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Abstract
Operator preconditioning based on decomposition into subspaces has been developed
in early 90’s in the works of Nepomnyaschikh, Matsokin, Oswald, Griebel, Dah-
men, Kunoth, Rüde, Xu, and others, with inspiration from particular applications,
e.g., to fictitious domains, additive Schwarz methods, multilevel methods etc. Our
paper presents a revisited general additive splitting-based preconditioning scheme
which is not connected to any particular preconditioning method. We primarily
work with infinite-dimensional spaces. Motivated by the work of Faber, Manteuf-
fel, and Parter published in 1990, we derive spectral and norm lower and upper
bounds for the resulting preconditioned operator. The bounds depend on three pairs
of constants which can be estimated independently in practice. We subsequently
describe a nontrivial general relationship between the infinite-dimensional results
and their finite-dimensional analogs valid for the Galerkin discretization. The pre-
sented abstract framework is universal and easily applicable to specific approaches,
which is illustrated on several examples.
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1 Introduction

Numerical solution of boundary value problems formulated via partial differential
equations (PDEs) consists of several tightly interconnected steps. First the math-
ematical model is analyzed, which leads to the appropriate concept of solution
of the infinite-dimensional problem, such as the weak solution using the associ-
ated function spaces. Then the problem is discretized, giving the finite-dimensional
matrix-vector representation, and subsequently the approximate solution of the dis-
cretized problem is computed. Although it is of no particular importance in this text,
we emphasize that the discretized problem is not solved exactly, apart from triv-
ial cases. In solving large discretized problems, an approximate solution is typically
computed iteratively. In order to ensure computational efficiency (in the sense of
computing time or energy consumption), the discretized problem is typically trans-
formed into a problem that is easier to solve via the given iterative process, which
can not be generally identified with minimizing some single-number characteristics
such as the condition number. Such transformation is nevertheless historically called
preconditioning.

In the recent book [41], it is argued that formulation of the infinite-dimensional
problem using function spaces, its discretization, preconditioning, and computation
of an approximate solution using appropriate stopping criteria should be considered
as inseparable parts of a single effort. As argued by many authors, it is useful to
link preconditioning considered in algebraic matrix computations with the infinite-
dimensional operator formulation of the problem and with its discretization using the
concept of operator preconditioning.

1.1 Operator preconditioning

The ideas of operator preconditioning were developed in the 90’s independently by
several authors; see, e.g., Klawonn [35, 36] and Arnold, Falk and Winther [1, 2].
They were immediately used and further developed in many works. Even before that,
a seminal paper by Faber, Manteuffel, and Parter [22] analyzed closely related con-
cepts of norm equivalence and spectral equivalence of operators, with references to
the early papers of D’Yakonov [19, 20] and Gunn [29, 30]. Another line of devel-
opment can be represented by the works of Matsokin and Nepomnyaschikh [43,
46–48], Oswald [50–52] and Dahmen and Kunoth [17], which are closely related to
the multilevel methods and multilevel preconditioning; see the summary and the list
of references in the paper by Axelsson and Karátson [7] and in the introduction to
Chapter 2 of the book [56]. Classical related references are, e.g., [9, 12, 13, 23, 28,
34, 42, 60, 61, 63, 65, 66]. This paper will build upon [41] and, motivated by [22],
[56, Chapter 2], [54, Section 3], and [53, Chapter 4], it will revisit an abstract for-
mulation of operator preconditioning based on the idea of decomposition of Hilbert
space into a finite number of infinite-dimensional subspaces.

We will now outline the main ideas, with detailed descriptions (including refer-
ences to the literature) provided further in the text. Using a real (infinite-dimensional)
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Hilbert space V and its dual V # consisting of all linear bounded functionals from V

to R, we will consider the functional equation in V #

Au = b, where A : V → V #, b ∈ V #, u ∈ V . (1)

We will assume that A is linear, bounded, coercive, and self-adjoint

〈Au, v〉 = 〈Av, u〉 for all u, v ∈ V .

Some statements given throughout the text allow for a more general setting. By the
Lax-Milgram lemma the solution u ∈ V of (1) always exists and it continuously
depends on the right-hand side b ∈ V #. The given setting represents, e.g., the weak
formulation of linear second-order elliptic PDEs that generate self-adjoint operators;
see, e.g., [41, Chapters 1–3]. It is worth noting that although the original differential
operator is in the classical formulation typically unbounded, the representation (1)
using the appropriate Sobolev spaces uses bounded operators A : V → V # and
bounded functionals b ∈ V #.

Operator preconditioning can, in its general form, be formulated using the Riesz
representation theorem. Considering any inner product

(·, ·)∗ : V × V → R

on V (that is, in general, different from the inner product (·, ·)V related to the defini-
tion of the Hilbert space V ) and the associated Riesz map τ∗ : V # → V , it is possible
to write the problem (1) as an equation in the solution space V :

τ∗Au = τ∗b, τ∗A : V → V, τ∗b ∈ V, u ∈ V . (2)

Since τ∗ is isometry, the operator τ∗A on V is bounded and coercive. It is self-adjoint
with respect to the inner product (·, ·)∗.

Equivalently, operator preconditioning can be formulated using a linear, bounded,
coercive, and self-adjoint operator B : V → V # that defines the B-inner product

(·, ·)B : V × V → R, (w, v)B := 〈Bw, v〉 for all w, v ∈ V, (3)

where 〈·, ·〉 : V # × V → R is the duality pairing associated with V and V #.
Using the Riesz map τB determined by (·, ·)B and the easily derived equality
τB = B−1 : V # → V , the problem (2) is written as

B−1Au = B−1b, B−1A : V → V, B−1b ∈ V, u ∈ V . (4)

The question to be addressed next is which relationship between the operators A
and B can ensure that the transformed (preconditioned) problem (4) can be easily
solved by a particular iterative method. The description in the following subsection
addresses limitations of using single-number characteristics such as the condition
number in evaluation quality of preconditioning. Discussion of such limitations is
typically missing in literature on operator preconditioning and on iterative methods
using space decompositions.

1.2 Norm and spectral equivalence, condition, and spectral number

This question is, in general, very difficult to handle. For stationary iterative meth-
ods (and, more generally, for methods based on contraction) the question can be
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addressed by an appropriate single-number characteristic, such as the condition num-
ber. This is also where the term preconditioning founds its origin. Most of the
numerical PDEs-oriented papers limits the description of iterative methods to lin-
ear iterations, where the simple contraction-based argument is sufficient. For highly
nonlinear iterations such as Krylov subspace methods, any single-number character-
istic is insufficient for describing convergence behavior and its use can be highly
misleading; see, e.g., [41, Chapter 11], [40, Chapter 5], and [27]. In relation to the
abstract Schwarz theory, the point is made very clear in [53, Section 4.1, pp. 83-84].
Nevertheless, single-number characteristics can, even in such cases, be useful as first
indicators and they are sufficient whenever the guaranteed number of the resulting
iterations is very small.

We are well-aware of the limitations of single-number characteristic descriptions,
as can be documented by the front cover of the monograph [40] where the pre-
sented figure symbolizes several serious misconceptions related to condition number
bounds for the conjugate gradient method widespread in literature. For the reasons
mentioned above, we nevertheless use single-number characteristics throughout this
paper. But we strongly point out that this cannot be the end of the story; see, e.g.,
the recent paper [26]. We will use the concepts of norm equivalence and spec-
tral equivalence of operators as presented in [22], and the related condition number
and spectral number characteristics of the preconditioned operators. The presented
abstract framework goes in this sense beyond, e.g., [57, Section 4] and other works
where the investigation boils down to the study of spectral equivalence.

Consider the operators A, B given above. The operators A and B are called V #-
norm equivalent on V if there exist constants 0 < α ≤ β < ∞ such that

α ≤ ‖Aw‖V #

‖Bw‖V #
≤ β, for all w ∈ V, w 
= 0, (5)

and they are called spectrally equivalent on V if there exist constants
0 < γ ≤ δ < ∞ such that

γ ≤ 〈Aw, w〉
〈Bw, w〉 ≤ δ, for all w ∈ V, w 
= 0, (6)

see [22, Section 1.1, relation (1.16) and Section 1.2, relation (1.20)]. If α is close
to β respectively γ is close to δ, then (5) respectively (6) represent a strong (geo-
metric) relationship between the operators A and B, and we can expect that this will
positively affect properties of the preconditioned operator B−1A. Such properties
are in literature on operator preconditioning typically characterized by the condition
number

κ(B−1A) := ‖B−1A‖L(V ,V )‖A−1B‖L(V ,V ). (7)

Motivated by algebraic preconditioning of linear algebraic systems with finite
matrices (see also [22, Section 1.1, in particular relations (1.12) and (1.13)]), we will
introduce the spectral number of the pair A, B. With the Riesz map τ : V # → V

defined by the inner product (·, ·)V , τA and τB are linear, bounded, and coercive
operators on V that are self-adjoint with respect to (·, ·)V . Taking the (uniquely
determined) square root (see, e.g., [24, Theorem 6.6.4])

(τB)1/2 : V → V, (8)
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the preconditioned system (4) can be rewritten as

(τB)−1/2 τA (τB)−1/2w = (τB)−1/2 τb, (9)

where w = (τB)1/2u. Considering the preconditioned operator

Q := (τB)−1/2τA(τB)−1/2 : V → V,

the spectral number κ̂(A,B) of the pair A, B, is given by

κ̂(A,B) := supz∈V, ‖z‖V =1
(
(τB)−1/2τA(τB)−1/2z, z

)
V

infv∈V, ‖v‖V =1
(
(τB)−1/2τA(τB)−1/2v, v

)
V

= supz∈V, ‖z‖V =1 (Qz, z)V

infv∈V, ‖v‖V =1 (Qv, v)V
, (10)

= sup{λ ∈ σ(B−1A)}
inf{λ ∈ σ(B−1A)} . (11)

Clearly, κ̂(A,B) is determined by the shortest interval that contains the spectrum
σ(Q) of Q which is identical to the spectrum σ(B−1A) of B−1A. We will also prove
that (10) can be rewritten in terms of norms as

κ̂(A,B) = supz∈V, ‖z‖V =1 ‖Qz‖V

infv∈V, ‖v‖V =1 ‖Qv‖V

, (12)

which does not seem entirely obvious and the proof does not seem to be present in
literature (see Theorem 1 in Section 2 and its proof given in Appendix, in particular
relations (127) and (129)).

We point out that the condition number κ(B−1A) should not be confused with
the spectral number κ̂(A,B). Since B−1A is not generally self-adjoint, there is
no simple relationship between these two characteristics. Even more important, it
should be emphasized that the concepts of norm and spectral equivalence of infinite-
dimensional operators are not equivalent. For finite matrices norm equivalence deals
with the singular values while the spectral equivalence with the eigenvalues (or, more
generally, with the field of values). For linear compact infinite-dimensional operators
that are positive and self-adjoint the norm equivalence implies spectral equivalence
but not vice versa; see [22]. For more general setting, the relationship between these
two concepts seems unresolved; see [32]. Even within the setting with linear,
bounded, coercive, and self-adjoint operators, it is useful to investigate both con-
cepts1. This allows generalizations that can be used in a wider context.

In this paper, we will not investigate in full the relationship between (5), (6), (7),
and (10). There seem to be much to be done in that direction and therefore such
investigation is beyond the scope of this text; see [32]. We will use (5) and (6) for
stating some basic results about (7) and (10).

1Spectral equivalence (6) is in literature called also norm equivalence, which refers to the fact that for
A, B as above it represents estimating the ratio of the energy norms defined by the operators A and B.
Without making a distinction from the concept of norm equivalence (5), this ambiguity of notation can
lead to further misunderstandings.
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1.3 Decomposition into subspaces

The outlined setting will be used for the description of preconditioners based on
decomposing the Hilbert spaces V and V # into a finite number of infinite-dimensional
subspaces. This enables construction of preconditioners for each individual sub-
spaces with using them subsequently for assembling the global preconditioner.

The bounds derived using the norm and spectral equivalence on the infinite-
dimensional operator level are independent of any discretization (see, e.g., [31]) and,
as shown below, they carry over (in the norm equivalence case with an additional
technical term depending on the discretization basis) to Galerkin discretizations using
finite-dimensional subspaces. This is important because the bounds on convergence
of iterative methods for solving algebraic problems that can be subsequently devel-
oped are automatically independent of discretization (apart from the technicality
mentioned above). In most of the published literature, the investigation proceeds
from particular discretizations and preconditioning, and the bounds have to be proved
for each approach separately. In other words, infinite-dimensional results are essen-
tially identified with their finite-dimensional applications, and the information on
whether the spaces are finite or infinite-dimensional is not used. Infinite-dimensional
results are in such approaches applied directly with the constants associated with
the finite dimensional problems. Therefore, it is difficult to see to which extent
can be the possible ill-conditioning negatively influenced by the inappropriate
discretization.

The presented setting is minimalistic in assumptions yet it covers many traditional
approaches. It can be used beyond the finite element method (FEM) and structures.
While using infinite-dimensional Hilbert spaces is essential, we do not consider
decompositions to infinite many subspaces. The reason is twofold. First, no practi-
cal method used in computations can benefit from such setting. Second, even from
the purely mathematical point of view we consider infinite decompositions artificial
with no substantial mathematical contribution. The difficulties of infinite decompo-
sitions in comparison with finite decompositions are in literature simply resolved
by strong assumptions on unconditional convergence of the associated infinite
series.

In the presented general infinite-dimensional setting we avoid features such as
fictitious spaces, additional mappings, and projections, which helps in simplicity
of the whole exposition and clarity of the statements. The fictitious space lemma
from [43], [48, Lemma 2.3], [46, Lemma 2.2] that is used, e.g., as a base of derivation
in [53, Chapter 4], within our notation states the equivalence of (6) with (see [22, 32])

γ ≤ 〈f,B−1f 〉
〈f,A−1f 〉 ≤ δ, for all f ∈ V #, f 
= 0, (13)

i.e., the operators A and B given above are spectrally equivalent with the constants
γ ≤ δ if and only if the inverses B−1 and A−1 are spectrally equivalent with the same
constants. As mentioned above, the simplicity of the chosen framework and notation
will help in application to various approaches.
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1.4 Structure of the paper

Section 2 presents the description of the basic setting and notation. Section 3 recalls
the concept of operator preconditioning and gives the bounds on the condition num-
ber and the spectral number of the infinite-dimensional preconditioned operator. It
is pointed out in detail that the condition number of the preconditioned problem
should in general be distinguished from its spectral number. Section 4 gives newly
formulated and proved consequences for the matrix formulations of the discretized
problem when the general Galerkin discretization is used. Abstract splitting-based
preconditioning is described and investigated in Section 5. In addition, this section
presents error bounds based on the residual of the preconditioned problem and on the
locally preconditioned residuals. The link to the well-known context of stable split-
ting is briefly outlined in Section 6. In Section 7, the presented framework is applied
to several examples. The paper closes with conclusions. The appendix presents the
proof of the characterization of the coercivity constant of the operator via the norm
of its inverse, which seems to be absent in literature. We have chosen the proof
that illustrates the difference between the finite-dimensional and infinite-dimensional
setting.

Within the paper, we consider linear operators on real Hilbert spaces (i.e., real
complete inner product spaces). Whenever the results on the infinite-dimensional
operators A and B presented in this paper are linked with the results on their finite-
dimensional analogs (matrices) that arise from discretization, it is understood that
within our setting A and B are bounded operators on infinite-dimensional Hilbert
spaces that have bounded inverses. Therefore, by standard functional analysis results
(see, e.g. [41, p. 63], [3, p. 282], [37], [15, p. 174], [18, p. 486], and [4, p. 98]), A
and B can not be considered as limits of their discretized counterparts in any norm (a
sequence of compact operators can converge in norm only to a compact operator).

For algebraic vectors, we will always denote by ‖v‖ the Euclidean norm of v. The
associated induced (operator) matrix norm equal to the largest singular value of the
matrix A is denoted as ‖A‖.

2 Basic setting

The following notation is mostly adopted from [41]. Let V be a real Hilbert
space with the inner product (·, ·)V : V × V → R and the associated norm
‖ · ‖V := √

(·, ·)V . Let further V # denote the dual space of bounded (continuous)
linear functionals on V with the duality pairing

〈·, ·〉 : V # × V → R (14)

and the dual norm

‖f ‖V # = sup
v∈V, ‖v‖V =1

〈f, v〉.
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The Riesz representation theorem associated with the inner product (·, ·)V pro-
vides an isometric isomorphism between V and V # given through the Riesz map
τ : V # → V . For each f ∈ V # there exists a unique τf ∈ V such that

(τf, v)V := 〈f, v〉 for all v ∈ V, (15)

with
‖τf ‖V = ‖f ‖V # . (16)

Throughout this text we will consider the equation (1) or, equivalently, the problem

to find u ∈ V : 〈Au, v〉 = 〈b, v〉 for all v ∈ V . (17)

In terms of an associated symmetric bounded (continuous) bilinear form

a(·, ·) : V × V → R, a(u, v) := 〈Au, v〉 for all u, v ∈ V (18)

the problem (17) is expressed as

to find u ∈ V : a(u, v) = 〈b, v〉 for all v ∈ V . (19)

As mentioned above, A is assumed to be linear, bounded, coercive and self-adjoint,
with the associated boundedness and coercivity constants defined as

CA := sup
v∈V, ‖v‖V =1

‖Av‖V # < ∞, (20)

and
cA := inf

v∈V, ‖v‖V =1
〈Av, v〉 > 0; (21)

note that under the given assumptions A represents an isomorfism between V and
V # (by the Lax-Milgram theorem) and therefore A−1 exists and represents an
isomorfism between V # and V . Obviously

a(v, v) ≥ cA‖v‖2
V for all v ∈ V,

|a(w, v)| ≤ CA‖w‖V ‖v‖V for all w, v ∈ V .

We will further use well-known results from the spectral theory of self-adjoint
operators in Hilbert spaces; see, e.g. [24, Section 6.5]. Because they are formulated
(using our notation) for the operators from V to V , we will use them for the operator
τA. From the self-adjointness of A with respect to the dual map 〈·, ·〉, we deduce the
self-adjointness of τA with respect to the inner product (·, ·)V , and from the fact that
τ is an isometric isomorfism from V # to V , we have

sup
u∈V, ‖u‖V =1

‖τAu‖V = ‖τA‖L(V ,V ) = ‖A‖L(V ,V #) = sup
u∈V, ‖u‖V =1

‖Au‖V # . (22)

The coercivity of A allows us to restrict further considerations regarding the spectrum
of τA to the positive part of the real line. The spectrum of τA lies in the closed
interval [mA, MA],

0 < mA := inf
u∈V, ‖u‖V =1

〈Au, u〉 ≤ 〈Au, u〉 = (τAu, u)V

≤ MA := sup
u∈V, ‖u‖V =1

〈Au, u〉. (23)
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Moreover, the lower bound mA and the upper bound MA belong to the spectrum of
the operator τA but they need not be eigenvalues of τA; see [24, Theorem 6.5.9].

It is worth noticing that while the coercivity constant cA in (21) is expressed as the
lower extremal point of the spectral interval determined by (23), i.e. cA = mA, the
boundedness constant CA is expressed in terms of the norms CA = ‖τA‖L(V ,V ) =
‖A‖L(V ,V #). We will therefore complete the description by relating CA to the upper
extremal point MA in (23) and by relating cA to the norm of the inverse opera-
tor ‖A−1‖L(V #,V ). This relationship is used in literature but we have not been able
to locate its proof (it is not difficult but it does not seem to be a one-line observa-
tion). The statement is formulated as the following theorem. Its proof is included in
Appendix.

Theorem 1 Let A : V → V # be a linear, bounded, coercive and self-adjoint oper-
ator. Using the standard definition of the operator norm, the boundedness constant
CA and the coercivity constant cA can be expressed as

CA = ‖A‖L(V ,V #) = sup
u∈V, ‖u‖V =1

〈Au, u〉 = MA, (24)

cA = mA = inf
v∈V, ‖v‖V =1

〈Av, v〉 = 1

supf ∈V #, ‖f ‖
V #=1 ‖A−1f ‖V

=
{
‖A−1‖L(V #,V )

}−1
. (25)

Using this result,

‖A−1‖−1
L(V #,V )

‖v‖2
V ≤ a(v, v) ≤ ‖A‖L(V ,V #)‖v‖2

V for all v ∈ V . (26)

Now consider a linear, bounded, coercive, and self-adjoint operator

B : V → V #

that will play within our setting the role of a B-preconditioner for the functional
equation (1), with CB and cB defined analogously to (20) and (21), respectively.
Using the operator B, we introduce the B-inner product (3)

(·, ·)B : V × V → R, (w, v)B := 〈Bw, v〉 for all w, v ∈ V

and the associated Riesz map

τB : V # → V, f ∈ V # 
→ τBf ∈ V

defined by

(τBf, v)B := 〈f, v〉 for all f ∈ V #, v ∈ V . (27)

Using this and the definition of the B-inner product,

(τBf, v)B = 〈BτBf, v〉 = 〈f, v〉
(
= (τf, v)V

)
,

and therefore the Riesz map τB associated with B is given simply by

τB = B−1 : V # → V . (28)
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3 Norm and spectral equivalence in operator preconditioning

Operator preconditioning can be introduced in several ways. We prefer using the
relationship with the Riesz map. Considering any inner product

(., .)∗ : V × V → R

and the associated Riesz map τ∗ : V # → V defined by

(τ∗f, v)∗ := 〈f, v〉 for all v ∈ V,

the formulation (17) of (1)

〈Au − b, v〉 = 0 for all v ∈ V

(the weak formulation of the PDE problem) can be equivalently written as

(τ∗(Au) − τ∗b, v)∗ = 0 for all v ∈ V,

and, consequently, as transformation of the equation Au = f in the space V # of
bounded linear functionals on V into the equation in the solution space V ,

τ∗A u = τ∗b, τ∗A : V → V, u ∈ V, τ∗b ∈ V . (29)

This transformation is called operator preconditioning. It can motivate or directly
lead to the construction of acceleration techniques used in order to improve the
behavior of iterative methods for solving associated discretized problems.

With the choice of the inner product (., .)∗ = (., .)B determined via the operator B
as above, the transformed problem (29) can simply be written as

B−1A u = B−1b, B−1A : V → V, u ∈ V, B−1b ∈ V, (30)

which resembles the standard algebraic preconditioning of linear algebraic systems.
It is worth recalling in this context the bounds on the condition number (7)2

κ(B−1A) := ‖B−1A‖L(V ,V )‖A−1B‖L(V ,V ).

Since

‖B−1A‖L(V ,V ) = sup
z∈V, ‖z‖V =1

‖B−1Az‖V = sup
z∈V, ‖z‖V =1

∥∥
∥
∥B

−1 Az

‖Az‖V #
‖Az‖V #

∥∥
∥
∥

V

≤ sup
f ∈V #, ‖f ‖

V #=1
‖B−1f ‖V sup

z∈V, ‖z‖V =1
‖Az‖V # = CA

cB
(31)

and, analogously,

‖A−1B‖L(V ,V ) ≤ CB
cA

, (32)

we get an upper bound

κ(B−1A) ≤ CA
cB

CB
cA

= κ(A) κ(B). (33)

2We point out that in the literature motivated by preconditioning, the condition number κ(B−1A) is often
confused with the spectral number κ̂(A,B); see the definitions (7) and (10).

Numerical Algorithms (2020) 83:57–9866



This bound cannot motivate operator preconditioning. In order to prove practically
useful results (in the sense of bounding the condition number), one has to introduce
a notion of “closeness” of the operators A and B. The following theorem bounds the
condition number under the assumption of the norm equivalence (5) of the operators
A and B.

Theorem 2 (Norm equivalence and condition number) Assuming that the linear,
bounded, coercive and self-adjoint operatorsA and B are V #-norm equivalent on V ,
i.e. there exist 0 < α ≤ β < ∞ such that

α ≤ ‖Aw‖V #

‖Bw‖V #
≤ β, for all w ∈ V, w 
= 0, (34)

then

‖B−1A‖L(V ,V ) ≤ β, (35)

‖A−1B‖L(V ,V ) ≤ 1

α
. (36)

Consequently,

κ(B−1A) := ‖B−1A‖L(V ,V )‖A−1B‖L(V ,V ) ≤ β

α
. (37)

Proof For the Riesz map τ defined by (15) we have, using (34) and (16), that

α ≤ ‖τAw‖V

‖τBw‖V

≤ β, for all w ∈ V, w 
= 0. (38)

Substituting w = (τA)−1u and w = (τB)−1v, we get

α ≤ ‖u‖V

‖τB(τA)−1u‖V

≤ β and α ≤ ‖τA(τB)−1v‖V

‖v‖V

≤ β, (39)

respectively, for all u, v ∈ V , u 
= 0, v 
= 0, and thus

‖τB(τA)−1‖L(V ,V ) ≤ 1

α
and ‖τA(τB)−1‖L(V ,V ) ≤ β. (40)

Denote by Q∗ the adjoint operator to Q : V → V ; and recall that

‖Q∗‖L(V ,V ) = ‖Q‖L(V ,V ).

From the self-adjointness of τA and (τB)−1 we have for all u, v ∈ V ,

(((τB)−1τA)∗u, v)V = ((τB)−1τAv, u)V = ((τB)−1u, τAv)V

= (v, τA(τB)−1u)V = (τA(τB)−1u, v)V ,

and thus ((τB)−1τA)∗ = τA(τB)−1, which results in

‖(τB)−1τA‖L(V ,V ) = ‖((τB)−1τA)∗‖L(V ,V ) = ‖τA(τB)−1‖L(V ,V ). (41)

Similarly,

‖(τA)−1τB‖L(V ,V ) = ‖τB(τA)−1‖L(V ,V ). (42)

Numerical Algorithms (2020) 83:57–98 67



Considering an arbitrary w ∈ V , w 
= 0, (41) and (39), we get

‖B−1Aw‖V

‖w‖V

= ‖B−1τ−1τAw‖V

‖w‖V

= ‖(τB)−1τAw‖V

‖w‖V

≤ β, (43)

which proves (35). Similarly, for arbitrary w ∈ V , w 
= 0, using (42) and (39) we get

‖A−1Bw‖V

‖w‖V

= ‖A−1τ−1τBw‖V

‖w‖V

= ‖(τA)−1τBw‖V

‖w‖V

≤ 1

α
, (44)

which proves (36). Relation (37) then trivially follows.

For β close to α, the bound (37) proves that the condition number κ(B−1A) is small
irrespectively of the values of the constants cA, CA, cB, and CB.

Corollary 1 Inequalities (35) and (36) in Theorem 2 mean

‖B−1Av‖V

‖v‖V

≤ β,
‖A−1Bw‖V

‖w‖V

≤ 1

α
, for all v, w ∈ V, v 
= 0, w 
= 0.

Substituting v = A−1f and w = B−1g, we get

‖B−1f ‖V

‖A−1f ‖V

≤ β,
‖A−1g‖V

‖B−1g‖V

≤ 1

α
, for all f, g ∈ V #, f 
= 0, g 
= 0

or, equivalently

α ≤ ‖B−1f ‖V

‖A−1f ‖V

≤ β, for all f ∈ V #, f 
= 0. (45)

We have just shown that (34) implies (45). Analogously, (45) implies (34). Thus the
V #-norm equivalence of A and B on V with constants α and β in the form (34) is
equivalent to the V -norm equivalence of B−1 andA−1 on V # with the same constants
in the form (45).

Remark 1 The self-adjointness of A and B is used in the proof only for the com-
mutativity argument in (41). Theorem 2 and Corollary 1 therefore hold also for
commuting non-self-adjoint operators A,B : V → V # (i.e., within our setting,
satisfying τA τB = τB τA) that are bounded and coercive.

The following theorem bounds the spectral number under the assumption of the
spectral equivalence.

Theorem 3 (Spectral equivalence and spectral number) Assuming that
the operators A and B are spectrally equivalent on V , i.e. there exist
0 < γ ≤ δ < ∞ such that

γ ≤ 〈Aw, w〉
〈Bw, w〉 ≤ δ, for all w ∈ V, w 
= 0, (46)

then

κ̂(A,B) := supz∈V, ‖z‖V =1
(
(τB)−1/2τA(τB)−1/2z, z

)
V

infv∈V, ‖v‖V =1
(
(τB)−1/2τA(τB)−1/2v, v

)
V

≤ δ

γ
. (47)
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Proof From (46) we have for all w ∈ V , w 
= 0

γ ≤ (τAw, w)V

(τBw, w)V
≤ δ. (48)

For τB : V → V consider the uniquely determined linear, bounded, coercive, and
self-adjoint square root (τB)1/2 : V → V such that (τB)1/2(τB)1/2 = τB. Thus,
(τBw, w)V = ((τB)1/2w, (τB)1/2w)V for w ∈ V . Substituting

w = (τB)−1/2v

in (48), we get for all v ∈ V , v 
= 0

γ ≤ (τA(τB)−1/2v, (τB)−1/2v)V

(v, v)V
≤ δ

and, using the self-adjointness of (τB)−1/2

γ ≤ ((τB)−1/2τA(τB)−1/2v, v)V

(v, v)V
≤ δ.

This leads to

sup
z∈V, ‖z‖V =1

(
(τB)−1/2τA(τB)−1/2z, z

)

V
≤ δ,

inf
v∈V, ‖v‖V =1

(
(τB)−1/2τA(τB)−1/2v, v

)

V
≥ γ,

which yields (47).

We note that within our setting, we have trivially

cA
CB

≤ 〈Aw, w〉
〈Bw, w〉 ≤ CA

cB
, for all w ∈ V, w 
= 0, (49)

and

κ̂(A,B) ≤ CA
cB

CB
cA

= κ(A) κ(B), (50)

which, however, does not consider a possible link between A and B, and it can be
therefore impractical.

In the following section, we will examine the condition and the spectral numbers
of the preconditioned discretized system matrix that arises from the general Galerkin
discretization without any reference to a specific construction of the discretization
basis.

4 Condition and spectral numbers of thematrix representations
of discretized operators

In order to perform numerical computations, the problem (1) must first be discretized.
Using an N-dimensional subspace Vh ⊂ V , the abstract Galerkin discretization looks
for the approximation uh ∈ Vh, uh ≈ u ∈ V satisfying

〈Auh − b, v〉 = 0 for all v ∈ Vh . (51)
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In other words, the discretized approximation uh gives the residual

b − Auh ∈ V #

that is orthogonal to the subspace Vh with respect to the duality pairing 〈·, ·〉. This
property is called Galerkin orthogonality. The same residual restricted to V #

h is iden-
tically zero, which results in the discretized functional equation below. Considering
the restriction Ah : Vh → V #

h of the operator A such that

〈Ahw, v〉 = 〈Aw, v〉 for all w, v ∈ Vh, (52)

and the restriction bh : Vh → R of the functional b to V #
h , (51) is written as

〈Ahuh − bh, v〉 = 0 for all v ∈ Vh (53)

or, in the operator form, as the equation in the N-dimensional functional space

Ahuh = bh, uh ∈ Vh, bh ∈ V #
h , Ah : Vh → V #

h . (54)

Considering further the inner product (., .)B and the associated restricted Riesz map
τB,h : V #

h → Vh, we finally get the abstract form of the preconditioned discretized
problem

τB,hAhuh = τB,hbh, uh ∈ Vh, bh ∈ V #
h , Ah : Vh → V #

h . (55)

We note that the subscript h is used for convenience of notation in possible mesh-
based implementations (using, e.g., the finite element method, where it characterizes
the size of the mesh elements). The abstract formulation used here is, however, more
general and it is independent of any notion of mesh or mesh-related discretization.

4.1 Matrix representations of the discretized problem

The matrix formulation of the discretized problems is obtained in a standard way.
Consider a basis 
h = (φ1, . . . , φN) of Vh and the canonical dual basis 
#

h =
(φ#

1 , . . . , φ#
N) of V #

h ,3

〈φ#
i , φj 〉 = δij , i, j = 1, . . . , N, or, using matrix notation, (
#

h)
∗
h = IN,

where IN denotes the N × N identity matrix. We wish to construct a linear algebraic
system

M−1
h Ahxh = M−1

h bh, Ah,Mh ∈ R
N×N, xh ∈ R

N, bh ∈ R
N, (56)

where Ah represents the discretized operator Ah, M−1
h the discretized preconditioner

τB,h, bh the discretized right-hand side functional bh, and xh the coordinates of the
approximate solution uh in the basis 
h, (recalling that z∗ means the transpose of the
vector z)

xh = (〈φ#
1 , uh〉, . . . , 〈φ#

N, uh〉)∗.
This algebraic system is obtained using the following equalities

Ahuh = Ah
hxh = 
#
hAhxh,

3Here for simplicity of notation, we omit the subscript h in the individual basis functions.

Numerical Algorithms (2020) 83:57–9870



where

Ah
h =: 
#
hAh, (57)

Ah =
(
a(φ

(h)
j , φ

(h)
i )
)

i,j=1,...,N
=
(
〈Aφ

(h)
j , φ

(h)
i 〉
)

i,j=1,...,N
,

or, using symbolic notation,
Ah = (A
h)

∗
h, (58)

and

τB,hAhuh = τB,hAh
hxh = τB,h

#
hAhxh = 
hM

−1
h Ahxh,

τB,hbh = τB,h

#
hbh = 
hM

−1
h bh,

where
τB,h


#
h = 
hM

−1
h , Mh :=

(
〈Bφ

(h)
j , φ

(h)
i 〉
)

i,j=1,...,N
, (59)

or, using symbolic notation,
Mh = (B
h)

∗
h. (60)

Here, the representation of the restricted Riesz map τB,h is based on the equalities
that hold for any N-dimensional vectors v and f, with f = 
#

hf, v = 
hv, τB,h

#
h =


hMτ for some Mτ ∈ R
N×N ,

v∗f = 〈f, v〉 = (τB,hf, v)B = (τB,h

#
hf, 
hv)B = (
hMτ f, 
hv)B

= 〈B
hMτ f, 
hv〉 = v∗MhMτ f ,

and therefore Mτ = M−1
h ,

τB,h

#
h = 
hM

−1
h . (61)

Finally, the preconditioned algebraic system can indeed be written in the form (56)

M−1
h Ahxh = M−1

h bh,

or, using the factorization Mh = M1/2
h M1/2

h , as
(
Mh

−1/2AhM
−1/2
h

) (
M1/2

h xh

)
= M−1/2

h bh (62)

or
Ãt,h̃xt

h = b̃t
h, (63)

where

Ãt,h := Mh
−1/2AhM

−1/2
h , x̃t

h := M1/2
h xh, b̃t

h := M−1/2
h bh.

It is worth noticing that the discretized form of the problem (56) allows many dif-
ferent factorizations of Mh. Instead of the square root of the operator Mh, we can
consider an arbitrary decomposition Mh = LhL∗

h, which can be more practical
computationally. Then we can write

At,hxt
h = bt

h, (64)

having in this case

Lh
−1Ah(L∗

h)
−1(L∗

hxh) = L−1
h bh, At,h := Lh

−1Ah(L∗
h)

−1,

xt
h := L∗

hxh, bt
h := L−1

h bh.
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Due to

L−1
h Mh(L∗

h)
−1 = L−1

h M1/2
h

(
M1/2

h (L∗
h)

−1
)

= IN (65)

we have
(
L−1

h M1/2
h

)−1 =
(
L−1

h M1/2
h

)∗
,

i.e., L−1
h M1/2

h is an orthogonal matrix. For any given Lh, there is therefore an
orthogonal transformation

M1/2
h → M1/2

h

(
M−1/2

h Lh

)
= Lh

from M1/2
h to Lh.

The transformed system (64) can moreover be obtained mathematically equiva-
lently (this term is used in order to indicate that mathematical equivalence does not
necessarily mean equivalent computational efficiency or accuracy in practical com-
putations) by first orthogonalizing the discretization basis with respect to the B-inner
product


t,h = 
h(L∗
h)

−1, 
#
t,h = 
#

hLh,


t,h = (φt
1, . . . , φ

t
N ), 
#

t,h = (φt#
1 , . . . , φt#

N )

which indeed gives (using the symbolic notation Mh = (B
h)
∗
h)

(B
t,h)
∗
t,h = L−1

h (B
h)
∗
h(L∗

h)
−1 = L−1

h Mh(L∗
h)

−1 = IN,

and subsequently forming the matrix of the algebraic system (63) using (57) with the
basis 
h replaced by 
t,h; cf. [41, Chapter 8].

In summary, there is a deep connection between discretization of the infinite-
dimensional problem and preconditioning of the discretized algebraic system. In
addition, any algebraic preconditioning can be viewed as orthogonalization of the
discretization basis with respect to the appropriate inner product (for details see [41]).

4.2 Condition and spectral number of the preconditioned systemmatrix

As mentioned above, the question of the rate of convergence of an iterative method
applied to the preconditioned algebraic system (63) is typically reduced to estimates
of the contraction factor based on the condition number of the preconditioned system
matrix. We will leave aside the question when such an approach leads to descriptive
results and which (more or less restrictive) assumptions must be considered whenever
it is applied to practical problems; for a detailed discussion of these important topics,
we refer to [41, Section 5.2 and Chapter 11] and [40, Section 3.5 and Chapter 5]. In
the rest of this section, we will describe bounds on the condition and spectral numbers
of the matrices At,h (that include also the special choice Ãt,h) and M−1

h Ah in terms
of the properties of the operators A and B. The following theorem that generalizes
the results from [22, Section 3, in particular Theorem 3.10] is the finite-dimensional
analog of Theorem 2.
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Theorem 4 (Norm equivalence and condition number) Consider the assumptions of
Theorem 2. Let Sh be the Gram matrix of the discretization basis 
h = (φ1, . . . , φN)

of Vh ⊂ V , (Sh)ij = (φi, φj

)
V
, and Ah, Mh be determined by (58) and (60),

respectively. Then the condition number of the matrixM−1
h Ah is bounded as

κ(M−1
h Ah) := ‖M−1

h Ah‖ ‖A−1
h Mh‖ ≤ β

α
κ(Sh). (66)

Proof For w = 
hy, y ∈ R
N , we have

‖Aw‖V # = ‖
#
hAhy‖V # = sup

u∈Vh, u
=0

〈
#
hAhy, u〉
‖u‖V

= sup
z∈RN , z 
=0

〈
#
hAhy, 
hz〉
‖
hz‖V

= sup
z∈RN , z 
=0

z∗Ahy
‖
hz‖V

= sup
z∈RN , z 
=0

z∗Ahy√
z∗Shz

.

Setting z = S−1/2
h v and using (S−1/2

h )∗ = S−1/2
h leads to

‖Aw‖V # = sup
v∈RN , v
=0

v∗S−1/2
h Ahy

‖v‖ = ‖S−1/2
h Ahy‖.

Analogously,

‖Bw‖V # = ‖
#
hMhy‖V # = ‖S−1/2

h Mhy‖.

Then,

β

α
≥ sup

w∈V,w 
=0

‖Aw‖V #

‖Bw‖V #
sup

v∈V, v 
=0

‖Bv‖V #

‖Av‖V #

≥ sup
w∈Vh, w 
=0

‖Aw‖V #

‖Bw‖V #
sup

v∈Vh, v 
=0

‖Bv‖V #

‖Av‖V #

= sup
w∈RN ,w 
=0

‖S−1/2
h Ahw‖

‖S−1/2
h Mhw‖

sup
v∈RN , v
=0

‖S−1/2
h Mhv‖

‖S−1/2
h Ahv‖

= sup
y∈RN , y 
=0

‖S−1/2
h AhM

−1
h S1/2

h y‖
‖y‖ sup

z∈RN , z 
=0

‖S−1/2
h MhA

−1
h S1/2

h z‖
‖z‖

= ‖S−1/2
h AhM

−1
h S1/2

h ‖ ‖S−1/2
h MhA

−1
h S1/2

h ‖. (67)

Since for any G ∈ R
N×N , we have

‖GS1/2
h ‖ = sup

w∈RN ,w 
=0

‖GS1/2
h w‖

‖w‖ = sup
w∈RN ,w 
=0

(λmin(Sh))
1/2‖GS1/2

h w‖
(λmin(Sh))1/2‖w‖

≥ (λmin(Sh))
1/2 sup

w∈RN ,w 
=0

‖GS1/2
h w‖

‖S1/2
h w‖

= (λmin(Sh))
1/2‖G‖, (68)

and, using ‖S−1/2
h G‖ = ‖G∗S−1/2

h ‖, we get analogously

‖S−1/2
h G‖ ≥ (λmax(S

−1
h ))1/2‖G∗‖ = (λmax(Sh))

−1/2‖G‖. (69)
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Finally, applying (68) and (69) to (67) yields

β

α
≥ ‖S−1/2

h AhM
−1
h S1/2

h ‖ ‖S−1/2
h MhA

−1
h S1/2

h ‖

≥ λmin(Sh)

λmax(Sh)
‖AhM

−1
h ‖ ‖MhA

−1
h ‖

= λmin(Sh)

λmax(Sh)
‖M−1

h Ah‖ ‖A−1
h Mh‖

which finishes the proof.

Using the coordinates in the transformed basis 
t,h, for any z ∈ Vh, we have the
following useful equality

‖z‖2
B = (z, z)B = (
t,hz, 
t,hz)B = ‖z‖2.

We will now turn to the spectral number

κ̂(Ah,Mh) :=
supz∈RN , ‖z‖=1

(
M−1/2

h AhM
−1/2
h z, z

)

infv∈RN , ‖v‖=1

(
M−1/2

h AhM
−1/2
h v, v

)

= λmax(M
−1
h Ah)

λmin(M
−1
h Ah)

= κ(At,h). (70)

Clearly, the spectra of the matrices M−1
h Ah and L−1

h Ah(L∗
h)

−1 are identical, and
therefore the spectral number κ̂(Ah,Mh) is determined via the extremal eigenvalues
of L−1

h Ah(L∗
h)

−1. While for the symmetric positive definite matrix, the condition
number is given as a ratio of extremal eigenvalues, the same is not in general true for
the nonsymmetric matrix. Analogously to the derivation in [41, Chapter 8],

κ̂(Ah,Mh) = max‖u‖=1 u∗At,hu
min‖v‖=1 v∗At,hv

= max‖u‖=1 u∗ (〈Aφt
j , φ

t
i 〉)i,j=1,...,N u

min‖v‖=1 v∗ (〈Aφt
j , φ

t
i 〉)i,j=1,...,N v

= maxu∈Vh, ‖u‖B=1〈Au, u〉
minv∈Vh, ‖v‖B=1〈Av, v〉

= 〈Aũ, ũ〉
〈Aṽ, ṽ〉 , (71)

where ũ, ‖ũ‖B = 1 gives the maximum and ṽ, ‖ṽ‖B = 1 the minimum, respectively.
Since

‖ṽ‖2
B = 〈Bṽ, ṽ〉 ≤ CB‖ṽ‖2

V ,

‖ũ‖2
B = 〈Bũ, ũ〉 ≥ cB‖ũ‖2

V ,
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we get

κ̂(Ah,Mh) = κ(At,h) = 〈Aũ, ũ〉
〈Aṽ, ṽ〉

= ‖ũ‖2
V

‖ṽ‖2
V

〈Aũ/‖ũ‖V , ũ/‖ũ‖V 〉
〈Aṽ/‖ṽ‖V , ṽ/‖ṽ‖V 〉

≤ CB
cB

〈Az, z〉
〈Aw, w〉 ≤ CB

cB

CA
cA

, (72)

where z = ũ/‖ũ‖V , ‖z‖V = 1, w = ṽ/‖ṽ‖V , ‖w‖V = 1. Summarizing, we get inde-
pendently of the discretization parameter h, the following analog of the practically
not much interesting estimate (33):

κ̂(Ah,Mh) = κ(At,h) ≤ κ(B) κ(A). (73)

For related statements (in a more general setting) we refer, e.g., to [31, Theorem 2.1
and relation (3.2)]. The following theorem is a finite-dimensional analog of Theo-
rem 3 and it provides bounds on the spectral number under the assumption of the
spectral equivalence of the operators A and B.

Theorem 5 (Spectral equivalence and spectral number) Consider the assumptions
of Theorem 3. Let Ah, Mh be given by (58) and (60), respectively. Then the spectral
number κ̂(Ah,Mh), which is equal to the condition number of the symmetric matrix
At,h = L−1

h Ah(L∗
h)

−1 for any Lh such thatMh = LhL∗
h, is bounded as

κ̂(Ah,Mh) = κ(At,h) ≤ δ

γ
. (74)

Proof From (71) and (65), considering ‖ũ‖B = 1, ‖ṽ‖B = 1,

κ̂(Ah,Mh) = κ(At,h) = 〈Aũ, ũ〉
〈Bũ, ũ〉

〈Bṽ, ṽ〉
〈Aṽ, ṽ〉 ≤ δ

γ
, (75)

yielding the assertion.

This can give a much stronger bound than (73). For related early results that can
further illustrate the difference between (73) and (74) we refer, e.g., to [22] and [61,
Sections 4.1 and 4.2].

5 Abstract description of the splitting-based preconditioning

Following the ideas in [53, Section 4.1], [56, Section 2.1], [28, 54], [65, Section 8],
and the motivation described in Section 1.3, the goal is to present as simple as pos-
sible abstract framework that will underline the common basic principles behind a
variety of different approaches related to the splitting-based preconditioning. We will
use the setting of the problem (1) and (17)–(19), i.e.,

Au = b (76)
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in the functional space V #, or, using the bilinear form,

a(u, v) = 〈b, v〉 for all v ∈ V, 〈Au, v〉 = a(u, v).

We are now going to transform (76) into the form (cf. (30))

M−1Au = M−1b, M−1A : V → V, u ∈ V, M−1b ∈ V, (77)

where the preconditioning M is constructed using a decomposition (splitting) of
the space V into a finite4 collection of (nontrivial) subspaces {Vj }j∈J that are not
necessarily nested, Vj ⊂ V , each complete with respect to its own inner product
(·, ·)j : Vj × Vj → R and the associated norm ‖ · ‖j , such that

V =
∑

j∈J

Vj , i.e., v =
∑

j∈J

vj , vj ∈ Vj , for all v ∈ V . (78)

For each Vj , we can consider its dual V #
j with the duality pairing identical to (14)

and the norm ‖ · ‖#
j induced by ‖ · ‖j . We will assume the continuous embedding

Vj ↪→ V , see, e.g., [14, Section 6.6]

cVj
‖u‖2

V ≤ ‖u‖2
j for all u ∈ Vj , 0 < cVj

, j ∈ J . (79)

For Vj finite-dimensional, (79) always holds true (all norms on finite-dimensional
Vj are trivially topologically equivalent). Thus, (79) is nontrivial only in the case of
Vj (and thus V ) infinite-dimensional. Then the assumption (79) avoids a possible
pathological situation when a converging sequence of elements from Vj ⊂ V may
diverge in V . Moreover, the assumption (79) guarantees that any functional from V #

restricted to Vj belongs to V #
j . Indeed, let f ∈ V #, then

‖f ‖#
j = sup

u∈Vj , u
=0

〈f, u〉
‖u‖j

= sup
u∈Vj , u
=0

〈f, u〉
‖u‖V

‖u‖V

‖u‖j

≤ 1√
cVj

sup
u∈V, u 
=0

〈f, u〉
‖u‖V

≤ 1√
cVj

‖f ‖V # . (80)

The necessity of (79) for V # ⊂ V #
j is an open question.

The splitting-based preconditioning M will be composed of the individual pre-
conditionings at the subspaces Vj , j ∈ J . Let Bj be a linear, bounded, coercive, and
self-adjoint operator

Bj : Vj → V #
j , 〈Bj u, v〉 = 〈Bj v, u〉 for all u, v ∈ Vj , (81)

with the associated bilinear form ßj : Vj × Vj → R
ßj (u, v) := 〈Bj u, v〉, for all u, v ∈ Vj .

4Since this text is motivated by numerical methods and, in particular, by the construction of precondi-
tioning, with no loss of generality, it is sufficient to consider splitting of the Hilbert space V into a finite
number of subspaces that can be infinite-dimensional. This setting is convenient since it simplifies the
exposition of the abstract splitting-based preconditioning. As mentioned in Section 1.3, we also consider
a finite number of subspaces, which is the choice fully justified, in our opinion, also from the purely
mathematical reason.
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Analogously to (20), (21) and Theorem 1, for j ∈ J

CBj
:= sup

v∈Vj , ‖v‖j =1
‖Bj v‖#

j < ∞, (82)

cBj
:= inf

v∈Vj , ‖v‖j =1
〈Bj v, v〉 = 1

supf ∈V #
j , ‖f ‖#

j =1 ‖B−1
j f ‖j

> 0, (83)

and
cBj

‖u‖2
j ≤ ßj (u, u) ≤ CBj

‖u‖2
j . (84)

In other words, Bj is coercive and bounded on Vj , j ∈ J . The operator Bj (the
bilinear form ßj ) defines on Vj the inner product5

(·, ·)Bj
: Vj × Vj → R, (w, v)Bj

:= ßj (w, v) = 〈Bjw, v〉 for all w, v ∈ Vj ,

(85)
with the corresponding Riesz map

τBj
: V #

j → Vj , f ∈ V #
j 
→ τBj

f ∈ Vj

defined by
(τBj

f, v)Bj
:= 〈f, v〉 for all f ∈ V #

j , v ∈ Vj . (86)

Clearly, analogously to the construction presented in Section 2,

(τBj
f, v)Bj

= 〈Bj τBj
f, v〉 = 〈f, v〉, for all f ∈ V #

j , v ∈ Vj

and therefore
τBj

= Bj
−1 : V #

j → Vj . (87)

We will now construct a splitting-based preconditioning M−1 in (77). For any
u ∈ V and j ∈ J , we have

〈Au, v〉 = (B−1
j Au, v)Bj

for all v ∈ Vj ,

and
〈b, v〉 = (B−1

j b, v)Bj
for all v ∈ Vj ;

under the assumption (79), we have V # ⊂ V #
j and therefore B−1

j Au and B−1
j b are

well-defined. Combining the last two equations gives

〈Au − b, v〉 = (B−1
j Au − B−1

j b, v)Bj
for all v ∈ Vj ,

and therefore on each subspace Vj , j ∈ J , we can formulate the preconditioned
equation

B−1
j Au = B−1

j b, (88)

that must be satisfied by the solution u ∈ V of Au = b. Consequently, from Au = b

we get ⎛

⎝
∑

j∈J

B−1
j

⎞

⎠Au =
⎛

⎝
∑

j∈J

B−1
j

⎞

⎠ b,

5Here, we do not need the form ßi (·, ·). We introduce this notation for convenience. Part of the literature
uses the bilinear form formulation instead of the operator formulation; see, e.g., [63, Section 2].
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or, equivalently,
M−1Au = M−1b, M−1 :=

∑

j∈J

B−1
j . (89)

Using the properties of the operator A, of the particular decomposition
V =∑j∈J Vj , and of the particular preconditioning operators Bj , j ∈ J , the goal is
to prove the equivalence of (89) and (76) and, in addition, prove results on the condi-
tioning and on possibly other relevant properties of the preconditioned problem (89)
and of its matrix representations obtained by discretization.6

We start with proving the equivalence of (89) and (76). By construction, the unique
solution u = A−1b of (76) solves also (89). It remains to prove that u = A−1b is the
only solution of (89).

Theorem 6 Let the splitting of the Hilbert space V satisfy (78) and (79), and let
the splitting-based preconditioning M−1 be defined by (81)–(89). Then (89) has the
unique solution u = A−1b, and forM−1 we have

‖M−1f ‖V ≤
∑

j∈J

1

cBj
cVj

‖f ‖V # for all f ∈ V #.

Proof Let (89) have two different solutions, i.e., there exists g ∈ V #, g 
= 0, such
that M−1g = 0. Then

0 =
〈
g,M−1g

〉
=
〈

g,
∑

j∈J

B−1
j g

〉

=
∑

j∈J

〈
g,B−1

j g
〉
=
∑

j∈J

(
B−1

j g,B−1
j g
)

Bj

=
∑

j∈J

‖B−1
j g‖2

Bj
,

i.e.,
‖B−1

j g‖2
Bj

= 0 for all j ∈ J . (90)

Since g 
= 0, there exists a z ∈ V such that 〈g, z〉 
= 0. Consider a decomposition
z =∑j∈J zj , zj ∈ Vj , j ∈ J . Then

0 
=
〈

g,
∑

j∈J

zj

〉

=
∑

j∈J

〈
g, zj

〉 =
∑

j∈J

(
B−1

j g, zj

)

Bj

,

and thus at least one term in the last sum, say
(
B−1

k g, zk

)

Bk

, must be non-zero. This

contradicts (90) and completes the proof of the first statement. Using (83) and (79)
(and thus (80)), we have

‖Bj
−1f ‖j ≤ 1

cBj

‖f ‖#
j ≤ 1

cBj

√
cVj

‖f ‖V # ,

6This text does not deal with particular matrix representations that are in practice based on further specific
assumptions.
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and thus,

‖M−1f ‖V =
∥
∥
∥∥
∥
∥

∑

j∈J

B−1
j f

∥
∥
∥∥
∥
∥

V

≤
∑

j∈J

1√
cVj

‖B−1
j f ‖j ≤

∑

j∈J

1

cBj
cVj

‖f ‖V # ,

which completes the proof.

Theorem 6 proves that M−1 is bounded with

‖M−1‖L(V #,V ) = sup
f ∈V #, ‖f ‖

V #=1
‖M−1f ‖V ≤ CM−1 :=

∑

j∈J

1

cBj
cVj

< ∞. (91)

We will now show that M−1 is also coercive and define its bounded and coercive
inversion

M :=
(
M−1
)−1 : V → V # (92)

(see the analogy with the operator B in Sections 2 and 3). In order to accomplish this,
we will assume there exists a CS < ∞ such that7

‖u‖2
S := inf

uj ∈Vj , u=∑j∈J uj

⎧
⎨

⎩

∑

j∈J

‖uj‖2
j

⎫
⎬

⎭
≤ CS ‖u‖2

V for all u ∈ V . (93)

Remark 2 Let (93) be replaced by a stronger assumption that there exists a positive
constant C such that

∑

j∈J

‖uj‖2
j ≤ C ‖u‖2

V , for all u =
∑

j∈J

uj , uj ∈ Vj , j ∈ J . (94)

Then for any u ∈ V the decomposition u = ∑j∈J uj , uj ∈ Vj , j ∈ J , is unique.
Indeed, let u = ∑j∈J uj = ∑j∈J vj , uj , vj ∈ Vj , and let there exist at least one
m ∈ J such that um 
= vm. Then 0 =∑j∈J (uj − vj ), and one has

0 <
∑

j∈J

‖uj − vj‖2
j ≤ C

∥
∥
∥∥
∥
∥

∑

j∈J

(uj − vj )

∥
∥
∥∥
∥
∥

2

V

= C

∥
∥
∥∥
∥
∥

∑

j∈J

uj −
∑

j∈J

vj

∥
∥
∥∥
∥
∥

2

V

= 0,

which contradicts um 
= vm. The assumption (94) is, however, too strong and in the
consequence too restrictive. Therefore, it is not further considered.

Theorem 7 Let the splitting of the Hilbert space V satisfy (78), (79) and (93), and
let the splitting-based preconditioningM−1 be defined by (81)–(89). Then

‖f ‖2
V # ≤ CS

∑

j∈J

(
‖f ‖#

j

)2
for all f ∈ V #,

7In, e.g., [56, Definition 2.1.1], [28, 54] the norm ‖u‖S defined in (93) is called the additive Schwarz norm
in V with respect to the splitting (78); see Section 6 below.
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and forM−1 we have

〈f,M−1f 〉 ≥ 1

CS maxj∈J CBj

‖f ‖2
V # for all f ∈ V #.

Proof In order to prove the first statement, we consider for u ∈ V its arbitrary fixed
decomposition u =∑j∈J uj , uj ∈ Vj , j ∈ J . Then,

〈f, u〉2 =
〈

f,
∑

j∈J

uj

〉2
=
⎛

⎝
∑

j∈J

〈
f, uj

〉
⎞

⎠

2

≤
⎛

⎝
∑

j∈J

| 〈f, uj

〉 |
⎞

⎠

2

≤
⎛

⎝
∑

j∈J

‖f ‖#
j‖uj‖j

⎞

⎠

2

≤
∑

k∈J

(
‖f ‖#

k

)2∑

j∈J

‖uj‖2
j .

This must hold for any decomposition of u, therefore, also for those with
∑

j∈J ‖uj‖2
j

arbitrarily close to ‖u‖2
S. Consequently, for all u ∈ V ,

〈f, u〉2 ≤ CS

∑

k∈J

(
‖f ‖#

k

)2 ‖u‖2
V ,

and

‖f ‖2
V # = sup

u∈V, ‖u‖V =1
〈f, u〉2 ≤ CS

∑

k∈J

(
‖f ‖#

k

)2
.

For proving the second statement, we use the inequality

〈
f,B−1

j f
〉
≥ 1

CBj

(
‖f ‖#

j

)2
, for all f ∈ V #. (95)

It follows from

sup
f ∈V #

j , f 
=0

(
‖f ‖#

j

)2

〈
f,B−1

j f
〉 = sup

u∈Vj , u
=0

(
‖Bj u‖#

j

)2

〈
Bj u, u
〉

= sup
u∈Vj , u
=0

(
1
〈
Bj u, u
〉 sup

v∈Vj , v 
=0

〈Bj u, v〉2

‖v‖2
j

)

≤ sup
u∈Vj , u
=0

sup
v∈Vj , v 
=0

〈Bj u, u〉〈Bj v, v〉
〈
Bj u, u
〉 ‖v‖2

j

= sup
v∈Vj , v 
=0

〈Bj v, v〉
‖v‖2

j

= CBj
,
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where we used the Cauchy-Schwarz inequality 〈Bj u, v〉2 = (u, v)2
Bj

≤ ‖u‖2
Bj

‖v‖2
Bj

.
With (95)

〈f,M−1f 〉 =
〈

f,
∑

j∈J

B−1
j f

〉

=
∑

j∈J

〈
f,B−1

j f
〉
≥
∑

j∈J

1

CBj

(
‖f ‖#

j

)2

≥ 1

maxj∈J CBj

∑

j∈J

(
‖f ‖#

j

)2 ≥ 1

CS maxj∈J CBj

‖f ‖2
V # ,

which finishes the proof.

Theorem 7 proves that M−1 is coercive with

inf
f ∈V #, ‖f ‖

V #=1
〈f,M−1f 〉 ≥ cM−1 := 1

CS maxj∈J CBj

> 0. (96)

We note the little ambiguity in notation. Here, the definition of CM−1 (see (91))
and cM−1 (see (96)) anticipate the particular construction of M−1 and they are not
defined as the boundedness and coercivity constants for a general operator M−1. For
simplicity of notation, we use this and do not introduce another symbols.

Corollary 2 Let the splitting of the Hilbert space V satisfy (78), (79) and (93),
and let the splitting-based preconditioning M−1 be defined by (81)–(89). Then the
operator

M :=
(
M−1
)−1 : V → V # (97)

is bounded and coercive with

CM := sup
v∈V, ‖v‖V =1

‖Mv‖V # ≤ 1

cM−1
, (98)

cM := inf
v∈V, ‖v‖V =1

〈Mv, v〉 ≥ 1

CM−1
. (99)

Proof The existence of the bounded operator M follows from the Lax-Milgram
lemma applied to M−1. The bound (98) follows from (96) using the substitution
f = Mv/‖Mv‖V # ,

cM−1 ≤ inf
f ∈V #, ‖f ‖

V #=1
〈f,M−1f 〉 = inf

v∈V, v 
=0

〈Mv, v〉
‖Mv‖2

V #

≤ inf
v∈V, v 
=0

‖Mv‖V #‖v‖V

‖Mv‖2
V #

= inf
v∈V, v 
=0

‖v‖V

‖Mv‖V #

= 1

supv∈V, v 
=0
‖Mv‖

V #

‖v‖V

= 1

‖M‖L(V ,V #)

.

The bound (99) is a consequence of (25) used for M, and of (91); see also Theorem 6.
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Up to now, we have studied the properties of M−1 and of M that plays the role
of the preconditioning operator B from Sections 2 and 3. In the following, our aim is
to prove the norm and spectral equivalence, and some two-sided error bounds using
the properties of M−1A. We will use the norms of M−1A and A−1M defined in
the standard way

‖M−1A‖L(V ,V ) = sup
u∈V, ‖u‖V =1

‖M−1Au‖V ,

‖A−1M‖L(V ,V ) = sup
u∈V, ‖u‖V =1

‖A−1Mu‖V .

Obviously,

‖M−1A‖L(V ,V ) ≤ ‖M−1‖L(V #,V )‖A‖L(V ,V #),

‖A−1M‖L(V ,V ) ≤ ‖A−1‖L(V #,V )‖M‖L(V ,V #).

Corollary 1 shows that within our setting the lower and upper bounds on
‖Aw‖V #/‖Mw‖V # for w ∈ V , w 
= 0, and on ‖M−1f ‖V /‖A−1f ‖V for f ∈ V #,
f 
= 0, hold simultaneously. In other words, the V #-norm equivalence of A and
M on V and the V -norm equivalence of M−1 and A−1 on V # represent equivalent
properties of the pair of operators A and M. In the case of the splitting-based precon-
ditioning, the form using M−1 seems more appropriate, because M−1 is constructed
as the primary object using the operators B−1

j , j ∈ J ; see (89).
Theorems 8–10 below do not consider any specific relationship between A and

M. The results therefore essentially reduce to (33) and (49) in Section 3. Let us
emphasize, however, that appropriate choices of the subspaces Vj , the inner prod-
ucts (·, ·)j and the operators Bj can lead to close lower and upper bounds (see, e.g.,
Section 7.3 below).

Theorem 8 (Norm equivalence) Let the linear operator A satisfy (20) and (21). Let
the splitting of the Hilbert space V satisfy (78), (79) and (93), and let the splitting-
based preconditioning M−1 be defined by (81)–(89). Then A−1 and M−1 are V -
norm equivalent on V #,

‖M−1A‖L(V ,V ) = sup
f ∈V #, f 
=0

‖M−1f ‖V

‖A−1f ‖V

≤ CA
cM

, (100)

‖A−1M‖L(V ,V ) = sup
f ∈V #, f 
=0

‖A−1f ‖V

‖M−1f ‖V

≤ CM
cA

, (101)

κ(M−1A) ≤ CA
cM

CM
cA

= κ(A) κ(M) (102)

and
⎛

⎝CA
∑

j∈J

1

cBj
cVj

⎞

⎠

−1

≤ cM
CA

≤ ‖A−1f ‖V

‖M−1f ‖V

≤ CM
cA

≤ CS

cA
max
j∈J

CBj
(103)

for all f ∈ V #, f 
= 0.
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Proof The statement follows from the previous considerations; see also Theorem 2.

The two-sided error bounds introduced in the next theorem hold for an arbitrary
approximate solution v ∈ V of (76), (89); see also [56, Theorem 2.6.1] that uses the
finite-dimensional setting.

Theorem 9 Let the splitting of the Hilbert space V satisfy (78), (79) and (93), and
let the splitting-based preconditioning M−1 be defined by (81)–(89). Let u be the
solution of (76), (89). Then for any v ∈ V we have

⎛

⎝CA
∑

j∈J

1

cBj
cVj

⎞

⎠

−1 ∥∥
∥
∥∥
∥

∑

j∈J

(B−1
j Av − B−1

j b)

∥∥
∥
∥∥
∥

V

≤ ‖v − u‖V

≤ CS

cA
max
j∈J

CBj

∥
∥
∥∥
∥
∥

∑

j∈J

(B−1
j Av − B−1

j b)

∥
∥
∥∥
∥
∥

V

.

Proof The statement follows from

‖M−1(Av−b)‖V = ‖M−1A(v−u)‖V ≤ ‖M−1A‖L(V ,V ) ‖v−u‖V , for all v ∈ V

and

‖v − u‖V = ‖A−1M(M−1A(v − u))‖V ≤ ‖A−1M‖L(V ,V )‖(M−1(Av − b))‖V ,

which give

1

‖M−1A‖L(V ,V )

∥
∥
∥∥
∥
∥

∑

j∈J

(B−1
j Av − B−1

j b)

∥
∥
∥∥
∥
∥

V

≤ ‖v − u‖V

≤ ‖A−1M‖L(V ,V )

∥
∥∥
∥
∥∥

∑

j∈J

(B−1
j Av − B−1

j b)

∥
∥∥
∥
∥∥

V

.

Using (100), (101), and (103) finishes the proof.

Theorem 10 (Spectral equivalence) Let the linear self-adjoint operator A sat-
isfy (20) and (21). Let the splitting of the Hilbert space V satisfy (78), (79) and (93),
and let the splitting-based preconditioning M−1 be defined by (81)–(89). Then A
and M are spectrally equivalent and

cA
CS maxj∈J CBj

≤ 〈Az, z〉
〈Mz, z〉 ≤ CA

∑

j∈J

1

cBj
cVj

for all z ∈ V, z 
= 0. (104)
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Proof The statement follows from (49) using (91), (96), (98), and (99).

Let u be the solution of (76), (89). Motivated by [56, Chapter 2], we consider the
locally preconditioned residual associated with v ∈ V

r̄j := B−1
j Av − B−1

j b = B−1
j A(v − u) ∈ Vj , j ∈ J . (105)

Clearly, for all vj ∈ Vj ,

(r̄j , vj )Bj
= 〈A(v − u), vj 〉 = a(v − u, vj ) = a(v, vj ) − 〈b, vj 〉. (106)

As a consequence of splitting the problem (76) into the set of problems (88)–(89),
we have an (a posteriori) error estimate based on the norms of the locally precondi-
tioned residuals (in the generally infinite-dimensional subspaces), which is motivated
by [56, Theorem 2.6.2]. Before introducing the theorem, we prove a useful lemma.

Lemma 1 Let the linear self-adjoint operator A satisfy (20) and (21). Let the split-
ting of the Hilbert space V satisfy (78), (79) and (93), and let the splitting-based
preconditioningM−1 be defined by (81)–(89). Then

a(M−1Az,M−1Az) ≤ CA
∑

k∈J

1

cBk
cVk

a(M−1Az, z), (107)

and
cA

CS maxj∈J CBj

a(z, z) ≤ a(M−1Az, z). (108)

Proof We have

a
(
M−1Az,M−1Az

)
≤ CA‖M−1Az‖2

V = CA

∥∥
∥
∥∥
∥

∑

j∈J

B−1
j Az

∥∥
∥
∥∥
∥

2

V

≤ CA

⎛

⎝
∑

j∈J

∥
∥
∥B−1

j Az

∥
∥
∥

V

⎞

⎠

2

≤ CA

⎛

⎝
∑

j∈J

1√
cVj

∥
∥
∥B−1

j Az

∥
∥
∥

j

⎞

⎠

2

≤ CA

⎛

⎝
∑

j∈J

1√
cBj

cVj

∥
∥
∥B−1

j Az

∥
∥
∥
Bj

⎞

⎠

2

≤ CA
∑

k∈J

1

cBk
cVk

∑

j∈J

(B−1
j Az,B−1

j Az)Bj

= CA
∑

k∈J

1

cBk
cVk

∑

j∈J

〈Az,B−1
j Az〉 = CA

∑

k∈J

1

cBk
cVk

〈

Az,
∑

j∈J

B−1
j Az

〉

= CA
∑

k∈J

1

cBk
cVk

〈
Az,M−1Az

〉
= CA
∑

k∈J

1

cBk
cVk

a(z,M−1Az),
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which yields (107). For proving (108) we consider an arbitrary decomposition of
z ∈ V , z =∑j∈J zj , zj ∈ Vj , j ∈ J . Then

a(z, z) = a

⎛

⎝z,
∑

j∈J

zj

⎞

⎠ =
∑

j∈J

a
(
z, zj

) =
∑

j∈J

〈Az, zj 〉 =
∑

j∈J

(B−1
j Az, zj )Bj

≤
⎛

⎝
∑

j∈J

(B−1
j Az,B−1

j Az)Bj

⎞

⎠

1/2⎛

⎝
∑

j∈J

(zj , zj )Bj

⎞

⎠

1/2

≤
⎛

⎝
∑

j∈J

〈Az,B−1
j Az〉
⎞

⎠

1/2⎛

⎝
∑

j∈J

CBj
‖zj‖2

j

⎞

⎠

1/2

≤ max
j∈J

√
CBj

〈Az,M−1Az〉1/2

⎛

⎝
∑

j∈J

‖zj‖2
j

⎞

⎠

1/2

.

Considering
∑

j∈J ‖zj‖2
j arbitrarily close to its infimum over all possible decompo-

sitions of z,

a(z, z) ≤ max
j∈J

√
CBj

a(z,M−1Az)1/2‖z‖S

≤ √CS max
j∈J

√
CBj

a(z,M−1Az)1/2‖z‖V

≤
√

CS maxj∈J

√
CBj√

cA
a(z,M−1Az)1/2a(z, z)1/2,

which yields (108).

Theorem 11 Let the splitting of the Hilbert space V satisfy (78), (79) and (93). Let
the linear self-adjoint operator A satisfy (20) and (21), and let the splitting-based
preconditioning M−1 be defined by (81)–(89). Let u be the solution of (76), (89).
Then

a
(
v − u,M−1A(v − u)

)
=
∑

j∈J

‖r̄j‖2
Bj

and

minj∈J cBj

C2
A

(
∑

k∈J

1

cBk
cVk

)−1∑

j∈J

‖r̄j‖2
j ≤ ‖v − u‖2

V ≤
CS maxj∈J C2

Bj

c2
A

∑

j∈J

‖r̄j‖2
j .

Proof We have for v ∈ V , r̄j = B−1
j A(v − u),

‖r̄j‖2
Bj

= (r̄j , r̄j )Bj
= 〈A(v − u), r̄j 〉 = a(v − u,B−1

j A(v − u))

and thus ∑

j∈J

‖r̄j‖2
Bj

= a
(
v − u,M−1A(v − u)

)
.

Numerical Algorithms (2020) 83:57–98 85



Then, using (108),

‖v − u‖2
V ≤ 1

cA
a(v − u, v − u) ≤ CS maxj∈J CBj

c2
A

a(v − u,M−1A(v − u))

= CS maxj∈J CBj

c2
A

∑

j∈J

‖r̄j‖2
Bj

≤ CS maxj∈J CBj

c2
A

∑

j∈J

CBj
‖r̄j‖2

j

≤
CS maxj∈J C2

Bj

c2
A

∑

j∈J

‖r̄j‖2
j ,

which gives the upper bound. A straightforward calculation gives

L := minj∈J cBj

C2
A

(
∑

k∈J

1

cBk
cVk

)−1∑

j∈J

‖r̄j‖2
j

≤ minj∈J cBj

C2
A

(
∑

k∈J

1

cBk
cVk

)−1∑

j∈J

1

cBj

‖r̄j‖2
Bj

≤ 1

C2
A

(
∑

k∈J

1

cBk
cVk

)−1∑

j∈J

‖r̄j‖2
Bj

= 1

C2
A

(
∑

k∈J

1

cBk
cVk

)−1

a(v − u,M−1A(v − u)).

Using

a(v − u,M−1A(v − u))2 ≤ a(M−1A(v − u),M−1A(v − u)) a(v − u, v − u)

and (107) gives

a(v − u,M−1A(v − u)) ≤ CA
∑

k∈J

1

cBk
cVk

a(v − u, v − u)

and finally

L ≤ 1

CA
a(v − u, v − u) ≤ ‖v − u‖2

V ,

which completes the proof.

6 Stable splitting

The splitting of V defined by (78) is in literature called stable providing that there are
constants cS > 0 and CS > 0 such that the additive Schwarz norm (93) is bounded as

cS‖u‖2
V ≤ ‖u‖2

S ≤ CS‖u‖2
V for all u ∈ V . (109)

As pointed out in [56, Remark 2.1.3], for V finite-dimensional all its splittings are
trivially stable. The issue is then not the existence but the value of the constants cS
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and CS. The stable splitting assumption (109) can be easily linked with the assump-
tions (79) and (93) above (the last one coincides with the right inequality in (109)).
This gives unique solvability of (89)8 and it will allow to apply results formulated in
the previous sections.

Lemma 2 The left inequality of (109) is fulfilled if and only if (79) holds.

Proof Assuming cS‖u‖2
V ≤ ‖u‖2

S for u ∈ V , we have for uj ∈ Vj , j ∈ J ,

‖uj‖2
V ≤ 1

cS
‖uj‖2

S ≤ 1

cS
‖uj‖2

j . (110)

Thus setting cVj
:= cS, j ∈ J , we get (79). Here (110) shows that if

cS‖u‖2
V ≤ ‖u‖2

S

for all u ∈ V , then (79) is satisfied with the same universal constant cS valid for all
j ∈ J , which does not exclude the option that (79) is also satisfied for some constants
cVj

larger than cS. On the other hand, assuming (79), we get for any u ∈ V and for
any decomposition u =∑j∈J uj , uj ∈ Vj , j ∈ J ,

‖u‖2
V =
∥
∥∥
∥
∥∥

∑

j∈J

uj

∥
∥∥
∥
∥∥

2

V

≤
⎛

⎝
∑

j∈J

‖uj‖V

⎞

⎠

2

≤
⎛

⎝
∑

j∈J

1√
cVj

‖uj‖j

⎞

⎠

2

≤
∑

j∈J

1

cVj

∑

k∈J

‖uk‖2
k . (111)

Since (111) holds for any decomposition of u, we get by considering
∑

k∈J ‖uk‖2
k

arbitrarily close to its infimum

‖u‖2
V ≤
∑

j∈J

1

cVj

inf
uk∈Vk, u=∑

k∈J

uk

∑

k∈J

‖uk‖2
k =
∑

j∈J

1

cVj

‖u‖2
S. (112)

Thus setting cS :=
(∑

j∈J c−1
Vj

)−1
yields the first inequality of (109). It is worth

noting that if for some constant c we have cVj
= c, j ∈ J in (79), then the value of cS

derived for (112) is c/|J |, and we are unable to deduce (79) from the left inequality
of (109) with the same constant c but with the much weaker c/|J |. Here, we denote
by |J | the size of the index set J .

Using (109) instead of (79) and (93), the statements of Theorems 6, 8, 10, and 11 can
be easily modified.

8Using our notation, the operator equation (2.18) from [56, Theorem 2.1.1] is identical to the transformed
system (89) from Section 5.
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Proposition 1 Using the assumptions (83) and (109), we have

‖M−1f ‖V ≤ 1

cS minj∈J cBj

‖f ‖V # for all f ∈ V #.

Proof From (83), we have

sup
f ∈V #

j , f 
=0

‖B−1
j f ‖2

j

〈f,B−1
j f 〉 = sup

u∈Vj , u
=0

‖u‖2
j

〈Bj u, u〉 ≤ 1

cBj

.

Then from (109),

‖M−1f ‖2
V =
∥
∥∥
∥
∥∥

∑

j∈J

B−1
j f

∥
∥∥
∥
∥∥

2

V

≤ 1

cS

∑

j∈J

∥
∥∥B−1

j f

∥
∥∥

2

j
≤ 1

cS

∑

j∈J

1

cBj

〈f,B−1
j f 〉

≤ 1

cS minj∈J cBj

∑

j∈J

〈f,B−1
j f 〉 = 1

cS minj∈J cBj

〈f,M−1f 〉

≤ 1

cS minj∈J cBj

‖f ‖#
V ‖M−1f ‖V ,

which concludes the proof.

Proposition 2 (Norm equivalence) Using the assumptions (20), (21), (82), (83), and
(109) we have

cS

CA
min
j∈J

cBj
≤ ‖A−1f ‖V

‖M−1f ‖V

≤ CS

cA
max
j∈J

CBj
for all f ∈ V #, f 
= 0. (113)

Proof The statement follows from (103) where the lower bound to cM is defined
and bounded by (99). The upper bound to CM−1 is obtained from Proposition 1.

Proposition 3 (Spectral equivalence) Using the assumptions (20), (21), (82), (83),
and (109) we have

cA
CS maxj∈J CBj

≤ 〈Az, z〉
〈Mz, z〉 ≤ CA

cS minj∈J cBj

for all z ∈ V, z 
= 0. (114)

Proof The statement follows from (104) using (99), (91) and Proposition 1.

Remark 3 In some published works the setting corresponds to that used above, and
the subspaces Vj , j ∈ J , are not required to be nested. In most of the hierarchical
approaches, however, it is additionally assumed that the splitting is based on nested
subspaces

V1 ⊂ V2 ⊂ · · · ⊂ Vk−1 ⊂ Vk = V, J = {1, 2, . . . , k}. (115)

In addition to that, some works define also the subspaces Wj , j ∈ J such that (with
V0 := {0})

Vj−1 ⊕ Wj := Vj , j ∈ J, j 
= 0, (116)

Numerical Algorithms (2020) 83:57–9888



giving an equivalent splitting representation

V =
∑

j∈J

Vj =
⊕

j∈J

Wj . (117)

The individual preconditioners can then be constructed by the subtraction of pro-
jectors onto the individual hierarchical levels; see, e.g. [58, Section 13.2.2] and the
references given there.

7 Examples

The presented framework can be applied in most of the additive preconditioning
schemes, such as in using hierarchical bases [62, 64] or Bramble-Pasciak-Xu precon-
ditioning [58, 62]. We can also use this scheme for preconditioning of non-standard
problems, such as the stochastic Galerkin method [10, 55]. We present three examples
of different nature.

7.1 Domain decomposition with overlapping subdomains

This example deals with the additive Schwarz method in the form of the two-level
domain decomposition method with overlapping subdomains; see, e.g., [25]. Con-
sider for simplicity of the exposition the two-dimensional domain 
 = (0, 1)×(0, 1)

and V = H 1
0 (
) equipped with the inner product

(u, v)V =
∫




∇u · ∇v dx for all u, v ∈ V .

Let the operator A : V → V # be defined by

〈Au, v〉 :=
∫




∇v · (̃a∇u) dx for all u, v ∈ V, (118)

where ã is bounded measurable, i.e., ã ∈ L∞(
), and uniformly positive with
c̃A = essinfx∈
 ã(x) and C̃A = esssupx∈
 ã(x). Then, obviously, (20) and (21) are
valid with cA = c̃A and CA = C̃A. The decomposition of V into subspaces Vj ,
j = 1, . . . , N , is described in detail in [25]; here, we just recall the main ideas. Let
the domains 
j , j = 1, . . . , N , of the characteristic diameter H > 0 provide an
overlapping decomposition of 
 with the characteristic width of the overlap δ > 0.
We set for j = 1, . . . , N

Vj = {v ∈ H 1
0 (
); v|
i

∈ H 1
0 (
j ), v(x) = 0 for x ∈ 
 \ 
i} ⊂ V,

Let the space V0 be the span of continuous piece-wise linear functions over some
triangular grid of the mesh-size H which are zero on the boundary of 
, with each 
i

containing exactly one node of the coarse grid. The inner product in Vj is given by

(u, v)j = (u, v)V =
∫


j

∇u · ∇v dx for all u, v ∈ Vj , j = 0, 1, . . . , N,
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where we set 
0 = 
. The operators Bj in Vj are defined as

〈Bj u, v〉 = (u, v)j , for all u, v ∈ Vj , j = 0, 1, . . . , N .

Thus, cBj
= 1 and CBj

= 1. Note that for the decomposition, we use N+1 subspaces
of V where V0 is a finite-dimensional FE space over the whole domain 
 and V1,
. . . , VN are infinite-dimensional over the individual subdomains 
1, . . . , 
N . The
main result of the paper [25] states that for every u ∈ V there exist uj ∈ Vj , j =
0, 1, . . . , N , such that u =∑N

j=0 uj and

N∑

j=0

‖uj‖2
j ≤ C2‖u‖2

V ,

where C2 depends only on the ratio of the characteristic diameter and the charac-
teristic width of the overlap H/δ, on the minimum angle of the coarse triangulation
and on the maximum number of neighbors a node can have. For details see [25, The-
orem 5.12]. In order to prove the bound from below, we use [25, Theorem 2.5]
referring to [59, Theorem 2.7]. There exist C1 such that

C1‖u‖2
V ≤

N∑

j=0

‖uj‖2
j for all u ∈ V, u =

N∑

j=0

uj , uj ∈ Vj , j = 0, 1, . . . , N,

where C1 depends only on the maximum number of the neighboring subdomains
a subdomain can have. Thus, in the stable splitting assumption (109), we may set
cS = C1 and CS = C2. Finally, defining M by (89) and applying (114) yields

cA
C2

≤ 〈Au, u〉
〈Mu, u〉 ≤ CA

C1
, for all u ∈ V, u 
= 0, (119)

and the results of Sections 5 and 6 of our paper can be used as appropriate.
We point out that unlike [25], most of the literature use in a similar context only a

finite-dimensional FE space V ; see, e.g., [59], in particular Chapter 3.

7.2 Separate displacement preconditioning in linear elasticity

The separate displacement preconditioning was introduced in [6]. Here, we follow
its description in [11]. The formulation of the elasticity theory can be found in, e.g.,
[45]. Consider a bounded domain 
 ⊂ R

d , d = 2 or 3, the Hilbert space

V = {u ∈ (H 1(
))d ; u(x) = 0 on ∂
} (120)

and the subspaces V1, . . . , Vd ⊂ V such that

Vj = {u = (u1, . . . , ud) ∈ V ; uk = 0 for k 
= j}.
Thus, V and Vj , j = 1, . . . , d, are infinite-dimensional. We consider a general linear
elasticity problem which is a boundary value problem

Au = g,
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where the vector functions u ∈ V and g ∈ (L2(
)
)d

represent the displacement and
the load, respectively, and

(Au)i = −
d∑

j=1

∂

∂xj

d∑

k,l=1

cijkl

∂uk

∂xl

, i = 1, . . . , d.

Let

τij =
d∑

i,j=1

cijkl ekl(u) (121)

be the components of the Cauchy stress tensor with

eij (u) = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
.

We assume that the coefficients cijkl in (121) are bounded measurable functions in

, cijkl ∈ L∞(
), fulfilling the symmetry conditions

cijkl = cjikl = cklij , i, j, k, l = 1, . . . , d,

and that there exists a positive constant γ1 such that

γ1

d∑

i,j=1

ξ2
ij ≤

d∑

i,j,k,l=1

cijkl(x)ξij ξkl for all symmetric tensors ξ ∈ R
d×d , x ∈ 
.

The tensor ξ = (ξij )
d
i,j=1 is called symmetric if ξij = ξji , i, j = 1, . . . , d. We define

the inner product in V as

(u, v)V = 〈Au, v〉 :=
∫




d∑

i,j,k,l=1

cijkl

∂uk

∂xl

∂vi

∂xj

dx, for u, v ∈ V .

Thus cA = 1 and CA = 1. The inner products on Vj are defined as

(u, v)j = (u, v)V , for u, v ∈ Vj , j = 1, . . . , d.

We define the local preconditioners as

〈Biu, v〉 =
∫




d∑

j,l=1

cijil

∂ui

∂xj

∂vi

∂xl

dx, for u, v ∈ Vi, j = 1, . . . , d.

Note that 〈Bj u, v〉 = (u, v)j and thus CBj
= 1 and cBj

= 1. Any u ∈ V can be

decomposed as u = u(1) + · · · + u(d) where u(j) ∈ Vj , j = 1, . . . , d. For such
decompositions of u, v, we define the global preconditioner M as

〈Mu, v〉 =
d∑

i=1

〈Biu
(i), v(i)〉.

Then

〈Mu, v〉 =
∫




d∑

i,j,l=1

cijil

∂ui

∂xj

∂vi

∂xl

dx, for u, v ∈ V,
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According to [11], the following inequality holds (even for more general boundary
conditions than the homogeneous boundary conditions used in (120))

α‖u‖2
S ≤ ‖u‖2

V ≤ (1 + (d − 1)(1 − α))‖u‖2
S for all u ∈ V, (122)

where α = Kc0C
−1
1 where the Korn’s inequality constant K , c0, and C1 are given

for all u, v ∈ V by (for the proofs we refer to [11])

K

∫




d∑

i,j=1

∂ui

∂xj

∂vi

∂xj

dx ≤
∫




d∑

i,j=1

eij (u)eij (v) dx,

c0

∫




d∑

i,j=1

eij (u)eij (v) dx ≤
∫




d∑

i,j,k,l=1

cijkl

∂ui

∂xj

∂vk

∂xl

dx,

∫




d∑

i,j,l=1

cijil

∂ui

∂xj

∂vi

∂xl

dx ≤ C1

∫




d∑

i,j=1

∂ui

∂xj

∂vi

∂xj

dx.

Thus due to (122), we can set c−1
S = (1 + (d − 1)(1 − α)) and C−1

S = α and obtain

α ≤ 〈Au, u〉
〈Mu, u〉 ≤ (1 + (d − 1)(1 − α)) for all u ∈ V, u 
= 0. (123)

For the special case of isotropic elasticity with Lamé moduli λ and μ,

ciiii = λ + 2μ, ciijj = λ, cijij = cijji = μ, for i, j = 1, . . . , d, i 
= j

we have c0 = 2μ and C1 = λ + 2μ. For the homogeneous Dirichlet boundary
condition (used in (120)), the Korn’s constant is K = 1

2 . Then the spectral equiv-
alence (123) for the isotropic elasticity and homogeneous Dirichlet conditions is
formulated as

μ

λ + 2μ
≤ 〈Au, u〉

〈Mu, u〉 ≤ dλ + (1 + d)μ

λ + 2μ
for all u ∈ V, u 
= 0.

7.3 Additive algebraic multilevel preconditioning

Algebraic multilevel (AML) preconditioning methods are described in detail, e.g.,
in [21] and [5, Sections 9.1 and 9.2]. Let a domain 
, and the operator A be defined
by (118) in Section 7.1. Let V be a finite-dimensional space of FE functions defined
on 
 equipped with the inner product (u, v)V = 〈Au, v〉. Consider a splitting of V

into two hierarchical subspaces (coarse and fine) V1 ⊂ U2 ⊂ V ⊂ H 1
0 (
), with the

subspace V2 defined by U2 = V1 ⊕ V2, and the inner products (·, ·)j on Vj being
identical to the inner product (·, ·)V on V . The local preconditioners Bj are defined
by

〈Bj u, v〉 := (u, v)j for all u, v ∈ Vj , j = 1, 2.
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Then trivially cA = 1, CA = 1, cBj
= 1, CBj

= 1. We assume that there
exists the strengthened Cauchy-Bunyakowski-Schwarz constant γ ∈ 〈0, 1) such that

(u, v)2
V = 〈Au, v〉2 ≤ γ 2〈B1u, u〉〈B2v, v〉 = γ 2‖u‖2

1‖v‖2
2 for all u ∈ V1, v ∈ V2.

Note that for ã in (118) piece-wise constant on the coarse elements, sharp upper
bounds on the constant γ can be easily obtained for many specific positive definite
operators A and for many hierarchical splittings of V , and such upper bounds are
independent of the mesh-size; see e.g. [16, 39] and the references therein. Given the
value of γ , we can write for all u = u1 + u2, u1 ∈ V1, u2 ∈ V2

1

1 + γ
‖u‖2

V ≤ ‖u‖2
S = ‖u1‖2

1 + ‖u2‖2
2 ≤ 1

1 − γ
‖u‖2

V .

Thus setting

cS = 1

1 + γ
and CS = 1

1 − γ

and defining the global preconditioner as M−1 = B−1
1 +B−1

2 , we obtain from (114)
the spectral equivalence of A and M,

1 − γ ≤ 〈Au, u〉
〈Mu, u〉 ≤ 1 + γ for all u ∈ V, u 
= 0.

According to [8], omitting certain off-diagonal elements from the matrix represen-
tation of the (finer space) operator B2 results in a matrix representation of another
operator, say B̃2, which is tridiagonal and for which we can write

cB̃2
‖v‖2

2 ≤ 〈B̃j v, v〉 ≤ CB̃2
‖v‖2

2 for all v ∈ V2.

Defining M̃−1 = B−1
1 + B̃−1

2 , from (114) it follows

1 − γ

CB̃2

≤ 〈Az, z〉
〈M̃z, z〉 ≤ 1 + γ

cB̃2

for all z ∈ V, z 
= 0.

8 Conclusions

The presented construction of the splitting-based preconditioning M does not use
any specific information about the operator A except of being bounded, coercive, and
self-adjoint. As in the variety of approaches, methods, and theoretical results pub-
lished in literature, we therefore cannot expect to prove, in general, that the condition
number κ(M−1A) of the operator M−1A in the operator (89) (see Theorem 8) is
small. Similarly, we cannot expect to prove that the constants determining the spec-
tral equivalence of the operators A and M are close to each other (see Theorem 10),
with implications to the discretized problem, cf. Section 4.2. Apart from the condi-
tion number of the Gram matrix Sh in (66), Theorems 4 and 5 give the bounds for the
condition number and the spectral number of the discretized preconditioned operator,
respectively, that are independent of the discretization, but not more.

We believe however, that the presented generally formulated results can serve as
a basis for an easier comparison of existing approaches that can be put into the given
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framework. Incorporating an appropriate information about the operator A into the
construction of the preconditioning M can lead to stronger results on the condi-
tion number and/or the spectral number of the preconditioned operators and of their
discretizations; for recent examples see, e.g. [33, 38, 44, 49, 57].

Within the given framework, we concentrate on the condition number
κ(M−1

h Ah) and on the spectral number κ̂(Ah,Mh) defined by (66) and (70), respec-
tively; see also (74). As emphasized in the introduction and on several places
throughout the text, one should always be aware that, in general, these single-
number characteristics are (as any other single-number characteristics) insufficient
for describing convergence behavior of Krylov subspace methods. In this context, we
note that an arbitrary decomposition Mh = LhL∗

h leads to the uniquely determined
spectral number κ̂(Ah,Mh), and different choices of Lh, which are all related via
orthogonal transformations, see Section 4.1, result in the same convergence behav-
ior of the preconditioned conjugate gradient method despite the fact that they can
be associated with different transformations of the discretization bases. It is worth
noticing that here the same convergence behavior does not necessarily mean the
same computational cost as the computational cost per iteration can be different for
different choices of Lh.

Results on the inner structure of the spectrum of the preconditioned operator in
relation to the particular problem and its preconditioning can be found in [26]. Works
in this direction will extend much needed understanding of the efficiency of operator
preconditioning beyond single-number characteristics.
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Appendix

In the Appendix, we give the proof of the following theorem.

Theorem 1 Let A : V → V # be a linear, bounded, coercive, and self-adjoint ope-
rator. Using the standard definition of the operator norm, the boundedness constant
CA and the coercivity constant cA can be expressed as

CA = ‖A‖L(V ,V #) = sup
u∈V, ‖u‖V =1

〈Au, u〉 = MA, (124)

cA = mA = inf
v∈V, ‖v‖V =1

〈Av, v〉 = 1

supf ∈V #, ‖f ‖
V #=1 ‖A−1f ‖V

=
{
‖A−1‖L(V #,V )

}−1
. (125)
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Proof The equality (124) is well known. It follows from the following sequence of
equalities

CA = ‖A‖L(V ,V #) = ‖τA‖L(V ,V ) = sup
u∈V, ‖u‖V =1

(τAu, u)V

= sup
u∈V, ‖u‖V =1

〈Au, u〉 = MA. (126)

Here, we used the fact that for any self-adjoint operator S in a Hilbert space V

‖S‖L(V ,V ) = sup
z∈V, ‖z‖V =1

‖Sz‖V = sup
z∈V, ‖z‖V =1

(Sz, Sz)
1/2
V

= sup
z∈V, ‖z‖V =1

|(Sz, z)V |; (127)

see [14, Theorem 4.10.1, p. 220], [24, Theorem 6.5.1]. The second statement (125)
was published without proof in [41, Section 3.3]. Since cA = mA, it remains to prove
that

mA = 1

supf ∈V #, ‖f ‖
V #=1 ‖A−1f ‖V

= inf
u∈V, ‖u‖V =1

‖Au‖V # , (128)

where the second equality results from the substitution f = Au/‖Au‖V # , u ∈ V .
Equivalently, it remains to prove that

mA := inf
u∈V, ‖u‖V =1

(τAu, u)V = inf
u∈V, ‖u‖V =1

‖τAu‖V . (129)

Clearly (τAu, u)V ≤ ‖τAu‖V ‖u‖V , therefore the inequality

mA ≤ inf
u∈V, ‖u‖V =1

‖τAu‖V

is trivial. In order to prove the opposite inequality

mA ≥ inf
u∈V, ‖u‖V =1

‖τAu‖V ,

we use the fact that mA belongs to the spectrum of τA and therefore there exists a
sequence {vk}k=1,2,... in V , ‖vk‖V = 1, such that

lim
k→∞ ‖τAvk − mAvk‖V = 0; (130)

see [24, Corollary 6.5.6]. We will finish the proof by contradiction. Assume that

mA < inf
u∈V, ‖u‖V =1

‖τAu‖V − �
for some � > 0. Using the Cauchy-Schwarz inequality,

‖τAvk − mAvk‖2
V = ‖τAvk‖2

V + m2
A − 2mA(τAvk, vk)V

≥ ‖τAvk‖2
V + m2

A − 2mA‖τA‖V = (‖τAvk‖V − mA)2.

Then
‖τAvk − mAvk‖2

V ≥ �2 for all k = 1, 2, . . . ,

which gives the contradiction with (130) and completes the proof.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Numerical Algorithms (2020) 83:57–98 95



References

1. Arnold, D.N., Falk, R.S., Winther, R.: Preconditioning discrete approximations of the Reissner-
Mindlin plate model. RAIRO Modél. Math. Anal. Numér. 31(4), 517–557 (1997)

2. Arnold, D.N., Falk, R.S., Winther, R.: Preconditioning in H(div) and applications. Math. Comp.
66(219), 957–984 (1997)

3. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to
numerical stability. Bull. Amer. Math. Soc. (N.S.) 47, 281–354 (2010)

4. Atkinson, K., Han, W.: Theoretical Numerical Analysis. A Functional Analysis Framework. Texts in
Applied Mathematics, 3rd edn., vol. 39. Springer, Dordrecht (2009)

5. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1996)
6. Axelsson, O., Gustafsson, I.: Iterative methods for the solution of the Navier equations of elasticity.

Comput. Meth. Appl. Mech. Engrg. 15, 241–258 (1978)
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