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Abstract

We consider operator preconditioning B−1A, which is employed
in the numerical solution of boundary value problems. Here, the
self-adjoint operators A,B : H1

0 (Ω) → H−1(Ω) are the standard in-
tegral/functional representations of the partial differential operators
−∇ · (k(x)∇u) and −∇ · (g(x)∇u), respectively, and the scalar coeffi-
cient functions k(x) and g(x) are assumed to be continuous throughout
the closure of the solution domain. The function g(x) is also assumed
to be uniformly positive. When the discretized problem, with the pre-
conditioned operator B−1

n An, is solved with Krylov subspace methods,
the convergence behavior depends on the distribution of the eigenval-
ues. Therefore it is crucial to understand how the eigenvalues of B−1

n An

are related to the spectrum of B−1A. Following the path started in
the two recent papers published in SIAM J. Numer. Anal. [57 (2019),
pp. 1369-1394 and 58 (2020), pp. 2193-2211], the first part of this paper
addresses the open question concerning the distribution of the eigen-
values of B−1

n An formulated at the end of the second paper. The ap-
proximation of the spectrum studied in the present paper differs from
the eigenvalue problem studied in the classical PDE literature which
addresses individual eigenvalues of compact (solution) operators.

In the second part of this paper we generalize some of our results to
general bounded and self-adjoint operators A, B : V → V #, where V #

denotes the dual of V . More specifically, provided that B is coercive
and that the standard Galerkin discretization approximation proper-
ties hold, we prove that the whole spectrum of B−1A : V → V is
approximated to an arbitrary accuracy by the eigenvalues of its finite
dimensional discretization B−1

n An.
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1 Introduction.

Any linear self-adjoint operator G : V → V defined on an infinite dimensional
real Hilbert space V can be expressed in terms of the Riemann-Stieltjes
integral as

G =

∫
λ dE(λ), i.e., (Gψ, φ) =

∫
λ d(E(λ)ψ, φ) for all ψ, φ ∈ V,

where the spectral function E(λ) of G represents a family of orthogonal pro-
jections (projection-valued measure), analogous to the family of projectors
onto individual invariant subspaces for symmetric matrices; see [29, Chap-
ter II]. This analogy is straightforward for compact self-adjoint operators
with infinite range: They can be regarded as limits in norm of finite Her-
mitian matrices and have a spectrum composed of an infinite number of
isolated eigenvalues with zero being the only accumulation point. Further-
more, in such cases the Riemann-Stieltjes integral, presented above, can be
written as an infinite sum. In this paper we will, however, consider the case
when the operator spectrum contains a continuous part.

Consider a Krylov subspace method, such as the conjugate gradient
method (CG) or the minimal residual method (MINRES), applied for solv-
ing a linear system associated with the operator G. Then it is beneficial to
consider the infinite-dimensional distribution function1 ω(λ) which is deter-
mined by the integral representation

(Gr, r) =

∫
λ d(E(λ)r, r) =

∫
λ dω(λ),

where r denotes the initial residual normalized to one (cf. [24, section 5.2]).
This is analogous to using an orthonormal eigenvector basis to obtain the
diagonal representation of symmetric matrices. Being able to describe the
convergence of the Gauss quadrature approximations ω(n)(λ) to ω(λ) (cf. [30,
Theorem IX, p. 61]), we would have complete information about the compu-
tational behavior of CG or MINRES (cf. [22, Chapter 5] and [24, section 5.2])
and the motivating example in [14, sections 2 and 4.4]. Such information
is in practice not available2, but it would certainly be highly beneficial to
have information about the complete spectrum of the discretized operators
and of its convergence to the infinite-dimensional spectrum. This will be
investigated below.

1Equivalently, we can also consider the closely related spectral measure; see, e.g., [9].
2Recent beautiful results published in [9, 8] show how to compute smoothed approxi-

mations of spectral measures for infinite dimensional self-adjoint operators.
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Extending the path of research started in [26, 14, 15], this paper will
first consider the differential operators −∇· (k(x)∇u) and −∇· (g(x)∇u) on
the open and bounded Lipschitz domain Ω ⊂ R2, where the scalar functions
g(x) and k(x) are continuous throughout the closure Ω, and g(x) is, in
addition, uniformly positive. The associated operator representations A, B :
H1

0 (Ω)→ H−1(Ω) are given by3

〈Au, v〉 =

∫
Ω
k(x)∇u · ∇v, u, v ∈ H1

0 (Ω), (1)

〈Bu, v〉 =

∫
Ω
g(x)∇u · ∇v, u, v ∈ H1

0 (Ω). (2)

In the first part of this paper, i.e., in sections 2 and 3, we will start with
characterizing the spectrum of the preconditioned operator

B−1A : H1
0 (Ω)→ H1

0 (Ω), (3)

defined as the complement of the resolvent set, i.e.,

sp(B−1A) :=
{
λ ∈ C; λI − B−1A does not have a bounded inverse

}
. (4)

More specifically, we prove that

sp(B−1A) =

[
inf
x∈Ω

k(x)

g(x)
, sup
x∈Ω

k(x)

g(x)

]
.

Consider a sequence of finite dimensional subspaces {Vn} of H1
0 (Ω) de-

fined via the nodal polynomial basis functions4 φ1, . . . , φn with the local
supports

Tj = supp(φj), j = 1, . . . , n. (5)

Throughout this paper we assume that

Ω = ∪nj=1Tj ,
Vn = span {φ1, . . . , φn}.

Typically, T1, . . . , Tn are composed in R2 of triangles, which only share edges
and vertices.

The standard Galerkin finite element discretization of the operators A
and B gives the matrix representations of the discretised operators An and

3Here we consider homogeneous Dirichlet boundary conditions. The results will remain
valid (with an appropriate choice of the associated spaces) also for homogeneous Neumann
boundary conditions; see [15, section 5] and the numerical experiments section below.

4As in [14], we consider conforming Finite Element (FE) methods using Lagrange
elements.
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Bn in terms of the basis φ1, . . . , φn,

[An]ij =

∫
Ω
k(x)∇φj · ∇φi, i, j = 1, . . . , n. (6)

[Bn]ij =

∫
Ω
g(x)∇φj · ∇φi, i, j = 1, . . . , n. (7)

Part one of this paper then also contains an investigation of the approxima-
tion of the whole spectrum of B−1A by the eigenvalues of the preconditioned
matrices B−1

n An as n→∞.
The second part, i.e., section 4, generalizes the results obtained for (1)

and (2). More precisely, the spectral approximation is explored in terms of
an abstract setting where A,B : V → V # are assumed to be bounded and
self-adjoint5 linear operators, with B being also coercive. Here, V # denotes
the dual of V consisting of all linear bounded functionals from the infinite
dimensional Hilbert space V to R. Considering a Galerkin discretization,
using a sequence {Vn} of subspaces Vn ⊂ V satisfying the standard approx-
imation property

lim
n→∞

inf
v∈Vn

‖w − v‖ = 0 for allw ∈ V, (8)

we prove that the entire spectrum of B−1A : V → V is approximated, as
n→∞, to an arbitrary accuracy by the eigenvalues of the finite dimensional
discretizations B−1

n An. Since this also includes the case of B−1A being
continuously invertible and V is of infinite dimension, B−1A is not compact.
Such an investigation can then not be based on the uniform (normwise)
convergence, and it relies instead upon the pointwise (strong) convergence
of B−1

n An to B−1A.
The kind of problems we consider can be analyzed using an abstract

operator theoretical framework or techniques closely related to the numerical
PDE literature. We chose to do the latter due to our competence and
because this is more appropriate from a numerical point of view. We also
believe that our approach can make the related spectral theory results more
accessible to a wider audience. For this sake we provide detailed references
to the related operator theory results, and present a concise reproduction
of the proof of Theorem 4.1 on the approximation of the spectrum of self-
adjoint operators based on pointwise (strong) convergence.

The results in this paper deal with operator preconditioning, and most
of the analyses presented in sections 2 and 3 can be applied to the case
when the piecewise continuous function k(x) is locally approximated by
some easier-to-handle function g(x) (with the goal to solve linear equations

5Self-adjoint in the sense that 〈Au, v〉 = 〈Av, u〉, 〈Bu, v〉 = 〈Bv, u〉 for all u, v ∈ V ,
where 〈·, ·〉 : V # × V → R is the duality pairing. Equivalently, τA, τB : V → V are
self-adjoint, where τ is the Riesz map.
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efficiently with the preconditioner B). This can happen, e.g., for a piecewise-
constant preconditioning; see [2, section 5.1.2], [18, 3]. The aim of this paper
is, however, neither to study computationally a particular preconditioning
technique nor to compare different approaches. It is also worth to point
out that most of the literature on operator preconditioning is based on the
spectral (or norm) equivalence of operators. This can lead to independence
of the bound for the condition number of the preconditioned matrices wrt.
the discretization parameter (h-refinement of the mesh) and eventually wrt.
other problem-specific parameters; see, e.g., [12, 2, 25, 17] and the recent
paper [21] that also indicates possible benefits of approximating the whole
spectrum of the preconditioned operators. Unless the resulting bound is
sufficiently small, this approach can not, however, guarantee computational
efficiency for a particular mesh (and for the particular values of the problem-
specific parameters); see [12, 16, 3].

Following [26, 14, 15], and keeping in mind that the efficiency of pre-
conditioning depends on the whole spectrum of the associated infinite di-
mensional preconditioned operator, our goal is to point out that complete
information about this spectrum, for an important class of problems, is avail-
able almost for free. In addition, we will describe its link to the eigenvalues
of the preconditioned matrices that determine the behavior of methods such
as CG or MINRES.

2 Preconditioning by Laplacian (g(x) = 1).

Considering the case g(x) = 1, i.e., the preconditioner equals the operator
representation of the Laplacian B = L, the paper [15] determines the spec-
trum of the preconditioned operator L−1A in the following way (for brevity
we use a bit stronger assumptions than in [15]):

Theorem 2.1 (cf. [15], Theorem 1.1). Consider an open and bounded Lip-
schitz domain Ω ⊂ R2. Assume that the scalar function k(x) is continuous
throughout the closure Ω. Then the spectrum of the operator L−1A equals
the interval

sp(L−1A) =

[
inf
x∈Ω

k(x), sup
x∈Ω

k(x)

]
. (9)

In other words, for a continuous function k(x), the spectrum of L−1A equals
the range k(Ω).

Eigenvalues of the discretized operator L−1
n An, that is represented by the

matrix L−1
n An, can be approximated using the following theorem from [14].

(Here we again use assumptions conforming to the setting in the current
paper.)
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Theorem 2.2 (cf. [14], Theorem 3.1). Let 0 < λ1 ≤ λ2 ≤ . . . ≤ λn be
the eigenvalues of L−1

n An, where An and Ln are defined in (6) and (7)6,
respectively. Let k(x) be continuous throughout the closure Ω. Then there
exists a (possibly non-unique) permutation π such that the eigenvalues λπ(j)

of the matrix L−1
n An satisfy

λπ(j) ∈

[
inf
x∈Tj

k(x), sup
x∈Tj

k(x)

]
, j = 1, . . . , n, (10)

where Tj is defined in (5).

Consequently, there is a one-to-one mapping (possibly non-unique) between
the eigenvalues of L−1

n An and the ranges of k(x) over the supports of the
individual basis functions. With an appropriate grid refinement of the dis-
cretization, the size of the intervals containing the individual eigenvalues of
L−1
n An converge linearly to zero.7

The paper [15] formulates a dual open question about the distribution
of the eigenvalues of the discretized operators within the interval (9). As-
suming in addition that k(x) ∈ C2(Ω), we will now show that theorems 2.1
and 2.2 yield that any point in the spectrum of the infinite dimensional op-
erator L−1A is approximated, as the maximal diameter h of the associated
finite elements vanish with n → ∞, to an arbitrary accuracy by the eigen-
values (10) of the matrices L−1

n An.
Consider an arbitrary point µ in the spectrum of the operator L−1A. It

should be noted that µ may not be an eigenvalue, and that our investigation
differs from the eigenvalue problem studied in the numerical PDE literature
which is based on approximations of the eigenvalues within the framework
of infinite dimensional compact solution operators.

Using theorem 2.1, µ is the image under k(x) of some point y ∈ Ω, i.e.,
µ = k(y). We first consider the case y ∈ Ω. The case y ∈ ∂Ω will be
resolved later by a simple limiting argument. Let ε > 0 be an arbitrarily
small positive constant, and let

δ =
ε

2 supx∈Ω ‖∇k(x)‖
,

provided that supx∈Ω ‖∇k(x)‖ > 0. (The case supx∈Ω ‖∇k(x)‖ = 0 is un-
interesting because then A = cL for some constant c.) Consider further a
Galerkin discretization such that the support of at least one of the nodal
basis functions8 that contains the point y is itself contained in the disc with
center y and radius δ. Denote this support Tj and the associated eigenvalue

6With g(x) = 1.
7An interesting application inspired by this result that uses a different approach is

presented in [20]
8Supports of all discretization functions are contained in Ω.
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of the discretized operator given by Theorem 2.2 as λπ(j). Using Corol-
lary 3.2 in [14] (with y = x̂j)

|λπ(j) − k(y)| ≤ sup
x∈Tj
‖k(x)− k(y)‖

≤ δ ‖∇k(y)‖+
1

2
δ2 sup

x∈Tj
‖D2k(x)‖, (11)

where D2k(x) denotes the second order derivative of the function k(x)9. For
ε sufficiently small we thus get, after a simple manipulation,

|λπ(j) − µ| ≤ ε.

If µ = k(y) and y ∈ ∂Ω, the same conclusion can be obtained using the
previous derivation and the continuity of k(x) throughout Ω.

We also note that, using the notation hj = diam(Tj) and h = maxj hj ,

|λπ(j) − µ| = |λπ(j) − k(y)|
≤ sup

x∈Tj
‖k(x)− k(y)‖

≤ hj sup
x∈Tj
‖∇k(x)‖ (12)

≤ h sup
x∈Ω
‖∇k(x)‖. (13)

The second last inequality shows that the individual points in the infi-
nite dimensional spectrum can be approximated with different ”speed” as
hj → 0. Furthermore, the last inequality expresses that this ”speed” is at
least linear, with respect to h, and uniformly bounded from zero because
supx∈Ω ‖∇k(x)‖ <∞.

Summing up, this proves the following theorem:

Theorem 2.3 (Approximation of the spectrum by matrix eigenvalues). Let
k(x) be twice continuously differentiable throughout the closure Ω. Let the
maximal diameter h of the local supports of the basis functions used in the
Galerkin discretization (5)-(7) vanish as n → ∞. Then any point in the
spectrum of the operator L−1A is for n → ∞ approximated to an arbi-
trary accuracy by the eigenvalues of the matrices L−1

n An representing the
discretized preconditioned operators. Moreover, since the size of ‖∇k(y)‖ is
uniformly bounded from above throughout Ω, the speed of convergence to-
wards the individual spectral points, as n → ∞ and h → 0, is uniformly
bounded from zero by (13) throughout the whole spectrum of B−1A. It can,
however, differ for different spectral points; see (12).

9See [6, Section 1.2] for the definition of the second order derivative.
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If one assumes that k(x) is Hölder continuous, then one would get bounds
in the form C1h

α
j and C2h

α for |λπ(j) − µ| instead of (12) and (13), respec-
tively, where 0 < α < 1 denotes the exponent of the Hölder condition. This
only leads to improved bounds when hj > 1 or h > 1. In fact, the numerical
experiments presented in [26, tables 1-3] suggest that the approximation is
of order O(h) (also when k(x) is twice continuously differentiable throughout
Ω ).

3 Generalization to (piecewise) continuous and uni-
formly positive g(x).

The purpose of this section is to generalize the results presented above to
preconditioners in the form (2). We first present the theorems and a corol-
lary, and thereafter their proofs are discussed.

The content of the present section is motivated by the desire to increase
our knowledge about second order differential operators and preconditioning
issues. In particular, it can contribute towards a better understanding of
piecewise constant preconditioners.

Theorem 3.1 (Spectrum of the infinite dimensional preconditioned opera-
tor).
Consider an open and bounded Lipschitz domain Ω ⊂ R2. Assume that
the scalar functions g(x) and k(x) are continuous throughout the closure Ω
and that g(x) is, in addition, uniformly positive. Then the spectrum of the
operator B−1A, defined in (4), equals

sp(B−1A) =

[
inf
x∈Ω

k(x)

g(x)
, sup
x∈Ω

k(x)

g(x)

]
. (14)

Note that (14) shows that the spectrum of B−1A is identical to the
spectrum of the simple multiplication operator defined point wise as

(Mu)(x) =
k(x)

g(x)
u(x).

The next theorem deals with the localization of the eigenvalues of the pre-
conditioned matrix arising from the discretization. It does not consider the
approximation of the spectrum of the infinite dimensional operator B−1A.
Analogously to [14], we can therefore relax the assumptions about the con-
tinuity of the coefficient functions k(x) and g(x).

Theorem 3.2 (Eigenvalues of the preconditioned matrix). Let 0 < λ1 ≤
λ2 ≤ . . . ≤ λn be the eigenvalues of B−1

n An, where An and Bn are defined
in (6) and (7), respectively. Let g(x) and k(x) be bounded and piecewise
continuous functions, and g(x) is, in addition, uniformly positive. Then
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there exists a (possibly non-unique) permutation π such that the eigenvalues
of the matrix B−1

n An satisfy

λπ(j) ∈

[
inf
x∈Tj

k(x)

g(x)
, sup
x∈Tj

k(x)

g(x)

]
, j = 1, . . . , n, (15)

where Tj is defined in (5).

Consequently, if k(x)/g(x) is continuous on Tj , then there exists at least
one point yj ∈ Tj such that λπ(j) = k(yj)/g(yj). Otherwise, we only know
that λπ(j) belongs to the interval (15), which may be large. In order to
prove Theorem 3.2, see below, we approximate k(x) locally with a constant
and thereafter employ a standard result concerning eigenvalue perturbations
of Hermitian matrices. We do not know how to modify this argument to
the infinite dimensional case. In fact, the proof of Theorem 3.1, which we
present below, is indirect and relies on the continuity of k(x) and g(x).

Corollary 3.3 (Pairing the eigenvalues and the nodal values). Using the
notation and the assumptions of Theorem 3.2, consider any point x̂j ∈ Tj.
Then the associated eigenvalue λπ(j) of the matrix B−1

n An satisfies

|λπ(j) − r(x̂j)| ≤ sup
x∈Tj
|r(x)− r(x̂j)|, j = 1, . . . , n, (16)

where

r(x) ≡ k(x)

g(x)
.

If, in addition, k(x) and g(x) ∈ C2(Tj), then

|λπ(j) − r(x̂j)| ≤ sup
x∈Tj
|r(x)− r(x̂j)|

≤ hj‖∇r(x̂j)‖+ 1
2hj

2 sup
x∈Tj
‖D2r(x)‖, j = 1, . . . , n, (17)

where hj = diam(Tj) and D2r(x) denotes the second order derivative of r(x).
In particular, (16) and (17) hold for any discretization mesh node x̂j ∈ Tj.

Invoking theorems 3.1 and 3.2 we find, analogously to (12) and (13), that

|λπ(j) − µ| ≤ hj sup
x∈Tj
‖∇r(x)‖ (18)

≤ h sup
x∈Ω
‖∇r(x)‖, (19)

where h = maxj hj , µ is an arbitrary point in the spectrum of B−1A and
λπ(j) is its approximation which is an eigenvalue of B−1

n An.
Summing up, this proves the following theorem analogous to Theo-

rem 2.3. This result is also of interest in relation to the fact that in other
problems it was proved that the uniformly converging numerical approxi-
mation to the whole spectrum is not possible; see [10].
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Theorem 3.4 (Approximation of the spectrum by matrix eigenvalues).
Consider the notation and assumptions of Theorem 3.2 and Corollary 3.3.
In addition, let r(x) be twice continuously differentiable throughout the clo-
sure Ω. Let the maximal diameter h of the local supports of the basis func-
tions used in the Galerkin discretization (5)-(7) vanish as n → ∞. Then
any point in the spectrum of the operator B−1A is for n → ∞ approxi-
mated to an arbitrary accuracy by the eigenvalues of the matrices B−1

n An

representing the discretized preconditioned operators. Moreover, since the
size of ‖∇r(x)‖ is uniformly bounded from above throughout Ω, the speed of
convergence towards the individual spectral points, as n → ∞ and h → 0,
is uniformly bounded from zero by (19) throughout the whole spectrum of
B−1A. It can, however, differ for different spectral points; see (18).

While the proofs of Theorem 3.1 and Theorem 3.2 are presented below,
Corollary 3.3 follows immediately by applying [14, Corollary 3.2] to the ratio
function r(x).

Proof of Theorem 3.1.

Recall the definition (2) of the operator B, and let us introduce the following
notation for the inner product and norm induced by B,

(u, v)B = 〈Bu, v〉, u, v ∈ H1
0 (Ω),

‖u‖2B = (u, u)B, u ∈ H1
0 (Ω).

1. The proof of the fact that

sp(B−1A) ⊂

[
inf
x∈Ω

k(x)

g(x)
, sup
x∈Ω

k(x)

g(x)

]

is analogous to the proof in [15, Section 3], employing the inner prod-
uct induced by B instead of that induced by the Laplacian L. More
precisely, using the self-adjointness of the operator B−1A with respect
to the inner product (·, ·)B, the spectrum of B−1A is real and it is
contained in the interval

sp(B−1A) ⊂

[
inf

u∈H1
0 (Ω)

(B−1Au, u)B
(u, u)B

, sup
u∈H1

0 (Ω)

(B−1Au, u)B
(u, u)B

]

=

[
inf

u∈H1
0 (Ω)

〈Au, u〉
〈Bu, u〉

, sup
u∈H1

0 (Ω)

〈Au, u〉
〈Bu, u〉

]
. (20)

Moreover, the endpoints of this interval are contained in the spectrum.
It remains to bound

〈Au, u〉
〈Bu, u〉

(21)
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in terms of the values of the scalar functions g(x) and k(x). Let ‖ · ‖
denote the standard Euclidean norm. Then,

sup
u∈H1

0 (Ω)

〈Au, u〉
〈Bu, u〉

= sup
u∈H1

0 (Ω)

∫
Ω k(x)‖∇u‖2∫
Ω g(x)‖∇u‖2

= sup
u∈H1

0 (Ω)

∫
Ω
k(x)
g(x)g(x)‖∇u‖2∫
Ω g(x)‖∇u‖2

≤ sup
x∈Ω

k(x)

g(x)
, (22)

where we have used the assumption that k(x) and g(x) are continuous
on Ω and that g(x) is uniformly positive. Similarly,

inf
u∈H1

0 (Ω)

〈Au, u〉
〈Lu, u〉

≥ inf
x∈Ω

k(x)

g(x)
. (23)

2. The proof of the converse inclusion[
inf
x∈Ω

k(x)

g(x)
, sup
x∈Ω

k(x)

g(x)

]
⊂ sp(B−1A)

is analogous to the proof of [26, Theorem 3.1].

• For an arbitrary x0 ∈ Ω, consider λ0 = k(x0)/g(x0).

• Let {vr}r∈R+ be a set of functions satisfying10

supp(vr) ⊂ x0 + Ur, (24)

‖vr‖B = 1, (25)

where Ur = {z ∈ R2| ‖z‖ ≤ r}.
• Next, let

ur = (λ0I − B−1A)vr, (26)

and observe that

Bur = (λ0B −A)vr.

Consequently (see (2)),

‖ur‖2B = 〈(λ0B −A)vr, ur〉

=

∫
x0+Ur

(g(x)λ0 − k(x))∇vr · ∇ur

≤
(∫

x0+Ur

(g(x)λ0 − k(x))2 |∇vr|2
)1/2(∫

x0+Ur

|∇ur|2
)1/2

≤ sup
x∈x0+Ur

∣∣∣∣g(x)
k(x0)

g(x0)
− k(x)

∣∣∣∣ g−1
min ‖vr‖B‖ur‖B,

10Note that no limit of vr, as r → 0, is needed in this proof. Only the existence of a set
of functions satisfying (24) and (25) is required.
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where
gmin = min

x∈x0+Ur

g(x).

Employing (25),

‖ur‖B ≤ sup
x∈x0+Ur

∣∣∣∣g(x)
k(x0)

g(x0)
− k(x)

∣∣∣∣ g−1
min,

and from the continuity of g(x) and k(x) we conclude that

lim
r→0
‖ur‖B = 0. (27)

• Assume that λ0 /∈ sp(B−1A). Then λ0I − B−1A has a bounded
inverse, and (26) and (27) imply that

‖vr‖B ≤ ‖(λ0I − B−1A)−1‖B ‖ur‖B −→ 0

as r → 0, which contradicts (25). We conclude that

λ0 =
k(x0)

g(x0)
∈ sp(B−1A).

• Since x0 ∈ Ω was arbitrary in this argument, g and k are contin-
uous and g is uniformly positive on Ω, it follows that(

inf
x∈Ω

k(x)

g(x)
, sup
x∈Ω

k(x)

g(x)

)
⊂ sp(B−1A). (28)

The endpoints of the interval (28) belong to sp(B−1A) because
the spectrum is a closed set.

Proof Theorem 3.2.

The proof of Theorem 3.2 is analogous to the proof of Theorem 3.1 in [14].
As was explained in detail in [13, Section 3.2], due to the use of the Hall’s
theorem for bipartite graphs (see, e.g., [4, Theorem 5.2]), it is sufficient
to prove the statement formulated in the following lemma (cf. [14, Lemma
3.3]).

Lemma 3.5. Assume that k(x) and g(x) are bounded and piecewise continu-
ous functions, and that g(x) is uniformly positive. Let the matrix B−1

n An be
given by (6) and (7). Let, moreover, J ⊂ {1, . . . , n} and let TJ :=

⋃
j∈J Tj

be the union of the supports of the basis functions φj, j ∈ J . Then there
are at least |J | eigenvalues of the matrix B−1

n An located in the interval[
inf
x∈TJ

k(x)

g(x)
, sup
x∈TJ

k(x)

g(x)

]
. (29)
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Proof. Following the proof of Lemma 3.3 in [14], consider, for any set of
indices J ⊂ {1, . . . , n}, the (local) perturbation k̃J (x) of the coefficient
function k(x),

k̃J (x) =

{
K · g(x) for x ∈ TJ ,
k(x) elsewhere,

(30)

where K is a an appropriate scalar to be determined below. Analogously
to (6), the matrix ÃJ ,n obtained by the discretization of the associated
perturbed operator ÃJ is given by

[ÃJ ,n]lj =
〈
ÃJ ,nφj , φl

〉
=

∫
Ω
k̃J (x)∇φj · ∇φl .

The simple observation (here ej is the j-th vector of the standard Euclidean
basis)

ÃJ ,nej = KBnej , j ∈ J ,
shows that K is an eigenvalue of the matrix B−1

n ÃJ ,n with multiplicity of
at least |J |.

By similarity transformations, the spectrum of B−1
n An equals the spec-

trum of B
−1/2
n AnB

−1/2
n , and the spectrum of B−1

n ÃJ ,n is equal to the spec-

trum of B
−1/2
n ÃJ ,nB

−1/2
n . Using the standard perturbation result for sym-

metric matrices (see, e.g., [28, Corollary 4.9, p. 203]), there are at least |J |
eigenvalues of B−1

n An in the interval

[K + θmin,K + θmax] ⊂ [K −Θ,K + Θ], (31)

where Θ = max{|θmin|, |θmax|} and θmin and θmax denote the smallest
and largest eigenvalues, respectively, of the perturbation matrix B−1

n (An −
ÃJ ,n).

The Rayleigh quotient for an eigenvalue-eigenvector pair (θ,q) of the
perturbation matrix, with the associated eigenfunction q =

∑N
j=1 νjφj , q

T =
[ν1, . . . , νN ], satisfies

θ =
qT (An − ÃJ ,n)q

qTBnq
=
〈(A− ÃJ )q, q〉
〈Bq, q〉

=

∫
Ω(k(x)− k̃J (x))∇q · ∇q dx∫

Ω g(x)‖∇q‖2 dx
=

∫
TJ (k(x)−Kg(x))‖∇q‖2 dx∫

Ω g(x)‖∇q‖2 dx

=

∫
TJ

(
k(x)
g(x) −K

)
g(x)‖∇q‖2 dx∫

Ω g(x)‖∇q‖2 dx
,

where we used the fact that k̃J (x) = k(x) for x ∈ Ω \ TJ ; see (30). Using
the uniform positivity of g(x),

|θ| ≤ sup
x∈TJ

∣∣∣∣k(x)

g(x)
−K

∣∣∣∣ . (32)
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Substituting (32) into (31) yields the existence of at least |J | eigenvalues of
B−1
n An in the interval[

K − sup
x∈TJ

∣∣∣∣k(x)

g(x)
−K

∣∣∣∣ , K + sup
x∈TJ

∣∣∣∣k(x)

g(x)
−K

∣∣∣∣
]
. (33)

Setting K = 1
2

(
infx∈TJ

k(x)
g(x) + supx∈TJ

k(x)
g(x)

)
finishes the proof.

4 Abstract setting.

This section investigates numerical approximations of the spectrum of pre-
conditioned linear operators within an abstract Hilbert space setting; see,
e.g., [24, 17]. Let V be an infinite dimensional real Hilbert space with the
inner product

(·, ·) : V × V → R. (34)

Throughout this text, V # denotes the dual of V consisting of all linear
bounded functionals from V to R, with the associated duality pairing

〈·, ·〉 : V # × V → R,

and the Riesz map

〈·, ·〉 =: (τ ·, ·), τ : V # → V.

Consider two bounded linear operators A,B : V → V # that are self-
adjoint with respect to the duality pairing, and let the operator B be also
coercive. We will investigate whether all the points in the spectrum of the
preconditioned operator B−1A : V → V are approximated to an arbitrary
accuracy by the eigenvalues of the finite dimensional operators in a sequence
{B−1

n An} determined via the Galerkin discretization.
For the problems considered in sections 2 and 3, we obtained concrete

expressions for the approximations of the spectrum of B−1A in terms of
the coefficient functions g(x) and k(x). Such detailed information is, of
course, not obtainable for the present abstract setting. We must be con-
tent with analyzing whether, or in what sense, the set of eigenvalues of the
discretized mapping converges toward the spectrum of the corresponding
infinite dimensional operator. Such knowledge is crucial for understanding
the convergence behavior of Krylov subspace methods applied to discretized
self-adjoint problems. It has not been, in our opinion, addressed in the
literature. From the point of view of the spectral theory of self-adjoint op-
erators, the questions can be formulated within the framework of the lower
and upper spectral semicontinuity; see, e.g., the detailed references to [19]
and [5] given below.
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Since B−1A is self-adjoint with respect to the inner product

(·, ·)B := 〈B ·, ·〉 : V × V → R, (35)

it is convenient to use this inner product instead of (34) whenever appropri-
ate11. The associated norm ‖ · ‖B is (topologically) equivalent to the norm
‖ · ‖ defined by the inner product (34), and the Riesz map τB representing
the operator preconditioning is determined by

〈·, ·〉 =: (τB ·, ·)B = 〈B τB ·, ·〉, i.e., τB = B−1.

This setting covers also the case of the investigated preconditioned op-
erator B−1A being continuously invertible on the Hilbert space V of infinite
dimension. Therefore its finite dimensional approximations can not con-
verge to it in norm (uniformly). We will instead use Theorem 4.1 (below)
that assumes the pointwise (strong) convergence. Its statement reformu-
lates a theorem presented in [19, chapter VIII, § 1.2, Theorem 1.14, p. 431],
which is reproduced also in [5, section 5.4, Theorem 5.12, pp. 239-240].
The second monograph also provides several references to related results
of J. Descloux and collaborators published earlier; see, in particular, the
seminal paper [11]. In terms of the spectral representation of self-adjoint
operators, a bit stronger statements were proved in the context of the prob-
lem of moments in [30, section III.3, Theorem IX, p. 61] and, more generally,
in [19, chapter VIII, § 1.2, Theorem 1.15, p. 432]. Concerning the spectral
pollution when computing Galerkin approximations; see, e.g., [27]. The for-
mulations in [19] and [5] require a careful study of parts of the books. We
will therefore, for the sake of convenience, include a proof of the following
theorem in appendix A together with a brief review of the related concepts
of convergence of operators.

Theorem 4.1 (Approximation of the spectrum of self-adjoint operators).
Let Z be a linear self-adjoint operator on a Hilbert space V and let {Zn} be
a sequence of linear self-adjoint operators on V converging to Z pointwise
(strongly). Then, for any point λ ∈ sp(Z) in the spectrum of Z, and for
any of its neighbourhoods, the intersection of the spectrum sp(Zj) with this
neighbourhood is, for j sufficiently large, nonempty.

Using this theorem and the Hilbert space V equipped with the inner
product (35), it remains, within our setting, to show that the self-adjoint
operators Zn, which arise from B−1

n An by extending it to the whole space
V , converge pointwise to the original self-adjoint operator12

Z := B−1A.
11Since B−1A = (τB)−1(τA), one can as an alternative investigate approximations of

the spectrum of the symmetrized operator (τB)−1/2τA(τB)−1/2 that is self-adjoint with
respect to the inner product (34).

12Recall the assumptions on A and B, which guarantee that B is continuously invertible
and that B−1A is self-adjoint with respect to the inner product (35).
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This can be done using standard tools. The discretization will be based
on a sequence of subspaces {Vn}, Vn ⊂ V, satisfying the approximation
property (8)13

lim
n→∞

inf
v∈Vn

‖w − v‖ = 0 for all w ∈ V, (36)

see, e.g., [1, relation (8)]. Note that (36) typically yields that Galerkin dis-
cretizations of boundary value problems are convergent; see also [24, chap-
ter 9, relation (9.8)]. For a concrete problem one could, for example, use
Lagrange elements of appropriate order to construct the subspaces {Vn}
such that (36) holds.

Consider a basis Φn = (φ
(n)
1 , . . . , φ

(n)
n ) of the n-dimensional subspace

Vn ⊂ V . Then the Galerkin discretizations An and Bn of the operators A
and B are determined by (see [17, section 4.1] and [24, chapter 6]),

〈Anw, v〉 := 〈Aw, v〉 and 〈Bnw, v〉 := 〈Bw, v〉, for all w, v ∈ Vn. (37)

Their matrix representations are given by

An =
(
〈Aφ(n)

j , φ
(n)
i 〉
)
i,j=1,...,n

, (38)

and
Bn =

(
〈Bφ(n)

j , φ
(n)
i 〉
)
i,j=1,...,n

. (39)

The spectrum of the discretized operator B−1
n An : Vn → Vn is given by

the eigenvalues of its matrix representation B−1
n An. The operator B−1

n An is
self-adjoint with respect to the inner product (35), and the matrix B−1

n An is
self-adjoint with respect to the algebraic inner product (x,y)Bn := y∗Bnx.

Using the orthogonal projection

Πn
B : V → Vn,

where the orthogonality is determined by the inner product (35), B−1
n An is

extended to the whole space V ,

Zn := B−1
n An Πn

B : V → Vn ⊂ V. (40)

For all w, v ∈ Vn we obtain

(Znw, v)B = (B−1
n AnΠn

Bw, v)B = (B−1
n Anw, v)B

= 〈BB−1
n Anw, v〉

= 〈BnB−1
n Anw, v〉

= 〈Anw, v〉
= 〈Aw, v〉
= (B−1Aw, v)B

= (Zw, v)B,

13Since the norms ‖ · ‖B and ‖ · ‖ are equivalent, it does not matter which of these we
use in (36).
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which implies that
(Zw −Znw, v)B = 0.

Therefore
Zn = Πn

BZΠn
B

and it represents the Galerkin discretization of the operator Z trivially ex-
tended to the whole space V , where the Galerkin orthogonality is defined
by the inner product (35).

The spectrum of Zn consists of the spectrum of B−1
n An and the point

{0} that plays no role in the further considerations.
We need to show that Zn is self-adjoint with respect to the inner prod-

uct (35). Using, for any u,w ∈ V , the associated orthogonal decompositions
u = Πn

Bu+ u⊥ and w = Πn
Bw + w⊥, we can write

〈BZnu,w〉 = 〈BB−1
n An Πn

Bu,w〉 = 〈BB−1
n An Πn

Bu,Π
n
Bw〉+ 〈BB−1

n An Πn
Bu,w

⊥〉
= 〈BnB−1

n An Πn
Bu,Π

n
Bw〉 = 〈An Πn

Bu,Π
n
Bw〉 = 〈An Πn

Bw,Π
n
Bu〉

= 〈BnB−1
n An Πn

Bw,Π
n
Bu〉 = 〈BB−1

n An Πn
Bw,Π

n
Bu〉

= 〈BB−1
n An Πn

Bw,Π
n
Bu〉+ 〈BB−1

n An Πn
Bw, u

⊥〉
= 〈BB−1

n An Πn
Bw, u〉 = 〈BZnw, u〉,

which gives the self-adjointness.
Summarizing, the sequence of subspaces {Vn} determines a sequence of

self-adjoint operators {Zn} defined on the whole space V . The dimension
of the ranges of these operators is finite, but increases as n increases. It
remains to prove that {Zn} converges pointwise to Z.

As pointed out by Miroslav Bačák, the following theorem is valid for
an arbitrary linear bounded operator Z and for its (extended) Galerkin
discretization Zn. Therefore, here A is not assumed to be self-adjoint. This
assumption is, however, needed in the subsequent corollary.

Theorem 4.2 (Pointwise convergence). Let Z = B−1A be a bounded linear
operator on a Hilbert space V , where A,B : V → V # are bounded linear op-
erators and B is, in addition, self-adjoint with respect to the duality pairing
and coercive. Let {Zn} be the sequence of linear operators defined in (40).
Assume that the sequence of subspaces {Vn} satisfies the approximation prop-
erty (36). Then the sequence {Zn} converges pointwise (strongly) to Z, i.e.,
for all w ∈ V

lim
n→∞

‖Zw −Znw‖ = 0.

Proof. For an arbitrary w ∈ V ,

‖Zw −Znw‖ = ‖Zw −Πn
BZΠn

Bw‖
≤ ‖Zw −Πn

BZw‖+ ‖Πn
BZw −Πn

BZΠn
Bw‖

≤ ‖Zw −Πn
BZw‖+ ‖Z‖‖w −Πn

Bw‖.
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Using the equivalent form of the approximation property (36),

lim
n→∞

‖v −Πn
Bv‖ = 0 for all v ∈ V,

the proof is finished.

Theorems 4.1 and 4.2 immediately give the final corollary.

Corollary 4.3 (Spectral approximation). Consider an infinite dimensional
Hilbert space V , its dual V #, and bounded linear operators A,B : V → V #

that are self-adjoint with respect to the duality pairing, with B being also
coercive. Consider further a sequence of subspaces {Vn} of V satisfying the
approximation property (36).

Let the sequences of matrices {An} and {Bn} be defined by (37) - (39).
Then all points in the spectrum of the preconditioned operator

B−1A : V → V

are approximated to an arbitrary accuracy by the eigenvalues of the pre-
conditioned matrices in the sequence {B−1

n An}. That is, for any point λ ∈
sp(B−1A) and any ε > 0, there exists n∗ such that for all n ≥ n∗ the precon-
ditioned matrix B−1

n An has an eigenvalue λj(n) satisfying |λ− λj(n)| < ε.

5 Numerical experiments

This paper primarily deals with the numerical approximation of the spec-
trum of infinite-dimensional self-adjoint operators by the eigenvalues of the
preconditioned matrices arising from discretizations. The numerical experi-
ments will aim to illustrate our main theoretical result stating that, within
the given class of PDE problems, the whole continuous spectrum is approx-
imated with arbitrary accuracy, although the individual spectral points are
approached with different speed. We are not going to focus on the approxi-
mation of the matrix eigenvalues by easy-to-compute intervals or nodal val-
ues associated with the involved coefficient functions; see Theorem 3.2 and
Corollary 3.3. These issues were numerically illustrated in detail in [14].
Nevertheless, the nodal values will appear in the easy-to-compute approx-
imations of the cumulative spectral density (see [23, Appendix C]) that we
will discuss next.

As mentioned in the introduction with references to the literature, the
behavior of Krylov subspace methods like CG or MINRES is determined
by the distribution function ω(λ), and it can be described via the conver-
gence of the Gauss-quadrature approximations ω(n)(λ) to ω(λ). For a given
preconditioned matrix, ω(λ) is a staircase function with the points of in-
crease at the matrix eigenvalues and the height of the stairs equal to the
squared size of the components of the normalized residual in the associated
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(orthogonal) invariant subspaces; see, e.g., [14, relation (2.8)]. Given only a
matrix without a residual vector, we can consider an auxiliary normalized
residual with all its components in the invariant subspaces of equal size.
Following [23, Appendix C], we denote the resulting staircase function ψ(λ).
This function, called the cumulative spectral density, is of great importance
in physics dealing with the so called density of states; see [23] for a survey of
numerical approximations, as well as for references to literature addressing
applications. With this connection in mind, we use the cumulative spectral
density ψ(λ) for the illustration of our results.

We use the differential operators −∇·(k(x)∇u) and −∇·(g(x)∇u) on the
square domain Ω = (−1, 1)× (−1, 1), and we exploit Matlab’s PDE-Toolbox
to compute scalars λ satisfying

Anv = λBnv, (41)

where An and Bn denote the stiffness matrices defined in (6) and (7), re-
spectively. The discretization uses grids based on standard uniform triangu-
lations with three levels of refinements. This will result in linear algebraic
systems with 54, 163, and 724 degrees of freedom. For the sake of convenient
language, we will use the words ”fine” and ”very fine” for the refinements
even though one could argue that the refined meshes are still rather coarse.
Using further refinements makes it difficult to present informative plots.

Whereas our theoretical study concerns problems with homogeneous
Dirichlet boundary conditions, we employed homogeneous Neumann bound-
ary conditions in the numerical experiments below. This was done for the
sake of completeness. One can show that the appropriately reformulated
results presented in sections 2 and 3 also hold in the case of the homoge-
neous Neumann boundary conditions. While the operators A and B are,
with the right choice of the associated space, continuously invertible (see
[15, section 5]), the matrices representing their discretizations are singular,
with

0 = Anc = λBnc = 0

for any constant vector c and any scalar λ. Therefore we can not use the
inverses and must reformulate the statements concerning the eigenvalues of
the preconditioned matrices in terms of the generalized eigenvalue problem.
Matlab handles this matter, i.e., (41) is solved subject to the constraint that
v must not belong to the intersection of the nullspaces of An and Bn.

We will consider the following two examples:

Example 1

k(x, y) = (1 + 50 exp(−5(x2 + y2)))(2 + sin(x+ y)),

g(x, y) = 1 + 50 exp(−5(x2 + y2)),

r(x, y) = k(x, y)/g(x, y) = 2 + sin(x+ y).
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Example 2

Compared with Example 1, we interchange the formulas/expressions for
g(x, y) and r(x, y), i.e.,

k(x, y) = (1 + 50 exp(−5(x2 + y2)))(2 + sin(x+ y)),

g(x, y) = 2 + sin(x+ y),

r(x, y) = k(x, y)/g(x, y) = 1 + 50 exp(−5(x2 + y2)).

The spectrum of the infinite dimensional preconditioned operator sp(B−1A)
is given for Example 1 by the interval [1, 3] and for Example 2 by the interval
[1 + 50 exp(−10), 51] ≈ [1.0023, 51]; see Theorem 3.1.

The results for Example 1 are presented in Figure 1 and Table 1, and for
Example 2 in Figure 2 and Table 2. The left parts of the figures illustrate
how the the cumulative spectral density ψ(λ) refines with grid refinement. It
clearly covers the whole spectrum. Example 2 shows that different parts of
the spectrum indeed can be approximated with different speed, as suggested
by our theoretical results. The tables illustrate how the intervals in the
spectrum that contain no matrix eigenvalue shrink with grid refinement.
We can observe that the rate of this shrinking is roughly the same for both
the maximal and the average interval, which is again to be expected.

The right parts of these figures illustrate approximations of the pre-
conditioned matrix eigenvalues by the nodal values of the function r(x) =
k(x)/g(x) (both are sorted in the increasing order to respect the link to the
cumulative spectral density). These results are as one could have antici-
pated from Theorem 3.1, Theorem 3.2 and Corollary 3.3; for more detailed
illustrations of the convergence of the nodal values to the eigenvalues we
refer to [14].

Here we emphasize that, for the given class of PDE problems, the cu-
mulative spectral density can be approximated at a negligible cost (in com-
parison to the approaches reviewed in [23]) using the nodal values of the
function r(x). Whether or not this approximation can be competitive in
terms of accuracy and whether it can be useful in physics, studying density
of states, goes behind the scope of this paper, but it seems worth further

Mesh coarse fine very fine

Length of the longest interval 0.1593 0.0524 0.0134
Average length of the intervals 0.0357 0.0121 0.0028

Table 1: Example 1. The length of the longest, as well as the average length,
of the intervals not containing an eigenvalue.
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Figure 1: Example 1. Left: cumulative spectral densities. Right: generalized
eigenvalues (blue circles) and nodal values of r(x, y) (red asterisks). The top,
middle and lower rows show results obtained with the coarse, fine and very
fine meshes, respectively.
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Figure 2: Example 2. Left: cumulative spectral densities. Right: generalized
eigenvalues (blue circles) and nodal values of r(x, y) (red asterisks). The top,
middle and lower rows show results obtained with the coarse, fine and very
fine meshes, respectively.
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Mesh coarse fine very fine

Length of the longest interval 10.3584 3.5443 0.9580
Average length of the intervals 0.8928 0.3030 0.0689

Table 2: Example 2. The length of the longest, as well as the average length,
of the intervals not containing an eigenvalue.

investigations.

6 Conclusions and further work.

We have extended our earlier results [26, 14, 15], addressing Laplacian pre-
conditioning, to preconditioners defined in terms of more general elliptic
differential operators, and proved that the entire spectrum of any operator
in the form B−1A can be approximated with arbitrary accuracy by the eigen-
values of the associated discretized mappings. In the language of the spectral
approximation theory, Corollary 4.3 provides the lower semicontinuity of the
spectrum of the preconditioned operator B−1A. Here A, B : V → V # are
linear, bounded and self-adjoint operators defined on an infinite dimensional
Hilbert space V , and V # denotes the dual space. Moreover, the operator
B is also coercive. The result summarized in Theorem 3.4 shows both the
lower and upper semicontinuity within the given particular finite element
setting. Our analysis differs significantly from the classical investigations of
the point spectrum of second order differential operators, which is typically
done within the framework of compact (solution) operators.

In our opinion, these results yield a new perspective on the importance of
the continuous spectrum of preconditioned second order differential opera-
tors and the computational issues concerning preconditioning and the use of
Krylov subspace methods for self-adjoint problems. There are several unan-
swered questions: For example, are the results presented in section 3 also
valid if the coefficient functions k(x) and g(x) are replaced by symmetric
conductivity tensors K(x) and G(x) (where G(x) is, in addition, uniformly
positive definite), respectively? The way of how to use the presented ideas
to speed-up practical calculations is also a subject of further work.
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A Approximations of the spectrum of self-adjoint
operators.

Using [5, Chapter 3] and [19, Chapter 8], we first recall several results con-
cerning the convergence of linear self-adjoint operators defined on infinite
dimensional Hilbert spaces. By the Hellinger-Toeplitz Theorem (see [7,
Theorem 5.7.2, p. 260]), any linear self-adjoint operator Z : V → V on
a Hilbert space V is closed and, according to the Banach closed-graph the-
orem, bounded (continuous).

Consider a bounded linear operator G : V → V (not necessarily self-
adjoint, therefore we for the moment change the notation) and a sequence
of its bounded linear approximations {Gn},Gn : V → V , that can converge
to G in different ways:

• pointwise (strongly), i.e., Gn
p→ G

iff for all x ∈ V, lim
n→∞

‖Gx− Gnx‖ = 0 ;

• uniformly (in norm), iff limn→∞ ‖G − Gn‖ = 0 ;

• stably, i.e. Gn
s→ G iff

– Gn
p→ G, and

– the inverse operators {G−1
n } are uniformly bounded, i.e., for

some C > 0, ‖G−1
n ‖ ≤ C for all n.

Clearly, uniform convergence implies pointwise convergence, but the con-
verse implication does not hold. Since the class of compact operators is
closed with respect to uniform convergence, the uniform convergence concept
can not be used to investigate the convergence of compact to non-compact
operators, such as to bounded continuously invertible operators defined on
infinite dimensional Hilbert spaces.

The spectral theory for bounded linear operators is based on the concept
of the operator resolvent

R(µ) := (µI − G)−1

and on the resolvent set

ρ(G) := {µ ∈ C; µI − G has a bounded inverse} . (42)

It is interesting to notice that, for any µ ∈ ρ(G), a sequence of shifted
operators {µI − Gn} converge to µI − G stably if, and only if, {Gn} and
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the resolvents {Rn(µ)},Rn(µ) := (µI − Gn)−1, converge to G and R(µ)
pointwise, respectively, i.e.,14

µI − Gn
s→ µI − G iff Gn

p→ G and Rn(µ)
p→ R(µ). (43)

Indeed, using the resolvent identity

Rn(µ)−R(µ) = Rn(µ) (Gn − G)R(µ),

the right implication follows immediately from the definition of stable con-
vergence. Conversely, from the pointwise convergence of Rn(µ) and the
uniform boundedness principle (Banach–Steinhaus theorem) we conclude
that {Rn(µ)} = {(µI −Gn)−1} is uniformly bounded and the result follows.

We will now present the proof of Theorem 4.1; cf. also [19, chapter VIII,
§ 1.2, Theorem 1.14, p. 431] and [5, chapter 5, section 4, Theorem 5.12,
p. 239-240].

Theorem A.1 (Approximation of the spectrum of self-adjoint operators).
Let Z be a linear self-adjoint operator on a Hilbert space V and let {Zn} be
a sequence of linear self-adjoint operators on V converging to Z pointwise
(strongly). Then, for any point λ ∈ sp(Z) in the spectrum of Z, and for
any of its neighbourhoods, the intersection of the spectrum sp(Zj) with this
neighbourhood is, for j sufficiently large, nonempty.

Proof. Consider any point λ ∈ sp(Z) ⊂ R in the spectrum of Z. Then, for
any ε > 0, the point µ := λ + ιε, where ι is the complex unit, belongs to
the resolvent set ρ(Z) (because Z is self-adjoint). For self-adjoint operators,
the norm of the resolvent at any point in the resolvent set is equal to the
inverse of the distance of the given point to the spectrum (see, e.g., [5,
Proposition 2.32]). Therefore, for all n,

‖R(µ)‖ := ‖(µI − Z)−1‖ =
1

dist(µ, sp(Z))
=

1

ε
, (44)

‖Rn(µ)‖ := ‖(µI − Zn)−1‖ =
1

dist(µ, sp(Zn))
≤ 1

ε
. (45)

The inequality in (45) follows from the assumption that {Zn} is a sequence of
self-adjoint operators, i.e., sp(Zn) ⊂ R. Note that inequality (45) provides
the uniform boundedness of {Rn(µ)}, which, together with the pointwise
convergence of {Zn}, yields that

µI − Zn
s→ µI − Z.

Using (43), we thus have the pointwise convergence of {Rn(µ)}, i.e., for
any x ∈ V, ||x‖ = 1,

‖R(µ)x‖ = lim
n→∞

‖Rn(µ)x‖.

14See [5, Lemma 3.16].
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Consider a fixed x ∈ V, ||x‖ = 1, such that

1

2ε
≤ ‖R(µ)x‖ ≤ 1

ε
.

(The existence of such a x ∈ V follows from (44).) Then, from the pointwise
convergence, there must exist n∗ such that for all n ≥ n∗

‖Rn(µ)‖ ≥ ‖Rn(µ)x‖ ≥ 1

3ε
.

Recall that ‖Rn(µ)‖ = [dist(µ, sp(Zn))]−1. Therefore there exists a point
λn ∈ sp(Zn) such that

|λn − µ| ≤ 3ε and, consequently, |λn − λ| ≤ 4ε,

which finishes the proof.
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