 (Laplace operator preconditioning).

The same setting was used for the motivating example in [30], where one can find a more 
detailed description.

Observations: First example: In the left part of Fig. 7 we plot the relative error 
A-norms for exact CG on Ax = b (blue) and P−1A = P−1b (red). The number of 
iterative steps for reaching the accuracy level 10−8 is for the preconditioned system three 
times larger than for the unpreconditioned system, although κ(P−1A) is four orders of 
magnitude smaller than κ(A). (Note that the preconditioning works well when the desired 
accuracy level is only on the order 10−2.)

Second example: In the right part of Fig. 7 we plot the relative error A-norms for 
finite precision CG applied to the unpreconditioned and the three preconditioned sys-
tems. A comparison of the results for the unpreconditioned system and the two ICHOL 
preconditioniners seems to confirm the often repeated claim that “reducing the condition 
number implies faster convergence of CG”. However, the fastest convergence occurs for 
the Laplace preconditioning, although in this case the condition number is an order of 
magnitude larger than for the ICHOL preconditioner with drop-off tolerance 10−2. It is 
important to note also the dramatic acceleration of CG with the Laplace preconditioning 
after the fifth iteration.

Explanation: Both examples show that a smaller condition number does not necessar-
ily imply faster convergence of CG. In particular, in the second example the decrease of 
the condition number using ICHOL with a larger drop-off tolerance is just a side effect 
and not the driving force of faster convergence. In this case the improvement is due to 
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Fig. 7. Left: The relative error in the A-norm for unpreconditioned exact CG (blue) and preconditioned exact 
CG (red) for a linear algebraic system with A of the form (8). Right: The relative error in the A-norm for 
finite precision computations with unpreconditioned CG (dashed), ICHOL preconditioning with no fill-in 
(black), ICHOL preconditioning with drop-off tolerance 10−2 (blue), and Laplace preconditioning (red), 
applied to the discretization of (9).

a better approximation of the true Cholesky factors of A. Clearly, the frequently re-
peated claim that the goal of preconditioning should be to reduce the condition number 
of the coefficient matrix (thus reducing the κ(A)-bound), and that doing so guarantees
an improvement of the CG convergence is false.12 However, one should always take into 
account the context of the problem to be solved, in particular the desired accuracy of 
the computed approximation.

A detailed explanation of the second example is out of the scope of this paper, but can 
be found, including the effects of rounding errors, in [30]. It shows why for the Laplace 
operator preconditioning the CG convergence must exactly after five initial iterations
accelerate so rapidly that after a few subsequent iterations an approximate solution is 
found with an accuracy close to the machine precision level. It also provides an accurate 
estimate for the speed of the accelerated convergence. For the ICHOL preconditioning it 
explains why an analogous acceleration can not take place, and also provides an accurate 
approximation of convergence rate.

As mentioned in the Introduction, it may seem that the design of preconditioners in 
practical computations using CG has to rely on the condition number because there is no 
viable alternative. The recent works [30,31,61,89,65,60] show that for self-adjoint second 
order elliptic PDE boundary value problems with the operator of the form −∇(k(x)∇u)
such an alternative exists. Analysis of the motivating problem in [30] suggests a possible 
path for further research. The convergence behavior can be anticipated a priori based 
on a low-cost approximation of all eigenvalues of the preconditioned matrix before any 
preconditioned CG computation starts. We therefore believe that the approach in [30], 
together with the other given references, question the status quo.

12 In this context we point out the monograph of Hackbusch [51] which covers, among many other topics, 
CG in a truly insightful way. Its Section 9.4.3 “Convergence Analysis” addresses also the difference between 
the Chebyshev method with the bound (7), and CG with the application of the same bound.
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Fig. 8. The relative error in the A-norm for exact CG (dash-dotted blue) as well as for CG in finite precision 
(solid blue), and the loss of orthogonality among Lanczos basis vectors for CG in finite precision (dashed 
red), for a 2D Poisson model problem.

The latest paper in this line of development [80] suggests further arguments for 
combining infinite dimensional operator reasoning with algebraic considerations about 
solving algebraic systems resulting from discretizations. It also formulates open problems 
that should be addressed when considering eigenvalues of preconditioned matrices in re-
lation to the spectra of the associated infinite dimensional operators on Hilbert spaces. 
Section A.2 below indicates that it is promising to investigate more complex approaches 
as an alternative to decreasing the condition number in preconditioning practical hard 
problems.

2.5. Simple model problems and the practical performance of CG

Main point: Model problems that are used out of context are not indicative of the 
behavior of CG in solving practical problems. They can also complicate under-
standing of important CG features.

Setup: We consider the 2D Poisson problem −Δu = f in Ω = (0, 1) × (0, 1), u = 0 on 
∂Ω, and f is constant. This boundary value problem is discretized using the five-point 
finite differences and the 50 × 50 grid, giving N = 2500 degrees of freedom. The matrix 
A is simply generated using the MATLAB command gallery(‘poisson’,50), and we 
use b = [1, . . . , 1]T /

√
N . We apply exact CG and CG in finite (double) precision, both 

with x0 = 0.
Observations: In Fig. 8 we plot the relative A-norm of the error for both exact and 

finite precision CG. For finite precision CG we plot also the loss of orthogonality among 
the Lanczos basis vectors, measured by ‖I − V T

k Vk‖F . Its growth seems to mirror the 
convergence of the relative error in the A-norm, which is almost the same for both exact 
and finite precision CG until the latter reaches its maximal attainable accuracy.

Explanation: For the given model problem, the eigenvalues are almost uniformly dis-
tributed. The loss of orthogonality among the Lanczos basis vectors is gradual. Since 
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Fig. 9. The relative error in the A-norm for the two variants of CG in exact arithmetic (solid red and dashed 
blue) and in finite precision (2-term: dotted red; 3-term: dotted blue).

there is no loss of rank in the computed basis until the finite precision CG reaches its 
final accuracy, there is no delay of the CG convergence; see [67, Section 5.9.4] for a more 
detailed explanation.13 Such behavior can not be extrapolated to CG behavior in solving 
practical problems.

2.6. Computational behavior of different CG algorithms

Main point: Rounding errors cause convergence delay and affect the attainable 
accuracy. The magnitude of these effects, and in the case of attainable accuracy, 
the mechanism, depends on the particular algorithm/implementation of CG.

Setup: We use a diagonal matrix A as defined in (8) with N = 48, λ1 = 0.1, λN = 103, 
and ρ = 0.25. We also use b = [1, . . . , 1]T /

√
N and x0 = 0. We test two mathematically 

equivalent algorithmic variants of CG: the variant of Hestenes and Stiefel [53] which 
uses three 2-term recurrences (see Algorithm 1), and a different variant which uses two 
3-term recurrences.

Observations: The results comparing the relative A-norm of the error for exact and 
finite (double) precision computations are shown in Fig. 9. In exact arithmetic the A-
norm error curves of the 2-term and 3-term variants are obviously identical. In finite 
precision the convergence is delayed. The delay is slightly worse in the 3-term variant, 
and the final accuracy level attained by this variant is over two orders of magnitude 
worse than the level attained by the 2-term variant.

13 Paige proved that the loss of orthogonality can occur only in the directions of the converged Ritz 
vectors; see [83], and [77, pp. 504-508] for an explanation of misinterpretations of this breakthrough result 
as “convergence implies loss of orthogonality.” Since there is no loss of ortogonality until CG reaches its 
final accuracy, no Ritz pair can approximate a matrix eigenpair with accuracy proportional to the machine 
precision level.
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Explanation: In the 2-term recurrences the loss of accuracy is caused by a simple 
accumulation of local rounding errors, but in the 3-term recurrences these local round-
ing errors can be substantially amplified. This behavior is analyzed together with its 
dependence on the initial residual in [50].

Despite maintaining mathematical equivalence to Algorithm 1, any algorithm that 
reorders computations or introduces auxiliary quantities can have a different compu-
tational behavior. Examples of CG algorithms designed for high-performance parallel 
environments include s-step (communication-avoiding) CG and pipelined CG, both of 
which are subject to potential amplification of local rounding errors and thus more sub-
stantial delays of convergence and worse maximal attainable accuracy than Algorithm 1; 
see, e.g., [7,8,12].

2.7. Residual versus error, and stopping criteria for CG

Main point: Unlike the A-norm (or energy norm) of the error, the residual 2-
norm does not have any physical meaning. Moreover, if the matrix condition 
number is large, then the residual 2-norm is not a reliable indicator of the error. 
Theoretically justified estimators for the A-norm and the 2-norm of the error are 
available at a negligible computational cost.

Setup: We follow Meurant [74] for constructing two linear algebraic systems of size 
N = 20 such that the trajectories of the residual 2-norm and the A-norm of the error in 
CG are prescribed. For the first, the residual norms ‖rk‖2 oscillate between 1 and 2, and 
the errors are ‖e0‖A = ‖x − x0‖A = 1, ‖ek‖A = 0.4 · ‖ek−1‖A for k = 1, . . . , N − 1. For 
the second, the residual norms are ‖r0‖2 = 1, ‖rk‖2 = 0.4 · ‖rk−1‖2 for k = 1, . . . , N − 1, 
and the errors are ‖e0‖A = 1, ‖ek‖A = 0.999 · ‖ek−1‖A for k = 1, . . . , N − 1.

To construct the systems we set νk = 1/‖rk‖2, k = 1, . . . , N − 1, and σk =
‖ek‖2

A/(‖rk‖2‖r0‖2), k = 0, . . . , N − 1, and we then set

L =

⎡⎢⎢⎣
σ0
σ1 σ1ν1
...

...
. . .

σN−1 σN−1ν1 · · · σN−1νN−1

⎤⎥⎥⎦ .

We apply exact CG to A = (L +L̂T )−1 and b = e1, where L̂ is the strictly lower triangular 
part of L and e1 is the first column of the identity matrix.

Observations: The relative residual 2-norm and error A-norms are shown in Fig. 10. 
For the first system (left plot) the residual norms stagnate, apart from oscillating between 
1 and 2, whereas the error norms decrease linearly. For the second system (right plot) 
the error norms almost stagnate (they must be strictly decreasing), whereas the residual 
norms are decreasing relatively quickly.
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Fig. 10. Comparison of the relative residual 2-norms (solid blue) and the relative A-norms of the error 
(dashed red) of exact CG for two linear algebraic systems.

Explanation: Hestenes and Stiefel comment in their original paper [53, Section 18]
that for any prescribed sequence of residual 2-norms, there exists a symmetric positive 
definite matrix A and right-hand side b such that CG exhibits the prescribed convergence 
behavior. Thus, in general circumstances, one cannot equate a small residual norm with 
a small error. The converse also does not hold: a large residual does not imply a large 
error. Note that because the convergence of CG is linked with the distribution of the 
eigenvalues of A, it is not possible to also simultaneously prescribe the eigenvalues of A. 
This is in contrast to the GMRES method; see Example 3.1. If κ(A) is small, then the 
difference between the residual 2-norm and the A-norm (or the 2-norm) of the error is 
not substantial. This can happen in practical applications. But it can also happen that 
κ(A) is large and there is no practically applicable preconditioning available that makes 
κ(P−1A) small. Therefore the question on what should be used for stopping criteria in 
CG is relevant.

The relative residual norm is inexpensive to compute, and we already have the re-
cursively computed residual available in each iteration of CG.14 However, the norm of 
the residual has no physical meaning, while the A-norm of the error, which is minimized 
in each step by CG, represents in many applications the (discretization of) the energy 
norm. In practice, we of course do not know the true solution x, and thus we can not 
compute the error ek. This was commented on already by Hestenes and Stiefel, who 
gave formulas for estimating the error norm; see [53, Section 4]. Since then, much re-
search has focused on developing reliable error norm estimation and associated stopping 
criteria for CG; see, e.g., [33,35,76,102,103]. Very useful estimates of both the A-norm 
and the 2-norm of the error are available at a negligible computational cost, and they 
are theoretically guaranteed to hold also in cases with severe effects of rounding er-
rors. The associated software realizations are simple and freely available, and hence 

14 When CG is used as an inner solver embedded in an outer loop as, for example, in nonlinear optimization, 
this can be a viable option because the inner-outer heuristic stopping criteria are consistent.
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there are strong arguments for considering such error estimates in practical computa-
tions.

2.8. The trajectory of finite precision CG computations

Main point: The approximate solutions produced by finite precision CG can be 
closely mapped to those produced by exact CG via a mapping defined by examining 
the rank deficiency of the Krylov subspace basis. It seems that the trajectory of 
the approximate solutions produced by finite precision CG remain in a narrow 
“tunnel” around those produced by exact CG.

Setup: We generate a diagonal matrix A as defined in (8) with N = 35, λ1 = 0.1, 
λN = 102, and ρ = 0.65. We use b = [1, . . . , 1]T /

√
N and x0 = 0. We run exact CG and 

CG in finite (double) double precision arithmetic. Following [67, Section 5.9.1] and [28], 
the finite precision CG iterates are then shifted as follows: Consider the sequence

�(k) = max {i | rankt(Ki(A, r0)) = k} , k = 1, 2, . . . , (10)

for the (inexact) Krylov subspace Ki(A, r0) computed in double precision. To compute 
rankt(Ki(A, r0)), we use the built-in MATLAB function rank for determining the nu-
merical rank with the threshold t = 10−1; compare with [67, Section 5.9.1], in particular, 
Figure 5.17.15 For exact CG iterates xk and finite precision CG iterates x̄�(k), we measure 
the ratios

‖x− x̄�(k)‖A
‖x− xk‖A

(11)

and ∣∣∣∣1 −
‖x− x̄�(k)‖A
‖x− xk‖A

∣∣∣∣ . (12)

Observations: In the left part of Fig. 11 we plot the relative error A-norms of the 
exact CG iterates xk (solid blue) and the finite precision CG iterates x̄k (blue circles). In 
the right part of Fig. 11 the solid blue curve remains the same as in the left part (apart 
from the change of the horizontal scale), while the blue circles now show the relative 
error A-norms for the shifted finite precision CG iterates x̄�(k). We also plot the ratios 
(11) (dotted red) and (12) (dashed red). We see that using the mapping (10), the finite 
precision CG iterates match well with the exact CG iterates. The ratio (11) stays close 

15 As discussed in [67], in this way we count the number of basis vectors that are “strongly linearly 
independent”. Different value of the threshold will illustrate the same phenomena with a slightly worse 
quantitative match.
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Fig. 11. Left: The relative error in the A-norm for exact CG (solid blue) and finite precision CG (blue 
circles). Right: The relative error in the A-norm for exact CG (solid blue) and shifted finite precision CG 
(blue circles), the ratio (11) (dotted red), and the ratio (12) (dashed red).

to one throughout the computation. The ratio (12) starts close to machine precision and 
grows as the iteration proceeds, but stays below one until the finite precision CG gets 
close to the final accuracy level.

Explanation: The fact that the ratio (11) remains close to one means that the conver-
gence trajectories for exact CG and the shifted finite precision CG are almost identical. 
This means that finite precision CG computations follow closely the trajectory of exact 
CG computations, but with progress delayed according to the approximate rank defi-
ciency of the computed (inaccurate) Krylov subspaces. The ratio (12) tells us how far 
(11) is from one. Rewriting (12), we can say that if∣∣∣∣‖x− xk‖A − ‖x− x̄�(k)‖A

‖x− xk‖A

∣∣∣∣ 
 1, (13)

then the trajectory of finite precision CG iterates is within a narrow “tunnel” around 
the trajectory of exact CG iterates, where the diameter of the “tunnel” is given by the 
left-hand side of (13). Although (13) holds for this particular example, it has not been 
shown to hold for finite precision computations in general. We strongly suspect that 
such a result holds; initial investigations have been carried out in, e.g., [28] and [29]. The 
analysis is complicated by the fact that in finite precision computations we can not easily 
compare the exact Krylov subspaces with the computed subspaces, since the latter ones 
depart from Krylov subspaces due to the effects of rounding errors.

3. The GMRES method

The GMRES method [97] is well defined for any linear algebraic system Ax = b with 
a nonsingular matrix A ∈ RN×N and right-hand side b ∈ RN . If d = d(A, r0) is the 
grade of r0 = b −Ax0 with respect to A, then at every step k = 1, 2, . . . , d the GMRES 
method constructs a uniquely determined approximation xk ∈ x0 + Kk(A, r0) such that 
rk ⊥ AKk(A, r0), or equivalently
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‖rk‖2 = min
z∈x0+Kk(A,r0)

‖b−Az‖2 = min
p∈Pk(0)

‖p(A)r0‖2. (14)

GMRES is implemented using the Arnoldi algorithm [2], in practical applications usually 
in the modified Gram-Schmidt (MGS) variant, which generates an orthonormal basis 
Vk of Kk(A, r0) and a matrix decomposition of the form AVk = Vk+1Hk+1,k, where 
Hk+1,k ∈ Rk+1,k is an unreduced upper Hessenberg matrix. Then xk = x0 + Vktk is 
determined by

tk = arg min
t∈Rk

‖b−A(x0 + Vkt)‖2 = arg min
t∈Rk

‖‖r0‖e1 −Hk+1,kt‖2. (15)

In practical implementations of GMRES, the least squares problem on the right is solved 
by computing the QR decomposition of the matrix Hk+1,k. Because of the upper Hes-
senberg structure, this decomposition can be obtained using Givens rotations, which can 
be updated in every step. This process also yields an update of the value ‖rk‖2 with-
out explicitly computing xk. Thus, in practical implementations of GMRES, the least 
squares problem is solved only when the updated value of the residual norm is below 
a given tolerance. While all of this is very efficient, the Arnoldi algorithm for a general 
nonsymmetric matrix requires full recurrences (unlike the short recurrences in CG), and 
hence the computational cost in terms of work and storage requirements per iteration 
of GMRES grows significantly. As a consequence, full recurrence GMRES is for large 
problems typically computationally unfeasible. A common strategy, which already ap-
peared in [97, Algorithm 4], is to restart the algorithm after a certain number of steps. 
We do not consider restarted GMRES here, but point out that its behavior is not fully 
understood and sometimes counterintuitive; see, e.g., [19].

A pseudocode implementation of GMRES is shown in Algorithm 2, and more details 
about the implementation of GMRES can be found, e.g., in [97] and [67, Section 2.5.5]. 
A detailed analysis why the computation of orthogonal Krylov subspace bases for general 
nonsymmetric matrices in general requires full instead of short recurrences is given in [67, 
Chapter 4].

Algorithm 2 GMRES method (pseudocode).
Require: Nonsingular matrix A ∈ RN×N , right-hand side b, initial approximation x0; convergence tolerance 

τ ; maximum number of iterations nmax.
1: r0 = b − Ax0
2: for k = 1, 2, . . . , nmax do
3: Compute step k of the Arnoldi algorithm to obtain AVk = Vk+1Hk+1,k.
4: Update the QR factorization of Hk+1,k and compute the updated ‖rk‖2.
5: If ‖rk‖2 ≤ τ , then compute tk in (15), return xk = x0 + Vktk, and stop.
6: end for

If A is diagonalizable, A = XΛX−1 with Λ = diag(λ1, . . . , λN ), then

‖rk‖2 = min ‖p(A)r0‖2 ≤ ‖r0‖2 min ‖p(A)‖2 (16)

p∈Pk(0) p∈Pk(0)
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≤ κ(X) ‖r0‖2 min
p∈Pk(0)

max
1≤i≤N

|p(λi)|, (17)

where κ(X) = ‖X‖2‖X−1‖2. Greenbaum and Trefethen have called the minimization 
problem on the right hand side of (16) the ideal GMRES approximation problem, be-
cause taking the upper bound “disentangles the matrix essence of the process from the 
distracting effects of the initial vector” [49, p. 361]. For certain matrices A and iteration 
steps k, however, the value of the ideal GMRES approximation problem is much larger 
than even the worst-case GMRES residual norm, i.e., it can happen that

max
v∈RN

‖v‖2=1

min
p∈Pk(0)

‖p(A)v‖2 
 min
p∈Pk(0)

max
v∈RN

‖v‖2=1

‖p(A)v‖2 = min
p∈Pk(0)

‖p(A)‖2;

see [20,104] for the first examples, and [21] for additional examples and a detailed study 
of the mathematical properties of worst-case GMRES. In such cases every further bound 
that is derived using ideal GMRES, in particular the one given in (17), will be a significant 
overestimate of the actual GMRES residual norm.

If A is normal, then we can choose an eigenvector matrix with κ(X) = 1, and it can 
be shown that the bound (17) is sharp in the sense that for each step k there exists an 
initial residual r0 (depending on A and k) so that equality holds; see the original proofs 
in [45,56] and [69]. Thus, for a normal matrix A the location of its eigenvalues determines 
the worst-case behavior of GMRES and, in this worst-case sense, gives an indication of 
the possible actual behavior.

If A is not normal, then κ(X) can be very large, and the value of the upper bound 
(17) may be far from the actual GMRES residual norm. Moreover, by separating the 
initial residual from the minimization problem in the upper bound (16), we have lost all 
information about the relation between the particular given A and r0. This relationship 
between the particular A and b, which is often inherited from the underlying problem 
to be solved, can be essential for the convergence behavior of GMRES, particularly for 
nonnormal matrices. We point out that the dependence of the convergence of CG on 
the initial residual, which is expressed in the exact formula (2), is in general much less 
pronounced than for GMRES. It is possible to derive closed formulas analogous to (2)
also for the GMRES residual norms, even for nondiagonalizable matrices. But because of 
the generally nonorthogonal eigenvectors (or principal vectors) in the GMRES context, 
such formulas are more involved and harder to interpret than (2). More details can be 
found, e.g., in [15] and [75, Sections 5.5–5.6].

The eigenvalues of a general nonsingular matrix A may be anywhere in the complex 
plane, and hence estimating the value of the polynomial min-max approximation problem 
in (17) can be very challenging. A quantitative bound can be given in the simple case 
that the eigenvalues of A are contained in a disk centered at c ∈ C and with radius 
ρ > 0, where ρ < |c| is necessary so that zero is outside the disk. Taking the polynomial 
(1 − z/c)k ∈ Pk(0) then shows that
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min
p∈Pk(0)

max
1≤i≤N

|p(λi)| ≤
(

ρ

|c|

)k

; (18)

see, e.g., [96, Section 6.11]. Thus, we can expect that GMRES converges quickly when 
κ(X) is small, and the eigenvalues of A are contained in a small disk that is far away 
from the origin in the complex plane. A survey of approaches for estimating the value 
of the min-max approximation problem beyond this special case is given in [67, Sec-
tions 5.7.2–5.7.3].

It needs to be stressed that the sharpness of the bound (17) for normal matrices does 
not imply that GMRES converges faster for normal matrices, or that the (departure 
from) normality has an easy analyzable effect on the convergence of GMRES. In fact, it 
can be shown that GMRES may exhibit a complete stagnation even for unitary and hence 
normal matrices; see [48]. On the other hand, for a nonnormal matrix the location of the 
eigenvalues alone, and hence the value of the min-max approximation problem in (17), 
may not give relevant information about convergence behavior of GMRES. If A is not 
diagonalizable, then its spectral decomposition does not exist, and an analogue of (17)
based on the Jordan canonical form is of very limited use. As shown in [46,48], any non-
increasing convergence curve is possible for GMRES for a (in general, nonnormal) matrix 
A having any prescribed set of eigenvalues. The work in [1] gives a parametrization of the 
set of all matrices and right-hand-sides such that GMRES provides a given convergence 
curve while the matrix has a prescribed spectrum; see [67, Section 5.7.4] for a summary.

3.1. Any nonincreasing GMRES convergence curve is possible for any eigenvalues

Main point: Eigenvalues alone are in general not sufficient for describing the 
GMRES convergence behavior.

Setup: We follow [46, Section 2] for constructing a linear algebraic system Ax = b, 
where A ∈ RN×N has a prescribed set of eigenvalues λ1, . . . , λN ∈ C, so that the 
residual norms of GMRES applied to this system with x0 = 0 are given by a prescribed 
nonincreasing sequence f0 ≥ f1 ≥ · · · ≥ fN−1 > fN = 0.

Define gj =
√

(fj−1)2 − (fj)2 for j = 1, . . . , N , let V ∈ RN×N be any orthogonal 
matrix, and let b = V [g1, . . . , gN ]T . We then construct the polynomial

(z − λ1)(z − λ2) · · · (z − λN ) = zn −
N−1∑
j=0

αjz
j ,

and its companion matrix

AB =

⎡⎢⎢⎣
0 · · · 0 α0
1 0 α1

. . .
...

...

⎤⎥⎥⎦ .
1 αN−1
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Fig. 12. Residual norms of GMRES applied to the two linear algebraic systems constructed with prescribed 
eigenvalues and convergence curves (solid blue for λ1 = · · · = λN = 1 and dashed red for λj = j).

With B = [b, v1, . . . , vN−1], where vj denotes the jth column of V , we set A = BABB−1.
We use N = 21 and consider two scenarios: In the first we prescribe the eigenvalues 

λ1 = · · · = λN = 1, and the convergence curve f1 = · · · = fN−1 = 1 > fN = 0. In the 
second we prescribe the eigenvalues λj = j for j = 1, . . . , N , and a convergence curve 
that starts at f1 = 1, and then decreases every 4 steps through 10−2, 10−4, and 10−6, 
to 10−8. In both cases we take V = I, and apply MATLAB’s gmres function to Ax = b

with x0. Both matrices in this example are highly ill conditioned and highly nonnormal. 
Computations with MATLAB’s cond and eig functions yield

κ(A) ≈ 5.4 × 1011 and κ(X) ≈ 7.6 × 1010 (A with λ1 = · · · = λN = 1),

κ(A) ≈ 3.5 × 1014 and κ(X) ≈ 1.5 × 1021 (A with λj = j).

Observations: The computed GMRES residual for the two linear algebraic systems is 
shown by the solid blue and dashed red curves in Fig. 12. As expected, they follow the 
prescribed convergence curves.

Explanation: The convergence curves in Fig. 12 illustrate the proven theorems from [1,
46,48], and hence should not be surprising from a purely mathematical point of view. 
On the other hand, the curves illustrate the potentially intriguing behavior of GMRES 
for nonnormal matrices.

The much slower convergence of GMRES (solid blue curve) occurs for the matrix 
having a single eigenvalue of algebraic multiplicity N . This clearly demonstrates that for 
general nonnormal matrices the goal of preconditioners for GMRES needs to be more 
than just “clustering of the eigenvalues”.16 We also note that the slower convergence 
occurs for the somewhat better conditioned matrix.

16 Recall that this argument requires a thorough reconsideration also for CG; see Sections 2.2 and 2.4.
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We would like to mention a point that to our knowledge has not been sufficiently 
investigated yet: The paper [1] contains a complete parameterization of the set of all pairs
(A, b) for which GMRES with x0 = 0 generates the prescribed convergence curve, while 
each of the matrices A has the prescribed fixed eigenvalues. Thus, the parameterization 
contains not only artificially constructed examples, but also matrices and right hand 
sides that arise in practical applications. Given the GMRES convergence curve for a 
particular (practical) linear algebraic system Âx = b̂, we therefore know all pairs (A, b)
for which GMRES follows (with x0 = 0) the practically observed behavior, while each 
of the matrices A has the same eigenvalues as Â. The set of the pairs (A, b) is worth 
investigating in particular when Â is far from normal, but nevertheless its eigenvalues 
actually describe the GMRES convergence behavior.

3.2. GMRES convergence for normal matrices

Main point: For a normal matrix the eigenvalues, and hence the bound (17), 
give a reasonable descriptive information of the convergence behavior of GMRES. 
If (17) is estimated from above by (18), then the resulting linear bound cannot 
capture a possible acceleration of convergence, which can occur due to adaptation 
of GMRES to the data.

Setup: We consider normal (in fact, diagonal) matrices with eigenvalues that are rather 
uniformly distributed in certain disks. In order to construct such matrices we start with 
real nonsymmetric (N ×N)-matrices with normally distributed random entries that are 
generated with randn in MATLAB. We then compute the eigenvalues of these matrices 
in MATLAB and form diagonal (and hence normal) matrices DN with these eigenvalues 
scaled by 1/

√
N . We apply MATLAB’s gmres function with x0 = 0 to linear algebraic 

systems with the matrices

DN , 1.2I + DN , and 2I + 0.5DN .

The right-hand sides b are normalized random vectors, also generated with randn in 
MATLAB. We use N = 100, and we repeat the computation 100 times.

Observations: The left part of Fig. 13 shows the eigenvalues of the 100 matrices DN

and the boundary of the unit disk. The analogous illustrations for the other matrices look 
similar, with the centers of the disks moved to c = 1.2 and c = 2, and the radius ρ = 0.5
in the last case. We observe three distinctly different types of GMRES convergence 
behavior in the right part of Fig. 13:

• For the matrices DN the method makes almost no progress until the very end of the 
iteration.
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Fig. 13. Left: Eigenvalues of 100 matrices DN and the boundary of the unit disk. Right: Relative GMRES 
residual norms for linear algebraic systems with matrices DN , 1.2I + DN , and 2I + 0.5DN , and the upper 
bounds from (18).

• For the matrices 1.2I + DN the method converges faster than for the matrices DN , 
the convergence accelerates in later iterations, and the convergence curves exhibit 
larger variations.

• For the matrices 2I + 0.5DN the method converges linearly and very quickly.

The two dashed lines in the right part of Fig. 13 show the values (ρ/|c|)k from the 
upper bound (18) corresponding to the disks with center c = 1.2 and radius ρ = 1, and 
with center c = 2 and radius ρ = 0.5. In the first case the bound captures the rate 
of convergence in the initial iterations, and in the second case it perfectly matches the 
convergence curve.

Explanation: According to Girko’s Circular Law, the eigenvalues of the matrices DN

become uniformly distributed in the unit disk for N → ∞; see the Introduction of [16]
for a summary of results in this context. This explains the eigenvalue distributions that 
are shown in the left part of Fig. 13.

The worst-case behavior of GMRES for normal matrices is completely described by 
the values of the polynomial min-max approximation problem on the matrix eigenval-
ues, and these values also give an indication of the actual behavior; see the discussion 
of the bound (17). Obviously, since the GMRES iteration polynomials are normalized 
at the origin, the worst-case GMRES (and usually also the actual GMRES) makes al-
most no progress when the eigenvalues are spread through the unit disk, as for the 
matrices DN .

Most of the normal matrices 1.2I +DN have their eigenvalues in the disk centered at 
c = 1.2 and with radius ρ = 1. For these matrices the worst-case bound (18) gives a rea-
sonable description of the actual GMRES convergence particularly in the initial phase of 
the iteration. However, since the bound (18) is linear, its combination with (17) cannot 
describe the (nonlinear) GMRES acceleration observable in later iterations; cf. Section 2
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for similar observations in the context of the κ(A)-bound for the CG method. In com-
parison with CG, understanding the convergence acceleration of GMRES is challenging 
(and largely open) even for normal matrices. The polynomial min-max approximation 
problem on a (finite) discrete set in the complex plane is much more difficult to handle 
than the same problem on a (finite) discrete set on the real line.

Finally, most of the normal matrices 2I +0.5DN have their eigenvalues located in the 
disk centered at c = 2 and with radius ρ = 0.5. For these matrices GMRES converges so 
fast that no convergence acceleration becomes visible.

3.3. MGS-GMRES is normwise backward stable

Main point: In MGS-GMRES, complete loss of orthogonality of the computed 
Krylov subspace basis means convergence of the normwise relative backward error 
to the maximal attainable accuracy, and vice versa. Therefore, the MGS-GMRES 
method is normwise backward stable.

Setup: The experiment investigates the relation between the loss of orthogo-
nality of the Krylov subspace basis vectors computed in finite precision arith-
metic using the modified Gram-Schmidt (MGS) variant of the Arnoldi algorithm 
(measured by ‖I − V T

k Vk‖F ), and the convergence of the normwise relative back-
ward error ‖b − Axk‖2/(‖b‖2 + ‖A‖2‖xk‖2) in the corresponding MGS-GMRES 
method.17

We consider the example matrices fs1836 and sherman2 from Matrix Market.18 The 
matrix fs1836 is of size N = 183 and has a condition number of approximately 1.0 ×107. 
The matrix sherman2is of size N = 1000 and has a condition number of approximately 
2.4 ×107. Both matrices are diagonalzable, and the condition number of their eigenvector 
matrices computed by MATLAB are approximately 1.7 ×1011 and 9.6 ×1011, respectively. 
We use the right-hand side b = Ax, where x = [1, . . . , 1]T /

√
N . Since MATLAB’s gmres

function is based on the Householder variant of the Arnoldi algorithm, we use in this 
experiment our own MGS-GMRES implementation, starting with x0 = 0.

Observations: As shown in Fig. 14, throughout the iteration the product

‖I − V T
k Vk‖F × ‖b−Axk‖2

‖b‖2 + ‖A‖2‖xk‖2

is almost constant, and close to the machine precision (approximately 10−16). The or-
thogonality of the basis vectors is completely lost only when the normwise backward 

17 For a discussion of the practical relevance of the normwise relative backward error when solving linear 
algebraic systems we refer to any good textbook on numerical linear algebra. Its use as a stopping criterion 
for GMRES is discussed in Section 3.6.
18 https://math .nist .gov /MatrixMarket/.

https://math.nist.gov/MatrixMarket/
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Fig. 14. MGS-GMRES normwise relative backward errors (solid blue) and loss of orthogonality (dashed red), 
and the product of the two (dotted) for linear algebraic systems with the matrices fs1836 (left) and sherman2
(right).

error of the MGS-GMRES iteration has reached its maximal attainable accuracy level. 
We point out that this is a significant difference to the finite precision behavior of CG 
and other methods based on short recurrences. Then, apart from very special situations 
(see Section 2.5), not only a loss of orthogonality but also a loss of rank in the com-
puted subspace may occur, which leads to a delay of convergence; see Section 2.3 and 
the detailed explanations in, e.g., [67, Section 5.9] and [77].

Explanation: The full explanation of the phenomenon observed in Fig. 14 is based on 
a detailed analysis of rounding errors that occur in MGS-GMRES; see the papers [13,
87,84] or the summary in [67, Section 5.10]. In this analysis it is shown (under some 
technical assumptions, e.g., that A is not too close to being singular) that the loss of 
orthogonality in the Krylov subspace basis Vk computed in finite precision arithmetic 
using the MGS variant of the Arnoldi algorithm is essentially controlled by the condition 
number κ([γv1, AVkDk]), where γ ∈ R and Dk ∈ Rk×k are suitable chosen scalings. Since 
rk = r0 − AVktk = ‖r0‖v1 − AVktk, the conditioning of the matrix [γv1, AVkDk] can be 
related to the residual norm ‖b − Axk‖2, and in a second step also to the normwise 
relative backward error ‖b −Axk‖2/(‖b‖2 + ‖A‖2‖xk‖2). This yields a rigorous proof of 
the numerically observed behavior of MGS-GMRES. It is worth noting that working on 
this challenge led to revisiting the theoretical foundations of (scaled) total least squares 
problems; see, e.g., [86].

Note that the (more costly) GMRES implementation based on the Householder variant 
of the Arnoldi algorithm, which is used, e.g., in MATLAB, is also normwise backward 
stable [13]. In the classical Gram-Schmidt (CGS) variant, however, the orthogonality 
is lost too quickly to guarantee backward stability of the corresponding CGS-GMRES 
implementation; see [32] for a rounding error analysis of the CGS orthogonalization 
algorithm.
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3.4. GMRES convergence for approximately computed preconditioning

Main point: In practical computations, preconditioning can not be performed ex-
actly due to rounding errors. More substantially, theoretical preconditioning often 
has to be intentionally approximated with a rather relaxed accuracy in order to 
prevent prohibitive cost. Therefore theoretical results, which hold for exact pre-
conditioners, must be used with caution when applied to practical heuristics. 
Moreover, when using an (approximate) preconditioner, the norm of the true 
residual of the final computed approximation should be checked.

Setup: We set up a linear algebraic system Ax = b, where

A =
[
A BT

B 0

]
comes from a discretization of a Navier-Stokes model problem in IFISS 3.6 [17], and 
b = [1, . . . , 1]T /

√
N . We run the navier_testproblem with the (mostly default) param-

eters.19 The matrix A ∈ Rn×n is nonsymmetric, and B ∈ Rm×n has full rank m. For 
our chosen model problem parameters we have n = 578 and m = 256.

We consider the block diagonal preconditioner

P =
[
A 0
0 S

]
,

where S = BA−1BT is the Schur complement, and we are interested in the behavior 
of GMRES for the preconditioned system P−1Ax = P−1b. The top block of the pre-
conditioner P is given by the explicitly known matrix A. In order to simulate exact 
preconditioning, we compute the bottom block S using MATLAB’s backslash operator 
for the inversion of A. We use the matrix resulting from this computation as the “exact” 
preconditioner P. We then apply our own implementation of MGS-GMRES with x0 = 0
to Ax = b and to the exactly preconditioned system P−1Ax = P−1b, where we compute 
P−1A and P−1b again using MATLAB’s backslash operator.

In order to simulate the effects of intentionally inexact preconditioning, we illustrate 
how the GMRES convergence behavior changes when instead of explicitly computing 
P−1A and P−1b, we apply inner GMRES iterations for approximating solutions of lin-
ear algebraic systems with P in every step of the outer GMRES iteration (the so-called 
inner-outer iterations). We stop the inner iterations (starting with the initial vector 
x0 = 0) when the relative residual norm reaches the respective tolerances 10−8, 10−4, 
and 10−2. In this way we obtain three GMRES convergence curves for approximately 

19 Cavity; regularized; 16x16 grid; uniform grid; Q1-P0; viscosity: 1/100; hybrid; Picard: 1; Newton: 1; 
nonlinear tolerance: 1.1*eps; uniform streamlines.
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Fig. 15. Both parts show the relative resdiual norms ‖rk‖2‖/‖r0‖2 of GMRES for the unpreconditioned 
Navier-Stokes system (solid blue) and for the exactly preconditioned system (dashed blue). The left part 
also shows the preconditioned relative residual norms ‖P−1(b − Axk)‖2/‖P−1r0‖2 of GMRES for the ap-
proximately preconditioned systems with inner iteration tolerances 10−8, 10−4, and 10−2 (dotted black). 
Relaxing the tolerance slows down the GMRES convergence. The right part also shows the relative resid-
iual norms ‖rk‖2‖/‖r0‖2 of GMRES for the approximately preconditioned systems with inner iteration 
tolerances 10−8, 10−4, and 10−2 (dotted red). Relaxing the tolerance worsens the final accuracy.

preconditioned systems that simulate the decreasing accuracy of performing precondi-
tioning.

We stress that in this example we only illustrate that inexactness in performing pre-
conditioning can cause a substantial departure of the GMRES convergence behavior from 
the behavior guaranteed by theoretical results which assume that the preconditioning is 
performed exactly. By no means we aim to suggest practical preconditioning strategies, 
or to study inner-outer iterations with particular preconditioners. (Note that in practice 
a Krylov subspace method combined with multigrid preconditioning is often a viable 
approach.)

Observations: In the left part of Fig. 15 we show the relative residual norms 
‖rk‖2/‖r0‖2 of GMRES applied to Ax = b (solid blue) and to the exactly precond-
itioned system P−1Ax = P−1b (dashed blue), as well as the preconditioned relative 
residual norms ‖P−1(b − Axk)‖2/‖P−1r0‖2 of GMRES applied to the approximately 
preconditioned systems with the three tolerances for the inner solves (dotted black). We 
see that for the unpreconditioned system GMRES makes virtually no progress, and that 
for exact preconditioner it converges in three steps. The speed of convergence measured 
by the preconditioned relative residual norm slows down when we relax the accuracy of 
applying the preconditioner.

The solid blue and dashed blue curves in right part of Fig. 15 are the same as in the 
left part. The other three curves (dotted red) show the actual relative residual norms 
‖rk‖2/‖r0‖2 when GMRES is applied to the approximately preconditioned systems with 
the three different tolerances for the inner iterations as above. We observe that these 
curves are not monotonically decreasing, and that in each case the maximal attainable 
accuracy is approximately on the accuracy level of the inner iteration.
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Explanation: As shown in the instructive and widely cited paper [79], the minimal 
polynomial of the (nonsingular) preconditioned matrix P−1A is given by (z−1)(z2−z−1), 
and hence this matrix has the three distinct eigenvalues 1 and (1 ±

√
5)/2. Thus, in exact 

computations, GMRES applied to the exactly preconditioned system P−1Ax = P−1b

converges to the exact solution in at most three steps; see the dashed blue lines in 
Fig. 15. As clearly pointed out in [79], the degree of the minimal polynomial is essential 
for this property. For mathematical convergence of GMRES to the exact solution in at 
most k steps, it is not sufficient that A has only k distinct eigenvalues. For this the 
matrix additionally must be diagonalizable; cf. the example with λ1 = · · · = λN = 1 in 
Section 3.1.

In practical computations we usually do not form the preconditioner explicitly, nor 
do we form the preconditioned matrix. Instead, we use inner iterations for the linear 
algebraic systems with P. In addition, these inner iterations are usually based only on 
an approximation of P, which is obtained, for example, by approximating a Schur com-
plement. Clearly, the exact mathematical properties of the preconditioned matrix no 
longer hold for the approximate preconditioning, and therefore cannot be used for a rig-
orous analysis of the GMRES convergence behavior for the approximately preconditioned 
systems. The inexactness of the preconditioner can negatively affect the convergence be-
havior, both in terms of the rate of convergence and the maximal attainable accuracy, 
as illustrated in Fig. 15.

Many publications, in particular in the context of linear algebraic systems in saddle 
point form, give bounds on the eigenvalues of inexactly preconditioned matrices, with 
the goal to show that under inexact preconditioning the few eigenvalues with large mul-
tiplicity are replaced by a few clusters of eigenvalues. Related to the clustering heuristics, 
it is worth considering the next two points. First, for highly nonnormal matrices even 
small perturbations can make these clusters very large. Second, in order to be meaning-
ful for understanding the GMRES convergence behavior, such a perturbation argument 
for the eigenvalues needs to be complemented by additional arguments, since there is 
no guarantee that an approximately preconditioned matrix remains diagonalizable, and 
the convergence behavior for nonnormal matrices does not depend on the eigenvalues 
only; see Section 3.1. In particular cases, where the theoretical results on the distri-
bution of eigenvalues indeed explain the results of practical computations, one should 
try to identify the particular properties (in the words of Lanczos “the inner nature”) 
of the problem that makes this possible, starting with the mathematical model of the 
computationally investigated phenomenon. (See also the experiment in the next Sec-
tion 3.5.)

It is important to note that when applied to a preconditioned system, whether the 
preconditioner is computed exactly or not, GMRES minimizes the Euclidean norm 
of the preconditioned residual norm in every step. And since ‖P−1(b − Axk)‖2 =
‖b − Axk‖(PP∗)−1 , this can be interpreted as the minimization of the residual in a 
norm that depends on the preconditioner. As pointed out in [18, p. 193] in the con-
text of the MINRES method, “one must be careful not to select a preconditioner 



E. Carson et al. / Linear Algebra and its Applications 692 (2024) 241–291 275
that wildly distorts this norm”. Such a “distortion of the norm” can mean that the 
preconditioned residual norms can be significantly different from the residual norms 
‖rk‖2 = ‖b − Axk‖2 measuring convergence behavior with respect to the unprecon-
ditioned system. There is no guarantee that the latter are monotonically decreasing, 
since preconditioned GMRES iterations are only optimal for the preconditioned sys-
tem.

Some implementations of preconditioned GMRES, for example MATLAB’s gmres
function, have only the preconditioned residual norms as their standard output, and 
many publications containing preconditioned GMRES computations only report the be-
havior of the preconditioned residual norms. The right part of Fig. 15 indicates that 
whenever inexact preconditioning is used, it should be accompanied by a basic analysis 
of the actual residual norms used in stopping the iterations, or at least by computing 
‖rk‖2 at the end of the iteration in order to check the attained accuracy level with respect 
to the given (unpreconditioned) system.

3.5. GMRES and the minimal polynomial

Main point: Whenever the behavior of Krylov subspace methods is linked with 
approximation of the minimal polynomial of the matrix, we must rigorously specify 
the way in which the accuracy of such an approximation is going to be measured. 
In particular, the roots of the GMRES iteration polynomial do not need to match 
those of the minimal polynomial.

Setup: We consider the Grcar matrix (see, e.g., [105, Example 3])

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
−1 1 1 1 1

. . . . . . . . . . . . . . .
. . . . . . . . . . . . 1

. . . . . . . . . 1
. . . . . . 1

−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R500×500

This matrix is diagonalizable and well conditioned with κ(A) ≈ 3.63. However, as usual 
for nonsymmetric Toeplitz matrices (see, e.g., [90]), the eigenvectors of A are very ill 
conditioned, so that A is highly nonnormal. Using MATLAB’s eig and cond functions 
yields an eigenvector matrix X with κ(X) ≈ 7.2 × 1038. We use b = [1, . . . , 1]T /

√
N and 

apply our own implementation of MGS-GMRES to Ax = b with x0 = 0.
Observations: The relative GMRES residual norms are shown in the bottom right 

part of Fig. 16. In the first iteration, the relative residual norm drops from 1.0 to ap-
proximately 0.05, and then the relative residual norms decrease almost linearly for the 
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Fig. 16. Eigenvalues of the 500 ×500 Grcar matrix A computed by MATLAB (blue pluses) and the harmonic 
Ritz values (red dots) at GMRES steps 50, 100 and 200 (top left, top right, and bottom left), and relative 
GMRES residual norms for Ax = b with b = [1, . . . , 1]T /

√
N and x0 = 0 (bottom right).

following approximately 250 steps. In the other three parts of Fig. 16 the (blue) pluses 
show the (approximate) eigenvalues of A computed by MATLAB’s eig function. (Note 
that because of the severe ill-conditioning of the eigenvalue problem, this computation is, 
for the eigenvalues with large imaginary parts, affected by rounding errors. A thorough 
discussion of the spectrum of the Grcar matrix and of its approximation can be found 
in [107].) The (red) dots show the roots of the GMRES polynomials, also called the 
harmonic Ritz values (see, e.g., [67, Section 5.7.1] for mathematical characterizations), 
at iterations 50, 100, and 200 (top left, top right, and bottom left, respectively). During 
the iteration, these roots fill up more and more of the same curve that “surrounds” the 
eigenvalues of A, but overall they fail to move any closer towards the eigenvalues, and 
hence towards the roots of the minimal polynomial of A.

Explanation: In the CG method, the polynomial of degree k providing the minimum 
in (2) indeed approximates the minimal polynomial of the matrix A (assuming that all 
ηi are nonzero) in the sense of solving the simplified Stietjes moment problem (see [88]) 
or, equivalently, in the sense of determining the nodes of the associated k-point Gauss 
quadrature; see, e.g., [67, Section 3.5] and [72, Section 5.2]. As demonstrated in the 
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examples in Section 2, this does not mean that there exists a simple revealing relation-
ship between the eigenvalues of A and the Ritz values θ(k)

� in (3), not even for tightly 
clustered eigenvalues. Of course, there exist many beautiful properties due to the un-
derlying orthogonal polynomials, and many results about convergence of Ritz values to 
the eigenvalues. But this is not the same as defining a meaningful measure in relation to 
approximation of the minimal polynomial.

For GMRES the situation is even more complicated, since analogues of (2) and (3)
are not available for the GMRES polynomial. There exist generalizations of the Gauss 
quadrature through the matrix formulation of the Vorobyev moment problem (see, e.g.,
[67, Section 3.7.4] and [101]) which apply to the Arnoldi algorithm for approximating 
eigenvalues and to the closely related FOM method for solving linear systems; see, e.g., 
[96, Section 6.4]. In this sense, and only in this sense, the GMRES polynomial at step 
k approximates the minimal polynomial of A. However, there is no apparent way how 
these very involved relationships can give meaningful insights into the location of the 
k harmonic Ritz values in relation to the roots of the minimal polynomial of A. And 
indeed, the harmonic Ritz values may remain far from the eigenvalues of A throughout 
the iteration, although the GMRES residual norms decrease reasonably quickly. This 
important point is illustrated in Fig. 16.

In many publications it is claimed that the main idea behind Krylov subspace methods 
is to approximate the minimal polynomial of A. The arguments given above explain why 
this interpretation is misleading.20 In the context of solving large linear algebraic systems, 
it can lead to further misconceptions for two main reasons:

Reason 1: The number of iterations performed in practice is typically many orders of 
magnitude smaller than the degree of the minimal polynomial in question. This remains 
true also in cases where an “ideal” preconditioner guarantees that, in theory, the degree of 
the minimal polynomial of the exactly preconditioned matrix is very small. As discussed 
in Section 3.4, in practice we do not precondition exactly, which results in replacing the 
few eigenvalues (with large multiplicities) by a few clusters of eigenvalues. The argument 
continues that we can utilize these clusters for approximating the minimal polynomial 
of the inexactly preconditioned matrix. However, even if such a matrix is diagonalizable 
(which is in general not obvious), its minimal polynomial has a very large degree (usually 
equal to the size of the problem). Approximating clusters of eigenvalues by single roots 
of the iteration polynomial does not work, apart from particular cases, regardless of how 
tight the clusters are. This is explained in Section 2.2 for a much easier case. It may 
work under some specific circumstances and restrictions that have to be clearly stated 
whenever the argument is used.

Reason 2: The mathematical term “approximation” should be used only with a precise 
description of the measure that is used for evaluating the accuracy of the approximation. 

20 The interpretation may be motivated by the widespread use of Krylov subspaces for solving eigenvalue 
problems with A, and it somewhat resonates with the original paper of Krylov published in 1931 [58], which 
deals with computing eigenvalues.



278 E. Carson et al. / Linear Algebra and its Applications 692 (2024) 241–291
Fig. 17. Residual 2-norms (solid blue) and normwise relative backward errors (dashed red) of GMRES for 
linear algebraic systems with fs1836 (left) and sherman2 (right).

In the context of Krylov subspace methods the flaw is not in using the term “approxi-
mation” in relation to the minimal polynomial of the system matrix. The flaw is either 
in not specifying any measure at all, or in a vague association of such a measure with 
the locations of the roots of the iteration polynomials.

3.6. Residual versus normwise backward error, and stopping criteria for GMRES

Main point: The residual 2-norm, which is mimimized by GMRES, is commonly 
used as a stopping criterion for GMRES. The normwise relative backward error 
represents an important and practically relevant alternative.

Setup: We consider linear algebraic systems with the matrices fs1836 and sherman2
from Matrix Market (see Section 3.3), and right-hand sides b = [1, . . . , 1]T /

√
N . We 

apply our own MGS-GMRES implementation to Ax = b, starting with x0 = 0, and 
compute the relative residual norms ‖rk‖2/‖b‖2 and the normwise relative backward 
errors ‖rk‖2/(‖b‖2 + ‖A‖2‖xk‖2). For the computation of ‖A‖2 we use MATLAB’s norm
function.

Observations: We can see in Fig. 17 that the behavior of the relative residual norm and 
the normwise relative backward error may be very different. In both cases the relative 
residual norm initially stagnates and eventually reaches a level of approximately 10−6. 
The normwise relative backward error, on the other hand, decreases quickly from the 
start of the iteration and reaches the machine precision level. (Note that the backward 
error curves for fs1836 and sherman2 look a bit different than in Fig. 14, since here we 
use different right-hand sides.)

Explanation: Given any approximation xk of the exact solution x, it is useful to ask 
which linear algebraic system is solved exactly, i.e., for which ΔA and Δb we have

(A + ΔA)xk = b + Δb;
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see Wilkinson [113,114]. In many applications both A and b result from approximations, 
measurements or discretizations. From an application point of view it is therefore often 
sufficient to know that xk solves a nearby system, i.e., a system where the perturbations 
ΔA and Δb are small. The perturbation restricted to the right-hand side gives

Axk = b + Δb, where Δb = −rk = Axk − b.

Thus, if ‖rk‖2 is small, then xk solves a system with the same matrix and a slightly 
perturbed right-hand side. The relative size of the perturbation is ‖rk‖2/‖b‖2. For x0 =
0 this is the relative residual norm, which commonly is used as a stopping criterion 
for GMRES. For x0 = 0, however, the relative residual norm ‖rk‖2/‖r0‖2 does not 
have a backward error interpretation, and when ‖r0‖2 � ‖b‖2 its use as a measure of 
convergence requires caution; see Section 3.8 below.

As shown by Rigal and Gaches [93], the normwise relative backward error (plotted in 
Fig. 17) gives the size of the smallest possible perturbations ΔAmin and Δbmin for which 
xk solves the perturbed system exactly. More precisely, defining

β(xk) := min {β : (A + ΔA)xk = b + Δb, ‖ΔA‖2 ≤ β‖A‖2, ‖Δb‖2 ≤ β‖b‖2}

we have

β(xk) = ‖rk‖2

‖b‖2 + ‖A‖2‖xk‖2
= ‖ΔAmin‖2

‖A‖2
= ‖Δbmin‖2

‖b‖2
.

Consequently, the backward error analysis yields a valid argument for using the normwise 
relative backward error instead of the relative residual norm as a stopping criterion for 
GMRES.

In our example, the relative residual norms in Fig. 17 eventually stagnate close to 
10−6. This shows that in both cases xk eventually solves a system with the matrix A
and a rather large perturbation of the right-hand side. But since the normwise rela-
tive backward errors decrease to the level of the machine precision, we know that xk

eventually solves a system with very small perturbations of A and b.

3.7. GMRES convergence for different right-hand sides

Main point: The convergence behavior of GMRES can depend strongly on the 
right-hand side, and hence convergence analysis based only on the matrix may 
not be descriptive.

Setup: The first example is a variation of the Frank matrix, which is a test matrix 
of upper Hessenberg form generated by gallery(‘frank’,N,N) in MATLAB. We “flip” 
this matrix and consider
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FN =

⎡⎢⎢⎢⎢⎣
N N − 1 N − 2 · · · 1

N − 1 N − 1 N − 2 · · · 1
N − 2 N − 2 · · · 1

. . . . . .
...

1 1

⎤⎥⎥⎥⎥⎦ ∈ RN×N .

We use N = 16, which yields a highly nonnormal matrix. Computations with MATLAB’s
eig and cond functions yield an eigenvector matrix X with κ(X) ≈ 1.1 ×1013. We apply 
our implementation of MGS-GMRES with x0 = 0 to the systems FNx = b(j), where 
b(1) = [1, . . . , 1]T /

√
N , and b(2) is a normalized random vector with normally distributed 

entries, generated using randn in MATLAB.
The second example is a discretized convection-diffusion problem that was studied 

in [66]; see also [67, Section 5.7.5]. Here the SUPG discretization with stabilization 
parameter δ of the problem

−ν(uxx + uyy) + uy = 0 in Ω = (0, 1) × (0, 1), u = g on ∂Ω,

leads to linear algebraic systems Ax = b with A = A(h, δ, ν) and b = b(h, δ, g). We use 
the discretization size h = 1/25 (leading to A ∈ RN×N with N = h−2 = 625) and fixed 
parameters ν = 0.01, δ = 0.3, but 25 different boundary conditions g. These boundary 
conditions set g = 0 everywhere on ∂Ω except for a certain part of the right side of ∂Ω; 
see [66, Example 2.2] for details. The essential point is that we have only one matrix 
A, but 25 different right-hand sides b(1), . . . , b(25). The matrix A is highly nonnormal 
(here κ(X) ≈ 2.5 ×1017), and we again apply our implementation of MGS-GMRES with 
x0 = 0.

Observations: The relative GMRES residual norms for the two different matrices and 
the corresponding different right-hand sides are shown in Fig. 18. For the flipped Frank 
matrix the solid blue curve corresponds to b(1), and dashed red curve to b(2). Apparently, 
GMRES converges much faster for b(1) than for b(2).

In the convection-diffusion problem we have for each j = 1, . . . , 25 a right-hand side 
b(j) for which GMRES has an initial phase of slow convergence (almost stagnation) for 
exactly j− 1 steps. After the initial phase, the GMRES convergence speed is almost the 
same for all right-hand sides.

Explanation: The matrices used in this example are highly nonnormal, and the con-
vergence bound (17) is therefore of little use. Careful analyses of the relationship between 
A and b on a case-by-case basis are required to understand the GMRES convergence. 
For the SUPG discretized convection-diffusion problem such an analysis reveals that the 
length of the initial stagnation phase of GMRES for different boundary conditions de-
pends on how many steps it takes to propagate the boundary information across the 
discretized domain by repeated multiplication with the matrix A; see [66]. That analy-
sis does not explain, however, how the convergence after the initial phase of stagnation 
depends on the parameters of the problem.
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Fig. 18. Relative residual norms of GMRES for linear algebraic systems with the flipped Frank matrix (left) 
and two different right-hand sides, and a matrix from the SUPG discretization convection-diffusion model 
problem and 25 different right-hand sides (right).

3.8. GMRES convergence for nonzero initial approximate solutions

Main point: Using a nonzero x0 and measuring GMRES convergence with the 
relative residual norms can lead to an illusion of fast convergence. The relative 
residual norms can decrease rapidly due to dominant information created in r0 by 
matrix-vector multiplication. Such information may not be present in the right-
hand side, therefore the error can at the same time remain large, which can also 
lead to a premature stopping of the computation.

Setup: We consider a linear algebraic system Ax = b, where A ∈ R240×240 is the matrix
steam1 from Matrix Market and b = [1, . . . , 1]T /

√
N . The matrix A is nonsymmetric 

with κ(A) ≈ 2.8 × 107. We compute x = A−1b using MATLAB’s backslash operator. 
We apply our implementation of MGS-GMRES to Ax = b with x0 = 0, and with a 
normalized random x0 generated using randn in MATLAB.

Observations: The relative residual norms ‖rk‖2/‖r0‖2 and the relative error norms 
‖x − xk‖2/‖x − x0‖2 of GMRES are shown in the left and right plots of Fig. 19, respec-
tively. The solid black curves correspond to x0 = 0, and the dashed red curves to the 
normalized random x0.

The left plot shows that relative residual norms for the normalized random x0 decrease 
quickly, and reach approximately the machine precision level after about 200 iterations. 
For x0 = 0 the relative residual norms decrease much slower, and eventually reach a 
level of approximately 10−10. On the other hand, the right plot shows that the relative 
error norms for both initial vectors are almost the same throughout the iteration, and 
approximately the same level of accuracy is reached in the end.

Explanation: When the matrix A is ill conditioned, a nonzero x0 may lead to ‖r0‖2 =
‖b − Ax0‖2 � ‖b‖2. (In our example we have ‖r0‖2 ≈ 4.5 × 106 for the normalized 
random x0.) The vector r0 then contains an artificially created bias towards the dominant 
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Fig. 19. Relative residual norms (left) and relative error norms (right) of GMRES applied to a linear algebraic 
system with the matrix steam1, starting with x0 = 0 (solid black) and a normalized random x0 (dotted 
red).

information in the matrix A (such as large eigenvalues or singular values) that may not 
be related to the solution x = A−1b. Elimination of this bias by GMRES can lead to 
a fast reduction of the residual norms particularly in the initial phase of the iteration. 
This creates an illusion of fast convergence (measured by the residual norms), and can 
lead to a premature stopping although xk is actually not close to x. Similar examples 
with different matrices can be seen in [67, Figure 5.13] and [87].

In order to avoid an illusion of fast convergence and a premature stopping, while still 
using a nonzero x0, one can use the rescaling ζminx0, where ζmin = (bTAx0)/‖Ax0‖2

2
solves the approximation problem minζ ‖b − ζAx0‖2; see [67, p. 318]. In our example 
|ζmin| ≈ 2.5 ×10−8 holds for the normalized random x0, and the residual and error norm 
curves of GMRES started with ζminx0 are indistinguishable from the solid black curves 
in Fig. 19.

4. Concluding remarks

As an algorithmic idea, Krylov subspace methods are in their seventies, and their 
mathematical roots are closely related to much older objects like continued fractions, 
moments, and quadrature. It might seem that these methods are fully understood, but 
many questions about their behavior still remain open. Focusing on the CG and the GM-
RES methods, we have presented an approach towards understanding Krylov subspace 
methods through a sequence of easily reproducible examples. In some cases this has led 
to clarification of common misunderstandings about the methods or to the formulation 
of open problems.

As argued in this paper, we believe that nonlinearity is the main mathematical asset 
as well as the beauty of Krylov subspace methods. The core misunderstanding in this 
context is the confusion of the nonlinear and data-adaptive behavior of the methods 
with linear convergence bounds. In general, the linearization of nonlinear phenomena 
is a highly useful technique that is applied throughout mathematics. However, it is 
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important to realize that linearization can capture the behavior of strongly nonlinear 
phenomena only locally. Asymptotic convergence factors are based on linearization at 
infinity. When solving finite linear algebraic systems and methods with a mathematical 
finite termination property, this should be used with caution. Formally we do not have 
any limit at infinity, and practically we are interested in a few initial iterations (in 
comparison to the large number of unknowns). When solving linear operator equations 
in infinite dimensional Hilbert spaces, the convergence rate can become faster than any 
linear rate as the iterations proceed.

This paper illustrates that the behavior of Krylov subspace methods for some model 
problems can not be extrapolated to their behavior for practical problems. The condition 
number bounds, or arguments using clustered eigenvalues, can be useful under specific 
assumptions and with accepting the associated limitations. For a nice example, which was 
not discussed in this paper, we refer to the very insightful discussion of spectral equiv-
alence of operators and operator preconditioning by Faber, Manteuffel, and Parter [22]. 
The goal in this area is to construct preconditioners that guarantee condition number 
bounds independent of the discretization (and the PDE problem) parameters. This is 
certainly desirable and useful, but it might not be the final step in guaranteeing fast 
convergence of Krylov subspace methods. As they point out,

“For a fixed [discretization parameter], using a preconditioning strategy based upon 
an equivalent operator may not be superior to classical methods [...]. Equivalence 
alone is not sufficient for a good preconditioning strategy. One must also choose an 
equivalent operator for which the bound [guaranteeing fast convergence] is small. The 
above observations indicate that a more precise measure of the ‘closeness’ of two 
operators is required to evaluate preconditioning strategies.”

Collaboration of researchers working on analysis of Krylov subspace methods, researchers 
in other fields (such as numerical PDEs), and practitioners who use the methods and are 
aware of the wider context, can lead to new ideas and paths of research. The approach 
started in the remarkable paper by Nielsen, Tveito and Hackbusch [81], and continued 
later in [30] and other works quoted in Section 2.3 can serve as an example.

The class of Krylov subspace methods is nowadays frequently seen as a computational 
toolbox whose mathematical investigation is more or less finished. The remaining open 
problems, if known to a broader audience at all, are being accepted as difficult and not 
worth investigating. We argue that Krylov subspace methods should still be seen as 
mathematical objects worth studying. Any progress in their understanding, even of their 
mathematical fundamentals, will bring us a step further in exploiting their full nonlinear 
computational potential.
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Appendix A

A.1. Modern relevance of early works about Krylov subspace methods

This paper is not focused on the history Krylov subspace methods. For that purpose 
we refer to the remarkable commented collection of works between 1948 and 1976 in the 
survey by Golub and O’Leary [34], and, e.g., to the historical notes in [67]. We believe, 
however, that a thorough knowledge of the early works on Krylov subspace methods is 
very useful for understanding the strengths and weaknesses in the present use of these 
methods, and for obtaining perspectives for possible future developments.

The papers of Lanczos, Hestenes and Stiefel published in 1952–53 [53,62–64] went far 
beyond the construction of a numerical algorithm for solving linear algebraic systems. 
They also considered the approximation of eigenvalues, and covered related mathematical 
background including orthogonal polynomials, continued fraction expansions, and Gauss 
quadrature. The paper [63] considers “purification” of the starting vector of components 
along the large eigenvalues of the matrix A using Chebyshev polynomials, followed by 
application of a version of CG. It explains in detail the sharp distinction between the 
action of the Chebyshev polynomials and CG polynomials, where the former addresses 
the continuum of an interval while the latter “attenuate due to the nearness of their 
zeros” to the eigenvalues of A; cf. [63, p. 46 and Fig. 2]. The paper [64] suggests in this 
context polynomial preconditioning much earlier than other publications, but this work 
has been largely overlooked; see also the commentaries [95,99]. The papers [53,62–64]
also address quality measures of the computed iterative approximations. Remarkably, 
the early researchers also analyzed computer implementations of the methods, including 
the effects of rounding errors.

The papers of Karush [57] and Hayes [52] from 1952 and 1954, respectively, prove 
superlinear convergence of CG for A = Id + C, where Id is the identity and C is a com-
pact operator, concluding that the CG rate of convergence for such operators exceeds 
any given linear rate as the iteration proceeds. This result was, decades later, repeatedly 
rediscovered. A bit later (with the original print in Russian from 1958), Vorobyev put 
this new development into the context of a computationally feasible formulation of the 
method of moments [111]; see also the insightful paper by Brezinski [5] on its gener-
alizations and the relationship with other related concepts, including the approach by 
Lanczos.
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Unfortunately, many results of these early works remain almost unnoticed, and the 
common state-of-the-art literature even contains views that contradict some of them. On 
the other hand, a lack of theoretical understanding does not prohibit the practical appli-
cation of the methods. Thus, the following quote from Forsythe’s paper from 1953 [24]
is to some extent still valid for the class of Krylov subspace methods today:

“It is remarkable how little is really understood about most of the methods for solving 
Ax = b. They are being used nevertheless, and yield answers. This disparity between 
theory and practice appears to be typical of the gulf between the science and the art
of numerical analysis.”

These words, written in 1952 and published in 1953, were prophetic for the situation in 
the area of Krylov subspace methods for decades to come.

Two common beliefs frequently repeated in the numerical analysis literature are that 
CG was originally considered as a direct method, and that it was, after unsatisfactory 
computational experiences, abandoned for about two decades as a numerical approach 
for linear systems. As mentioned above, CG was in the original papers considered as an 
iterative method. The story of considering it as direct method started later. Moreover, 
while the interest in CG within the numerical analysis community temporarily declined 
in the 1950s and 1960s (and was only revived later by Reid, Axelsson, Evans, Concus, 
Golub, O’Leary, Paige, Saunders, Meijerink, van der Vorst, and others in the 1970s), 
it actually was used by practitioners in the 1950s and 1960s; see, e.g., the collection 
of works given in [34]. Many important theoretical ideas appeared independently of 
numerical linear algebra in different fields; see, e.g., the developments in computational 
physics and chemistry [40] (cf. also the independent developments in [39]), [92,98], as 
well as in the works on matching moments leading to model reduction of large dynamical 
systems in [41].

The history of Krylov subspace methods illustrates discontinuities in the development 
of science and even loss of knowledge, as well as an unhealthy lack of communication 
between different fields.

A.2. Preconditioning and analysis of Krylov subspace methods

Practical computations with Krylov subspace methods require preconditioning. From 
a purely algebraical point of view, this is typically interpreted as the transformation 
of the original linear algebraic system into an equivalent system that is, for the given 
iterative method, more easily solvable. Another view is the acceleration of convergence 
of the computed approximations through transformation of the iterative process. For 
symmetric positive definite matrices and CG, the goal of preconditioning is typically 
stated as (see, e.g., [4]): “Hopefully, the transformed (preconditioned) matrix will have 
a smaller condition number, and/or eigenvalues clustered around one.” When this can 
be achieved, and a small condition number guarantees an acceptable approximate so-
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lution within a few iterations (which can happen, e.g., for preconditioners constructed 
via domain decomposition methods incorporating coarse components) the matter seems 
to be resolved. However, if in such cases tight bounds are available for the extreme 
eigenvalues of the preconditioned matrix, then it can be computationally competitive or 
even more efficient to apply the Chebyshev semiiterative method instead of CG. This 
alternative approach is easily parallelizable and numerically stable. Similar to the quote 
above, the following insight of Forsythe [24, p. 318] is still valid and not fully appreciated 
today:

“The belief is widespread that the condition of a system Ax = b has a decisive influence 
on the convergence of an iterative solution [...]; this can not always be true. Even when 
it is true for an iterative process, it may be possible actually to take advantage of the 
poor condition of Ax = b in converting the slow process into an accelerated method 
which converges rapidly. There is a great need for clarification of the group of ideas 
associated with ‘condition’.”

As illustrated in Section 2.4 in this paper, the nonlinear adaptivity of CG to the location 
of the individual eigenvalues indicates that a smaller condition number does not neces-
sarily lead to faster convergence. One of the examples in Section 2.4 is taken from the 
paper [30], which contains a substantial theoretical result on approximating all eigenval-
ues of the preconditioned matrix, and hence shows that information about all eigenvalues 
for important PDE problems can be available a priori at a negligible computational cost. 
In addition, recent results of Colbrook, Horning, and Townsend [9,10] show how to com-
pute smoothed approximations of spectral measures for infinite dimensional self-adjoint 
operators.

A large family of preconditioners in numerical PDEs is motivated by the spectral or 
norm equivalence of operators in infinite dimensional Hilbert spaces (hence the name 
operator preconditioning); see, e.g., the beautiful and rarely quoted early papers by Con-
cus and Golub published in 1973 [11], and by Faber, Manteuffel, and Parter published 
in 1990 [22]. Infinite dimensional operator preconditioning and algebraic preconditioning 
in the context of using CG are linked together in [72]. In particular, it is shown that 
any algebraic preconditioning can be put into the operator preconditioning framework. 
This reveals the close mathematical connection between the choice of the inner product 
in the infinite dimensional Hilbert spaces in operator preconditioning and the choice of 
the discretization basis determining the associated linear algebraic problem. A survey of 
the abstract framework of operator preconditioning based on decomposition of infinite 
dimensional Hilbert subspaces is given in [54].

Many results in the literature are devoted to problem-specific preconditioning. The 
overall state-of-the-art in the area of preconditioning still remains well-characterized by 
the following quote from the book of Saad published in 2003 [96, p. 297]:
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“Finding a good preconditioner to solve a given sparse linear system is often viewed 
as a combination of art and science. Theoretical results are rare and some methods 
work surprisingly well, often despite expectations.”

This underlines the need for further research on preconditioning, which can not be sep-
arated from further analysis of Krylov subspace methods.
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