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aFaculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech
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Abstract

The Stieltjes problem of moments seeks for a nondecreasing positive distribution function
µ(λ) on the semi-axis [0,+∞) so that its moments match a given infinite sequence of
positive real numbers m0,m1, . . . . In his seminal paper Investigations on continued
fractions published in 1894 Stieltjes gave a complete solution including the conditions
for the existence and uniqueness in relation to his main goal, the convergence theory of
continued fractions.

One can also reformulate the Stieltjes problem of moments as looking for a sequence
of positive distribution functions µ(1)(λ), µ(2)(λ), . . . , where the nth distribution function
has n points of increase and m0,m1, . . . ,m2n−1 represent its (first) 2n moments, i.e., as
the sequence of the finite Stieltjes moment problems. This view can be linked to iterative
solution of (large) linear algebraic systems. Providing that m0,m1, . . . are moments of
some linear, self-adjoint and coercive operatorA on a Hilbert space with respect to a given
vector f , the finite Stieltjes moment problems determine the iterations of the conjugate
gradient method applied for solving Au = f , and vice versa. Here the existence and
uniqueness is guaranteed by the properties of the operator A (reformulation for finite
sequences, matrices and finite vectors is obvious).

This fundamental link raises a question on how the solution of the finite Stieltjes
moment problem can be described purely algebraically. This has motivated the presented
exposition built upon ideas published previously by several authors. Since the description
uses matrices of moments, it is not intended for numerical computations.

Keywords: Stieltjes moment problem, continued fractions, Hankel matrices, Jacobi
matrices, Cholesky factorization of moment matrices.
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1. Introduction

Krylov subspace methods belong among important tools for solving large systems of
linear algebraic equations arising from many applications, and they are counted among
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the most important algorithmic discoveries of the 20th century. Hestenes and Stiefel
pointed out in their seminal paper published in 1952 [22] that the conjugate gradient
method (CG) “is related to the theory of orthogonal polynomials and to continued frac-
tion expansions” and they developed the connection in Sections 14–18 of their paper,
with references to the monographs on orthogonal polynomials by Szegö [42] and on an-
alytic theory of continued fractions by Wall [48]. This line of thought has however been
largely overshadowed by the primarily algorithmic description of CG and of Krylov sub-
space methods in most of the literature. It has been rarely mentioned that what we now
consider the state-of-the-art computational methods for solving large scale problems is in
fact very closely related to the discoveries in classical analysis and approximation theory
of the 19th century that culminates in several ways in the works of Thomas Jan Stielt-
jes. From the other side, the modern analytic works on continued fractions, orthogonal
polynomials, quadrature and approximations of functions very rarely mention that there
is a very closely related area of computational mathematics with widespread practical
applications and that understanding of the related methods and algorithms is built upon
the same mathematical principles (for more on this relationship we refer to [29]; see also
the text below.)

Motivated by the preceding reasoning, the presented text will focus on the description
of the problem of moments with two goals. First, it would like to pay a tribute to Stieltjes
and briefly recall his analytic solution embedded in the theory of convergence of continued
fractions. Second, it will reformulate the moment problem purely algebraically and
describe its solution using the Cholesky factorization of the associated Hankel matrices
with pointing out the connection to CG. We hope that this historical essay, which will
also point out to a certainly very incomplete list of cornerstone publications, can be of
interest to readers working in related but different areas.

The problem of moments appeared in mathematics (with the notion of moments
inspired from mechanics) in the second half of the 19th century with the works of Cheby-
shev, Markov, Christoffel, Heine, Stieltjes and others. They were related to several
very close lines of thoughts in the fields that are now unfortunately considered in our
fragmented and overspecialized world distinct and far from each other. While the main
motivation of Chebyshev and Markov was obtaining limiting results in probability theory,
Stieltjes was primarily interested in the question of convergence of continued fractions,
i.e., in approximation of analytic functions. The term moment problem was used for
the first time by Stieltjes in his seminal paper Investigations on continued fractions [40]
published in 1894, the year of his death at the age of 38 (please notice that throughout
our text we refer to the English translation published by Springer in 1993). This paper
has influenced development of a large area of mathematics, pure and applied, as well as
development of various methods used in computational sciences.

To give an example, the paper by Stieltjes also introduced (what is now called)
the Riemann-Stieltjes integral, which influenced in a substantial way development of
the spectral theory of self adjoint operators in Hilbert spaces in the works of Hilbert, F.
Riesz, Stone, Wintner, von Neumann, Hellinger, Toeplitz and many others. These results
now represent a classical part of functional analysis and operator theory, but they also
formed mathematical foundations of quantum mechanics. The integral representation
of operators, moment problem, method of moments and the closely related method of
continued fractions represent important tools in mathematical and theoretical physics.
The operator theory view to the problem of moments, its connections and impact are
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beautifully documented, e.g., in the classical monograph on linear operators by Dunford
and Schwartz published in three parts of total 2591 pages within the years 1958 [11]
covering general theory, 1963 [12] covering spectral theory of self-adjoint operators in
Hilbert spaces and 1971 [13] devoted to the so called spectral operators. In relation to the
moment problem and the impact of Stieltjes, an interested reader may enjoy, in particular,
[12], Notes and Remarks to Chapter X, pp. 926–936, Section 8 Moment Theorems of
Chapter XII, pp. 1250–1256, and Notes and Remarks to the same chapter, pp. 1268–
1277. The Hamburger moment problem using infinite dimensional Jacobi matrices is
investigated in [41, Chapter X, § 4, in particular pp. 606–614]; see also [50, Chapter 6,
§ 114 and § 115, pp. 238–242].

In [12, Chapter XII, Section 8] the Stieltjes moment problem results (and the related
Hamburger moment problem results) are proved using the spectral theory of self adjoint
operators on Hilbert spaces. In relation to this approach it is interesting to recall contri-
butions of Akhiezer (and the associated results of Krein), which are referred to in [12], as
well as the contributions of Vorobyev, which are not referred to there and which remain,
up to now, almost unknown in the operator theory literature. The seminal paper by
Akhiezer [1] published in Russian in 1941 used for solving the problem of moments the
link with infinite Jacobi matrices. The concept has later been extended and beautifully
exposed in the monograph [2, see, in particular, Chapter 4], with the original Russian
version published in 1961. Another beautiful monograph by Gantmacher and Krein [15],
with the first Russian edition published in 1941, does not deal with the problem of mo-
ments, but it presents a remarkable mechanical interpretation of the results published
by Stieltjes in [40]; see in particular the comprehensive summary due to Krein in [15,
Supplement II, pp. 283–297].

The paper by Vorobyev [46] published in 1954 contains in Section 1 a concise de-
scription of the so called restricted problem of moments in the Hilbert space with the
solution based on the restriction of operators to the finite dimensional subspace and the
subsequent spectral representation. The focus of the paper, as well as of the monograph
[47], published originally in Russian in 1958, is on solving problems in application areas.
This is also reflected in the title of [47] with the key words method of moments, which
is used since then in many publications throughout theoretical physics, computational
sciences and engineering. Vorobyev also emphasized the direct link between the work of
Stieltjes and his results presented in [40], the results of Chebyshev and Markov, and the
ideas behind Krylov subspace methods for solving linear equations and approximating
eigenvalues. He referred to the works of A. N. Krylov, Lanczos, Hestenes and Stiefel,
which gave birth to Krylov subspace methods that are, as mentioned above, of primary
importance in many large scale computations; see also [8]. Vorobyev also referred to the
works of Karush [24] and Stesin [39] on extension of the given ideas to problems with
compact self-adjoint operators. In the paper on CG [22], Hestenes and Stiefel made the
link to Gauss quadrature and they used the Riemann-Stieltjes integral representation
of operators. This link and the seminal discoveries of C. C. Paige (see, e.g., [34]) has
later inspired the ground breaking results of Greenbaum on the behavior of the Lanc-
zos method and CG in finite precision arithmetic [21]; see also [33], [29, Section 5.9].
Vorobyev realized that CG and the Lanczos method for approximating eigenvalues are
mathematically equivalent to the method of moments using operator formulation, and
he derived the CG and the Lanczos method from this formulation. In this way he com-
pleted the link between the Stieltjes (Hamburger) moment problem (in his terminology
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“the scalar problem of moments”) with the operator moment problem, and between
the classical analytic investigations and applied computations used in solving algebraic
problems in sciences and engineerings.

It is worth noticing that Akhiezer and Vorobyev did not refer to the each other
work. This can perhaps be partially attributed to the separation of the pure and applied
mathematics as different disciplines. Such separation neither existed at the time of Euler,
nor at the times of Gauss, Jacobi, Chebyshev, Markov and Stieltjes. It has arised only
in the 20th century, and it unfortunately remains present despite warnings of many
distinguished mathematicians, working also in other areas such as theoretical physics,
including Lanczos. The presented text wishes to contribute (in a rather modest way)
towards emphasizing the links by presenting two different views to proving existence and
uniqueness of solution to the (finite) moment problem.

Section 2 will recall, with giving detailed references, the moment problem related
results in the Stieltjes paper [40], which can be useful, in complement to the existing
broader surveys, in particular for nonspecialist readers. We believe that the work of
Stieltjes deserves wider recognition. Many references to this work in the classical mono-
graph on orthogonal polynomials by Szegö [42], including the paper [40], can serve as a
strong supporting argument. On the other hand, the very interesting proceedings [28]
showing the widespread use of moments in mathematics (and behind) surprisingly does
not contain a quote to the Stieltjes paper [40]. Section 2 of the presented paper pays a
tribute to the work of Stieltjes. Section 3 describes the algebraic solution of the finite
Stieltjes moment problem. Since our exposition is built upon results scattered in litera-
ture, this might be useful for those who like to see the relationships between approaches
for solving the same problem using different mathematical thoughts.

1.1. Brief comments on literature

In the following we will briefly comment on a (certainly rather incomplete) list of
monographs, surveys and articles which may be of interest to readers who are not spe-
cialists in the area. The survey [27] by Kjeldsen represents a highly recommendable
reading to all interested in the history of the moment problem and of the contribution
by Stieltjes. The quotes to the correspondence between Stieltjes and Hermite is of par-
ticular interest; it offers an insight into the process that led Stieltjes to formulating and
solving the problem (see pp. 21–35). The second part of [27] (pp. 35–43) explains the
generalization to the Hamburger moment problem and how the generalizations became
independent of the theory of continued fractions, moving towards the field of complex
function theory (with the work of Nevanlinna) and to the field of functional analysis
(with the work of M. Riesz). The beautiful survey [45] by Van Assche describes the
work of Stieltjes on continued fractions and on the moment problem (Sections 1 and
2), including some related topics, namely the electrostatic interpretation of the roots
of orthogonal polynomials (Section 3), the Markov-Stieltjes inequalities and the Gauss
quadrature (Section 4), and some special orthogonal polynomials (Section 5). Through-
out the survey Van Assche referred to many developments that were deeply influenced
by the contribution of Stieltjes. Further clarifications and insightful comments can be
found in [44], an addendum to [45] by Valent and Van Assche.

Shohat and Tamarkin gave a theoretical presentation of the moment problem in their
classical monograph [38], with Section 1 of the Introduction (pp. vii–xi) presenting a
brief historical review of the problem. Chapter I starts from a more general case of a
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multiple sequence of real numbers and then restricts to the case of the Hamburger and
the Stieltjes moment problems in Section 2 (pp. 4–6) and Section 6 (pp. 19–21). Chapter
II thoroughly investigates the Hamburger moment problem, in particular explaining the
connection with orthogonal polynomials and with continued fractions; note that Sections
24-25 (pp. 72–76) are devoted to the Stieltjes moment problem. Chapter III presents
various modifications of the moment problem and Chapter IV connection with quadrature
formulas. The book [3] by Akhiezer and Krein is composed of six articles dealing with
several specialized questions regarding the moment problem. The first article presents
the basic results and it is subdivided into three chapters. In particular, the solution of
the finite Hamburger moment problem can be found in Chapter I (see Theorem 3, p. 8),
while the solution of the infinite case is given in Chapter II (see Theorem 7, pp. 51–52).
Articles II-IV treat the moment problem in the light of functional analysis and Articles
V and VI apply the derived results to the study of a special class of functions. The
monograph [2] by Akhiezer mentioned above discusses in the first chapter properties of
the infinite Jacobi matrices and of the associated orthogonal polynomials. In particular,
Section 4, Chapter 1 (pp. 20–24) is devoted to the connections with quadrature formulas
and continued fractions. Chapter 2 gives the conditions for the existence of the solution
of the Hamburger moment problem (Section 1, pp. 29–34). The chapter also discusses the
connection with completeness of some related spaces of functions (Section 2–3, pp. 34–49),
relationship with certain analytic functions (Section 4–5, pp. 49–67), and interpretation
of the moment problem as a problem of continuation of a positive functional (Section
6, pp. 68–79). Stieltjes’ results on continued fractions can be found in the Appendix
(pp. 232–242). The remaining chapters are devoted to the connection with interpolation
problems in the theory of functions (Chapter 3); with the spectral theory of operators
(Chapter 4); with the trigonometric moment problem and its connection with the integral
representation of some specific functions (Chapter 5).

A geometrical point of view on the moment problem is offered by the monograph [23]
by Karlin and Shapley that thoroughly investigates the moment spaces using convex sets
and distributions, which represents an interesting complement to the approaches linked
with continued fractions. The monumental historical monograph [7] and the monograph
[6] by Brezinski about formal (general) orthogonal polynomials and Padé-type approx-
imations give, besides mathematical descriptions, an incredible amount of well-sorted
historical information. In [6] the Hamburger and the Stieltjes moment problems are
presented as particular cases in Section 2.10 (pp. 115–125). The connection with con-
tinued fractions is given in Section 3.2 (pp. 152–159). In [7] the historical description
of Stieltjes’ work on the convergence of continued fractions can be found in Section
5.2.4 (pp. 227–235), and the more general case connected with the Hamburger moment
problem is presented in Section 6.3 (pp. 284–291).

The book on Krylov subspace methods [29] can serve as a reference for readers inter-
ested in the connections between the Stieltjes moment problem (Section 3.1, pp. 73–76),
the model reduction and the Gauss quadrature (Section 3.2, pp. 76–88), orthogonal poly-
nomials and continued fractions (Section 3.3, pp. 89–108), Jacobi matrices (Section 3.4,
pp. 108–136), the Lanczos algorithm and CG (Section 3.5, pp. 136–142), and many other
related topics. In particular, various useful information can be found in the historical
comments in Section 2.5.7 (pp. 64–69), Sections 3.3.5 and 3.3.6 (pp. 104–108), Section
3.4.3 (pp. 130–136), Remark 3.5.1 (pp. 139–140) and Section 4.9 (pp. 222–226).

Among the extensive literature on orthogonal polynomials and continued fractions we
5



refer the reader to the classical monograph on orthogonal polynomials [42] by Szegö, the
books on continued fractions [48] by Wall and [30] by Lorentzen and Waadeland. The
monograph [9] by Bultheel and Van Barel emphasizes interconnections between analytic
and algebraic descriptions and it covers rational approximations, orthogonal polynomials,
related matrix theory, as well as the connection to linear dynamical systems and signal
processing. The monograph [26] by Khrushchev focuses on the historical development
and provides references to very many original sources, including the contributions of
Euler, Chebyshev and Markov. It is also worth pointing out the paper [20] by Gragg
on the matrix interpretation of continued fraction algorithm where many links between
different views can be found. Pointers to many references can also be found in the papers
[36, 37] focusing the more general context of Gauss quadratures for linear functionals and
their connection with formal orthogonal polynomials, complex Jacobi matrices, and the
non-Hermitian Lanczos algorithm.

2. The Stieltjes moment problem

Given a finite sequence of 2n positive real numbers m0,m1, . . . ,m2n−1, the finite

Stieltjes problem of moments addressed in this paper looks for a positive solution ω
(n)
` >

0, ` = 1, . . . , n, and 0 < λ
(n)
1 < λ

(n)
2 < · · · < λ

(n)
n of the system of 2n equations

n∑
`=1

ω
(n)
`

{
λ
(n)
`

}j

= mj , j = 0, 1, . . . , 2n− 1. (2.1)

In the 1894 paper [40] Stieltjes considered the case of an infinite sequence of positive real
numbers m0,m1, . . . and he proposed the problem of finding a positive mass distribution
with mass ω` > 0 concentrated at the distance λ` > 0 from the origin so that

∞∑
`=1

ω` {λ`}j = mj , j = 0, 1, . . . ;

see [40, Section 24, pp. 648–650] (whenever we point to particular pages in [40], we
always refer to the English translation published by Springer in 1993). Moreover, in [40,
Sections 37–38, pp. 665–669] Stieltjes introduced what is known today as the Riemann-
Stieltjes integral, and he reformulated the moment problem as the problem of finding
a nondecreasing positive distribution function µ(λ) so that the associated Riemann-
Stieltjes integral satisfies∫ ∞

0

λj dµ(λ) = mj , for j = 0, 1, . . . ; (2.2)

see [40, Section 48, pp. 685–686, Sections 51–53, pp. 688–695]. If such distribution
function exists, then the real numbers m0,m1, . . . are known as its moments. If m0 = 1,
the moment problem is normalized and the total mass

∑∞
`=1 ω` is equal to one. Stieltjes

did not consider m0 = 1 and we follow his setting here. The modification for m0 = 1 is
obvious.
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Inspired by the presentation of the moment problem history by Kjeldsen [27], we
briefly recall main ideas behind the solution of Stieltjes. It was embedded in investigation
of convergence of continued fractions with positive coefficients a1, a2, . . .

S(λ) =
1

−a1λ+
1

a2 +
1

−a3λ+
1

a4 +
1

· · ·

(2.3)

(Stieltjes used the variable z = −λ). The 2nth convergent S2n(λ) of S(λ)

S2n(λ) =
1

−a1λ+
1

a2 +
1

a2n−2 +

.. .

−a2n−1λ+
1

a2n

=
p2n(λ)

q2n(λ)
(2.4)

is a rational function where the numerator p2n(λ) has degree n− 1 and the denominator
q2n(λ) has degree n. Analogously, the (2n+1)st convergent S2n+1(λ) = p2n+1(λ)/q2n+1(λ)
is the rational function obtained by truncating S(λ) after the term −a2n+1λ, with
p2n+1(λ) of degree n and q2n+1(λ) of degree n + 1; see [40, Section 2, p. 616]. We
will now recall how Stieltjes defined the distribution function associated with the given
continued fraction S(λ). Then we turn into his solution of the moment problem.

Considering the decomposition into partial fraction

S2n(λ) =
p2n(λ)

q2n(λ)
=

n∑
`=1

ω
(n)
`

λ
(n)
` − λ

, (2.5)

the first 2n coefficients m0,m1, . . . ,m2n−1 of the formal power series expansion

S2n(λ) = −m0

λ
− m1

λ2
− · · · − m2n−1

λ2n
− · · · ,

can be expressed as

mj =

n∑
`=1

ω
(n)
`

{
λ
(n)
`

}j

, j = 0, 1, . . . , 2n− 1;

see [40, Section 8, p. 625]. Moreover, the roots 0 < λ
(n)
1 < λ

(n)
2 < · · · < λ

(n)
n of q2n(λ) are

positive and distinct, and the coefficients ω
(n)
1 , ω

(n)
2 , . . . , ω

(n)
n are positive; see [40, Section

3, pp. 617–618]. A similar result holds for the first 2n + 1 coefficients m0,m1, . . . ,m2n

of the formal power series expansion of S2n+1(λ), which can be expressed as

mj =

n∑
`=0

ν
(n)
`

{
θ
(n)
`

}j

, j = 0, 1, . . . , 2n,
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with ν
(n)
0 , ν

(n)
1 , . . . , ν

(n)
n positive coefficients and 0 = θ

(n)
0 < θ

(n)
1 < · · · < θ

(n)
n ; see [40,

Section 3, pp. 617–618, and Section 8, p. 625].
Summarizing, given the continued fraction (2.3), the convergent S2n(λ) determines

the nondecreasing positive distribution function µ(n)(λ) with n points of increase (see
[40, Section 36, p. 665])

µ(n)(λ) =


0 if λ < λ

(n)
1∑k

`=1 ω
(n)
` if λ

(n)
k ≤ λ < λ

(n)
k+1,∑n

`=1 ω
(n)
` if λ

(n)
n ≤ λ

k = 1, . . . , n− 1, (2.6)

where ω
(n)
k > 0 is the size of the jump at the node λ

(n)
k > 0, such that∫ ∞

0

λj dµ(n)(λ) =

n∑
`=1

ω
(n)
`

{
λ
(n)
`

}j

= mj , j = 0, 1, . . . , 2n− 1. (2.7)

Similarly, S2n+1(λ) determines the distribution function µ̃(n)(λ) with the n + 1 points

of increase (in increasing order) θ
(n)
0 = 0, θ

(n)
1 , . . . , θ

(n)
n and the size of the jumps

ν
(n)
0 , ν

(n)
1 , . . . , ν

(n)
n .

In [40, Section 44, p. 677] Stieltjes defined the following distribution functions that
can be expressed in nowadays terminology as (see [27, p. 31])

µ(λ) :=
1

2

(
lim sup
n→∞

µ(n)(λ) + lim inf
n→∞

µ(n)(λ)

)
,

µ̃(λ) :=
1

2

(
lim sup
n→∞

µ̃(n)(λ) + lim inf
n→∞

µ̃(n)(λ)

)
,

which satisfy

mj =

∫ ∞
0

λj dµ(λ) =

∫ ∞
0

λj dµ̃(λ) for j = 0, 1, . . . ;

see [40, Section 48, p. 685]. Given the continued fraction S(λ) with positive coefficients,
the distribution functions µ(λ) and µ̃(λ) exist but they may not be equal.

Up to now, the primary information was the continued fraction (2.3). Now we return
back to the problem of moments with the sequence of positive real numbers m0,m1, . . .
being the primary given data. Consider the Hankel matrices composed by the sequence
m0,m1, . . .

H
(k)
j =


mk mk+1 . . . mk+j

mk+1 mk+2 . . . mk+j+1

...
...

...
mk+j mk+j+1 . . . mk+2j

 , (2.8)

and their determinants ∆
(k)
j (with ∆j = ∆

(0)
j and Hj = H

(0)
j for simplicity of notation).

The coefficients of the continued fraction S(λ) can then be expressed in terms of the
given data m0,m1, . . . by the formulas

a2j−1 =
(∆

(1)
j−2)2

∆j−2∆j−1
and a2j =

(∆j−1)
2

∆
(1)
j−1∆

(1)
j−2

, j = 1, 2, . . . , (2.9)
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with ∆−1 = ∆
(1)
−1 = 1; see [40, Section 11, Equation (7), p. 630]. Therefore, given a

sequence of positive real numbers

m0,m1,m2, . . . ,

with the Hankel determinants

∆j > 0 and ∆
(1)
j > 0, for j = 0, 1, . . . , (2.10)

there exists a continued fraction (2.3) with positive coefficients a1, a2, . . . determining
the distribution functions µ(λ) and µ̃(λ) solving the infinite Stieltjes moment problem.

We see that Hn−1, H
(1)
n−1 being positive definite for all n = 1, 2, . . . is sufficient for the

existence of the solutions µ(λ) and µ̃(λ) to the infinite moment problem (2.2); see [40,
Section 51, pp. 688–690].

The assumption of Hn−1, H
(1)
n−1 being positive definite, n = 1, 2, . . . , is also necessary.

Indeed, in [40, Section 8, p. 625] Stieltjes showed that equality (2.7) implies the Hankel

matrix H
(k)
j to be positive definite for every k + 2j ≤ 2n − 1. In particular, Hn−1 and

H
(1)
n−1 are positive definite. Therefore, (2.10) is the necessary and sufficient condition for

the existence of a solution of the infinite Stieltjes moment problem (2.2); see [40, Section
24, p. 649].

Finally, we consider the question as to whether the constructed solution is unique. In
the derivation of the previous results Stieltjes distinguished two cases. If

∞∑
n=1

an < +∞ (indeterminate case),

then S(λ) does not converge, while each of the subsequences S2n(λ) and S2n+1(λ) con-
verges to a different analytic function in C \ R+, where R+ is the positive real line,
i.e.,

lim
n→∞

S2n(λ) = −
∫ ∞
0

1

λ− ξ
dµ(ξ),

lim
n→∞

S2n+1(λ) = −
∫ ∞
0

1

λ− ξ
dµ̃(ξ).

Hence µ(λ) and µ̃(λ) are two of the infinitely many solutions of the infinite moment
problem (2.2); see [40, Section 24, pp. 649–650, Sections 51–53, pp. 688–694]. Moreover,
for any solution ψ(λ) of the moment problem (2.2) we get the bounds

−
∫ ∞
0

1

λ− ξ
dµ(ξ) ≤ −

∫ ∞
0

1

λ− ξ
dψ(ξ) ≤ −

∫ ∞
0

1

λ− ξ
dµ̃(ξ);

see [40, Section 52, pp. 690–692]. If, on the other hand,

∞∑
n=1

an diverges (determinate case),
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then the continued fraction S(λ) converges to an analytic function in C \ R+ which can
be expressed as

S(λ) = lim
n→∞

S2n(λ) = lim
n→∞

S2n+1(λ) = −
∫ ∞
0

1

λ− ξ
dµ(ξ) = −

∫ ∞
0

1

λ− ξ
dµ̃(ξ)

and µ(λ) = µ̃(λ) is the unique solution of the moment problem (2.2); see [40, Section 54,
pp. 694–695].

As remarked by Stieltjes on p. 689 of [40], Chebyshev, Heine, and Darboux studied
continued fractions of the kind

F (λ) =
γ0

α1 − λ−
γ1

α2 − λ−
γ2

α3 − λ−
γ3
· · ·

. (2.11)

In [40, Introduction, pp. 609–613], Stieltjes described that under certain conditions1 on
the coefficients αj and γj the form (2.11) is equivalent to the form (2.3). Moreover, if the
two continued fractions are equivalent, then the nth convergent Fn(λ) of (2.11) is equal
to the 2nth convergent S2n(λ) of (2.3). As shown by Stieltjes, Fn(λ) = S2n(λ) converges
to an analytic function on C \ R+. Convergence of S(λ) cannot be investigated using
only its even convergents and this has probably contributed to the fact that it had not
been taken into consideration before Stieltjes work.

Obviously, the previous development also gives solution to the finite moment problem
(2.1). Consider a finite sequence of 2n positive real numbers m0,m1, . . . ,m2n−1. If Hn−1

and H
(1)
n−1 are positive definite, then there exists a continued fraction S(λ) of the kind

(2.3) such that the 2nth convergent S2n(λ) can be developed into the power series around
infinity

S2n(λ) =
p2n(λ)

q2n(λ)
= −m0

λ
− m1

λ2
− · · · − m2n−1

λ2n
− . . . ,

where the coefficients ai of S(λ) are given for i = 1, . . . , 2n by the equations (2.9) and by
any chosen sequence of positive real numbers for i = 2n+ 1, 2n+ 2, . . . . The distribution
function (2.6) then gives solution to the finite Stieltjes moment problem (2.1). Vice versa,
using the results in [40, Section 8, p. 625], existence of a solution of the finite moment

problem (2.1) implies that the matrices Hn−1 and H
(1)
n−1 are positive definite. In general,

there exist infinitely many distribution functions having moments m0,m1, . . . ,m2n−1,
consider, e.g., µ(j+1)(λ) and µ̃(j)(λ) for j ≥ n; see also [23, Section 21]. However,
since the decomposition into the partial fraction (2.5) is unique, µ(n)(λ) is the unique
distribution function with n points of increase having moments m0,m1, . . . ,m2n−1, i.e.,
the unique solution to the finite Stieltjes moment problem (2.1). Summarizing, we have
the following theorem.

1Such conditions are satisfied, e.g., for continued fractions associated with CG applied to a linear
system with a Hermitian positive definite matrix, respectively with a linear self-adjoint and coercive
operator on a Hilbert space; see [22, Section 18] and [29, Section 3.3.2], respectively [31, Sections 5.1,
5.2 and Chapter 11].
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Theorem 2.1 (Classical solution of the finite Stieltjes moment problem).
Consider 2n positive real numbers m0,m1, . . . ,m2n−1. The system of 2n equations

n∑
`=1

ω
(n)
`

{
λ
(n)
`

}j

= mj , j = 0, 1, . . . , 2n− 1

has the positive solution ω
(n)
` > 0, ` = 1, . . . , n, 0 < λ

(n)
1 < λ

(n)
2 < · · · < λ

(n)
n if and only

if the Hankel matrices Hn−1 and H
(1)
n−1 composed of m0,m1, . . . ,m2n−1 (see (2.8)) are

positive definite. The solution is unique and it is given by the poles λ
(n)
` and the weights

ω
(n)
` obtained by the decomposition of the rational function p2n(λ)/q2n(λ) into the partial

fraction

p2n(λ)

q2n(λ)
=

n∑
`=1

ω
(n)
`

λ
(n)
` − λ

,

where S2n(λ) = p2n(λ)/q2n(λ) is the finite continued fraction given by (2.4) whose 2n
positive coefficients a1, a2, . . . , a2n are given by

a2j−1 =
(∆

(1)
j−2)2

∆j−2∆j−1
and a2j =

(∆j−1)
2

∆
(1)
j−1∆

(1)
j−2

, j = 1, . . . n,

with ∆j and ∆
(1)
j the determinants of Hj and H

(1)
j−1, ∆−1 = ∆

(1)
−1 = 1.

The following part of the text will derive the necessary and sufficient conditions for the
existence and uniqueness and it will present a straightforward algebraic solution to the
finite Stieltjes moment problem by means of the Cholesky decomposition of the Hankel
matrix Hn−1.

3. Algebraic solution of the finite Stieltjes moment problem

Consider first a specific variant of the moment problem associated with a linear,
self-adjoint and coercive operator A on a Hilbert space (or, analogously, with a finite
Hermitian positive definite matrix). Given a nonzero vector f , the solution of the linear
equation

Ax = f (3.1)

always exists and it is unique. Forming a sequence of moments

mj = (f,Aj f)H , j = 0, 1, . . . , (3.2)

where (·, ·)H denotes the given Hilbert space inner product, we can consider a sequence
of the finite Stieltjes moment problems determined by m0,m1, . . . ,m2n−1, n = 1, 2, . . . .
They are associated with the spectral distribution function determined by the spectral
decomposition of A and the spectral projection of f ; see, e.g., [31, Section 5.2 and
the references given there] or [29, Chapter 3]. Each finite Stieltjes moment problem
determined by the data m0,m1, . . . ,m2n−1, n = 1, 2, . . . , has the unique solution given
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by the eigenvalues and the normalized first components of the eigenvectors of the Jacobi
matrices Jn from the Lanczos recurrence

AQn = QnJn + βnqn+1e
∗
n, n = 1, 2, . . . , (3.3)

where Qn is the (formal) matrix containing as its columns the orthonormal basis of the

nth Krylov subspace {q1,A q1, . . . ,An−1 q1}, q1 = f/(f, f)
1/2
H .

In this way, any finite Stieltjes moment problem defined by the first 2n moments
m0,m1, . . . ,m2n−1 given by (3.2) is uniquely solved by the first n steps of the Lanczos
method applied to A, q1, or by CG applied to (3.1) (here we consider, with no loss of
generality, a zero initial approximation).

Unlike in [31] and [29], the following text (as well as the whole paper) considers the mo-
ment problem without an underlying assumption that the data m0,m1, . . . ,m2n−1 are de-
termined as moments (3.2), i.e., are determined by some distribution function that is go-
ing to be approximated. Given any sequence of positive real numbers m0,m1, . . . ,m2n−1,
we have to therefore primarily address the questions of existence and uniqueness. We will
present an algebraic construction of the solution of the Stieltjes moment problem (2.1)
that does not use the concept of continued fractions and combines Cholesky factorization
of the matrix Hn−1 with the three-term recurrences for orthogonal polynomials and the
associated Lanczos vectors.

Consider the symmetric bilinear form (·, ·) : Pn−1 × Pn−1 → R, which is defined on
the space of polynomials of degree at most n − 1 with real coefficients Pn−1, by the
prescribed 2n positive real numbers

(λi, λj) = mi+j for 0 ≤ i+ j ≤ 2n− 1. (3.4)

Notice that the bilinear form is also defined for (λn, λj) = (λj , λn) = mn+j for j =
0, . . . , n − 1. If the Hankel matrix Hn−1 composed of the numbers m0,m1, . . . ,m2n−2
(see (2.8)) is positive definite, i.e., if ∆j > 0 for j = 0, . . . , n − 1, then by the Cholesky
factorization we get the unique lower triangular matrix Ln−1 with positive elements on
the diagonal so that

Hn−1 = Ln−1L
∗
n−1, (3.5)

with In the identity matrix of dimension n (L∗ denotes the Hermitian transpose of L; the
matrices used here are real and we use this notation for an ordinary transpose). Consider
the inverse of the Cholesky factor

L−1n−1 =

ξ1,1...
. . .

ξn,1 . . . ξn,n


and the polynomials ϕ0(λ), ϕ1(λ), . . . , ϕn−1(λ) defined by the rows 1, 2, . . . , n of L−1n−1
respectively,

ϕi(λ) =

i∑
j=0

ξi+1,j+1λ
j , for i = 0, . . . , n− 1; (3.6)
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see [18, Section 4] and [32]. Then (whenever appropriate we skip the argument λ for
simplicity of notation)

L−1n−1Hn−1L
−∗
n−1 =


(ϕ0, ϕ0) (ϕ0, ϕ1) . . . (ϕ0, ϕn−1)
(ϕ1, ϕ0) (ϕ1, ϕ1) . . . (ϕ1, ϕn−1)

...
...

...
(ϕn−1, ϕ0) (ϕn−1, ϕ1) . . . (ϕn−1, ϕn−1)

 = In,

i.e.,
(ϕi, ϕj) = δij , for i, j = 0, . . . , n− 1,

where δij denotes the Kronecker delta. With Hn−1 positive definite, any polynomial

ϕ(λ) 6= 0 in Pn−1 can be written as ϕ(λ) =
∑n−1

`=0 η`ϕ`(λ), with polynomials ϕj(λ)
defined in (3.6). Hence,

(ϕ,ϕ) =

n−1∑
`=0

n−1∑
k=0

η`ηk(ϕ`, ϕk) =

n−1∑
`=0

η2` > 0.

Consequently, the bilinear form (·, ·) defined by (3.4) is an inner product on Pn−1 and
the polynomials ϕ0, ϕ1, . . . , ϕn−1 are orthonormal polynomials with respect to this inner
product. It remains to show that the inner product (3.4) is given as

(ϕ,ψ) =

n∑
`=1

ω
(n)
` ϕ

(
λ
(n)
`

)
ψ
(
λ
(n)
`

)
(3.7)

with ω
(n)
` > 0, ` = 1, . . . , n, and 0 < λ

(n)
1 < λ

(n)
2 < · · · < λ

(n)
n , which will provide, as

proved below, the solution to the finite Stieltjes moment problem (2.1).
The orthonormal polynomials defined by (3.4)

ϕ0(λ) =
1
√
m0

, ϕ1(λ), . . . , ϕn−1(λ)

satisfy the three-term recurrence

βjϕj(λ) = (λ− αj−1)ϕj−1(λ)− βj−1ϕj−2(λ), j = 1, 2, . . . , n− 1, (3.8)

where β0 = 0, ϕ−1(λ) = 0, ϕ0(λ) = 1/
√
m0 and the coefficients αj−1, βj are given by

αj−1 = (λϕj−1, ϕj−1), βj = ‖(λ− αj−1)ϕj−1 − βj−1ϕj−2‖, (3.9)

with the norm ‖ · ‖ = (·, ·)1/2; see, e.g., [10, Chapter I, Section 4], [29, Section 3.3.1].
Consider now for j = n the polynomial

ϕ̂n(λ) = (λ− αn−1)ϕn−1(λ)− βn−1ϕn−2(λ), (3.10)

where αn−1 = (λϕn−1, ϕn−1) is well-defined due to (3.4). Clearly,

(ϕ̂n, ϕj) = 0, j = 0, . . . , n− 1
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by construction (please notice that here (·, ·) represents only the bilinear form). We will
denote

ψn(λ) =
(
λ− λ(n)1

)
· · ·
(
λ− λ(n)n

)
(3.11)

the monic counterpart of ϕ̂n(λ); see [29, relations (3.2.11)–(3.2.12), pp. 80–81]. We will
show that (3.11) indeed defines the positive distinct nodes needed for (2.1).

The recurrences (3.8)–(3.10) can be written in the compact form as (see, e.g., [49,
Section 2.4], [29, Section 3.3.1])

λΦn(λ) = JnΦn(λ) + ϕ̂n(λ)en, (3.12)

where Φn(λ) = [ϕ0(λ), ϕ1(λ), . . . , ϕn−1(λ)]T , en = [0, . . . , 0, 1]T is the nth vector of the
Euclidean basis, and Jn is the nth Jacobi matrix

Jn =


α0 β1

β1 α1
. . .

. . .
. . . βn−1

βn−1 αn−1

 , βj > 0, j = 1, . . . , n− 1.

Since ϕ̂n(λ
(n)
` ) = 0, (3.12) immediately gives

Jn Φn

(
λ
(n)
`

)
= λ

(n)
` Φn

(
λ
(n)
`

)
, ` = 1, . . . , n

and therefore λ
(n)
` , ` = 1, . . . , n, represent the eigenvalues of Jn. Notice that Φn(λ) 6= 0

for every λ since ϕ0(λ) = 1/
√
m0 6= 0.

Let in addition to Hn−1, also the symmetric matrix (see (2.8))

H
(1)
n−1 =


(λ, 1) (λ, λ) . . . (λ, λn−1)
(λ2, 1) (λ2, λ) . . . (λ2, λn−1)

...
...

...
(λn, 1) (λn, λ) . . . (λn, λn−1)


be positive definite. Since an easy manipulation gives (see [25, Theorem 2])

L−1n−1H
(1)
n−1L

−∗
n−1 =


(λϕ0, ϕ0) (λϕ0, ϕ1) . . . (λϕ0, ϕn−1)
(λϕ1, ϕ0) (λϕ1, ϕ1) . . . (λϕ1, ϕn−1)

...
...

...
(λϕn−1, ϕ0) (λϕn−1, ϕ1) . . . (λϕn−1, ϕn−1)

 = Jn, (3.13)

where Ln−1 is defined by (3.5), the symmetric matrix Jn is positive definite if and only

if H
(1)
n−1 is positive definite. The eigenvalues of the Jacobi matrix Jn are distinct (see,

e.g., [29, p. 115], [35, Lemma 7.7.1]), and therefore we can with no loss of generality in
ordering the eigenvalues write

0 < λ
(n)
1 < λ

(n)
2 < · · · < λ(n)n .
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Consider the spectral decomposition

Jn = Zn ΛZ∗n, Λ = diag
(
λ
(n)
1 , . . . , λ(n)n

)
,

where Zn = [z
(n)
1 , . . . , z

(n)
n ] is the matrix of the associated normalized eigenvectors of Jn

as its columns. The spectral decomposition rewritten as

ΛZ∗n = Z∗n Jn (3.14)

represents the Lanczos process with the diagonal matrix Λ and the starting vector given
by v1 = Z∗ne1, v∗1v1 = 1, i.e., composed of the first elements of the normalized eigenvectors
of the matrix Jn. The vectors vj = Z∗nej , j = 1, . . . , n are then given in terms of
polynomials in the diagonal matrix Λ as

vj = pj−1(Λ) v1, j = 1, . . . , n, p0(λ) = 1.

From the orthonormality of the vectors v∗i vj = δij , i, j = 1, . . . , n, we immediately get
the orthonormality of the polynomials p0(λ), p1(λ), . . . , pn−1(λ) with respect to the inner
product (·, ·)P on the space of polynomials Pn−1

(pi, pj)P =

n∑
`=1

(
e∗1z

(n)
`

)2
pi

(
λ
(n)
`

)
pj

(
λ
(n)
`

)
.

Moreover, the polynomials p0(λ) = 1, p1(λ), . . . , pn−1(λ) must due to (3.14) satisfy
the same three-term recurrence as the polynomials ϕ0(λ), ϕ1(λ), . . . , ϕn−1(λ); see (3.8).
Therefore

ϕj(λ) =
1
√
m0

pj(λ), j = 0, . . . , n− 1

and the inner product (·, ·) defined by (3.4) is equivalently given by2

(ϕ,ψ) =

n∑
`=1

(e∗1z
(n)
` )2

m0
ϕ
(
λ
(n)
`

)
ψ
(
λ
(n)
`

)
, (3.15)

which determines the nodes in (3.7) as expected and gives the weights

ω
(n)
` =

(e∗1z
(n)
` )2

m0
, ` = 1, . . . , n.

Rewriting the equality (3.13) as

H
(1)
n−1 = Ln−1


(λϕ0, ϕ0) (λϕ0, ϕ1) . . . (λϕ0, ϕn−1)
(λϕ1, ϕ0) (λϕ1, ϕ1) . . . (λϕ1, ϕn−1)

...
...

...
(λϕn−1, ϕ0) (λϕn−1, ϕ1) . . . (λϕn−1, ϕn−1)

L∗n−1,

2In the context of calculating the nodes and the weights of the Gauss quadrature, λ
(n)
` and ω

(n)
`

are given as the eigenvalues and the squared first elements of the associated eigenvectors of Jn in [19,
Section III] and [18, Section 2]. The proofs are different.
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proves that the constructed inner product (3.15) indeed solves the finite Stieltjes moment
problem (2.1). Uniqueness follows from the construction.

It remains to show that the assumptions on Hn−1, H
(1)
n−1 being positive definite,

which were used in the construction of the inner product (3.15), are also necessary.
Given the inner product (3.7) solving the finite Stieltjes moment problem (2.1), consider
the sequence of orthonormal polynomials ϕ0(λ), ϕ1(λ), . . . , ϕn−1(λ), and the associated
positive definite Jacobi matrix Jn. Since for any nonzero vector v

v∗Hn−1v = (ϕv, ϕv) > 0 for some ϕv ∈ Pn−1, ϕv 6= 0,

Hn−1 must be positive definite. Using the Cholesky decomposition (3.5) and the relation-

ships (3.13) between H
(1)
n−1 and Jn, H

(1)
n−1 must be positive definite as well. Summarizing,

we have proved the following theorem, where the first part with the necessary and suffi-
cient conditions for the existence of the solution is identical to the first part of Theorem
2.1. Its proof is, as shown by the construction above, substantially different.

Theorem 3.1 (Algebraic solution of the finite Stieltjes moment problem).
Consider 2n positive real numbers m0,m1, . . . ,m2n−1. The system of 2n equations

n∑
`=1

ω
(n)
`

{
λ
(n)
`

}j

= mj , j = 0, 1, . . . , 2n− 1

has the positive solution ω
(n)
` > 0, ` = 1, . . . , n, 0 < λ

(n)
1 < λ

(n)
2 < · · · < λ

(n)
n if and

only if the Hankel matrices Hn−1 and H
(1)
n−1 composed of m0,m1, . . . ,m2n−1 (see (2.8))

are positive definite. The solution is unique and it is given by the eigenvalues λ
(n)
` and

the rescaled first components of the associated normalized eigenvectors z
(n)
` of the Jacobi

matrix Jn,

Jnz
(n)
` = λ

(n)
` z

(n)
` , ω

(n)
` =

(e∗1z
(n)
` )2

m0
, ` = 1, 2, . . . , n,

where Jn results from the Cholesky factorization of Hn−1 and the subsequent simple
manipulations

Hn−1 = Ln−1L
∗
n−1, Jn = L−1n−1H

(1)
n−1L

−∗
n−1.

Remark 3.2. It should be understood that the presented results and the summary for-
mulated as Theorem 3.1 on the algebraic solution of the Stieltjes moment problem are
by no means meant as a suggestion for constructing a practically usable computational
algorithm. Because of the notorious ill-conditioning of the moment matrices (see, e.g.,
[43], [14], [4], and [5]) the factorization of the explicitly formed moment matrices are
numerically unfeasible. For pointers to practically usable algorithms for computation of
the nodes and weights of the Gauss quadrature, which represents a related but different
problem, extended discussions and/or references to the relevant literature we refer the in-
terested reader to, e.g., [16, Chapter 2], [33, Section 3], [17, Chapter 5], and [29, Section
3.6].
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4. Conclusion

The finite Stieltjes moment problem (2.1) has a unique solution if and only if the

Hankel matrices Hn−1 and H
(1)
n−1 (2.8) are positive definite. Using the approach of

Stieltjes embedded in the theory of continued fractions, the solution can be expressed
through the finite continued fraction (2.4) whose coefficients are given by (2.9); see
Theorem 2.1 where we have summarized the results contained in [40]. We remark that

the equations (2.9) link the positive definiteness of Hn−1 and H
(1)
n−1 with the construction

of the continued fraction and, as a consequence, it leads to the solution presented in
Theorem 2.1. In a more direct purely algebraic approach summarized in Theorem 3.1, the
positive definiteness of Hn−1 allows to use its Cholesky decomposition and the positive

definiteness of H
(1)
n−1 completes the argument by using the spectral decomposition of the

associated (positive definite) Jacobi matrix Jn.
Finally, the Jacobi matrix Jn in Theorem 3.1 reveals the link between the Stieltjes

moment problem, the Gauss quadrature, the Lanczos method for self-adjoint eigenvalue
problems, and CG for solving equations with linear, self-adjoint, and coercive operators.
An interested reader can find more information on these relationships (and many refer-
ences to an extensive existing literature) in the monographs [29, in particular Chapter
3] and [31, Chapters 5 and 11].
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[6] C. Brezinski, Padé-type approximation and general orthogonal polynomials, Birkhäuser, 1980.
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[36] S. Pozza, M. S. Pranić, and Z. Strakoš, Gauss quadrature for quasi-definite linear functionals,
IMA J. Numer. Anal., 37 (2017), pp. 1468–1495.

[37] , The Lanczos algorithm and complex Gauss quadrature, Submitted, (2018).

18



[38] J. A. Shohat and J. D. Tamarkin, The Problem of Moments, vol. I of American Mathematical
Society Mathematical surveys, American Mathematical Society, New York, 1943.

[39] I. M. Stesin, Computation of eigenvalues by means of continued fractions, Uspekhi Matem. Nauk,
9 (1954), pp. 191–198. In Russian.

[40] T. J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse Sci. Math. Sci.
Phys., 8 (1894), pp. J. 1–122. Reprinted in Oeuvres II (P. Noordhoff, Groningen, 1918), pp. 402–
566. English translation Investigations on continued fractions in Thomas Jan Stieltjes, Collected
Papers, Vol. II (Springer-Verlag, Berlin, 1993), pp. 609–745.

[41] M. H. Stone, Linear transformations in Hilbert space and their applications to analysis, vol. 15,
American Mathematical Society, Providence, R.I., 1932.
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