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Tomáš Gergelits,
Jakub Hrnč́ı̌r,
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Preconditioning deals with the problem, not with the method

Preconditioning of a linear algebraic system

Ax = b

means its transformation to another system with more favourable properties
for its numerical solution. Standard textbook introduction considers A SPD
and takes an SPD matrix B ≈ A with decomposition B = LL∗, giving

L−1AL∗−1
L∗x = L−1b .

In order to technically apply an iterative method (CG) to the transformed system,
its algorithm is reformulated in terms of the original variables which is better
resembled by

B−1Ax = B−1b .
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Reference choice B = B
1/2

B
1/2

Given SPD matrix B , this schema will work with any decomposition B = LL∗ .
For later convenience, consider the special (reference) choice

B = B1/2B1/2
.

Then for any other decomposition B = LL∗ we have

L−1BL∗−1
= (L−1B1/2)(B1/2L∗−1

) = I ,

and taking the unitary matrix

Q := L−1B1/2
, Q−1 = Q∗ = B−1/2L = B1/2L∗−1

,

we have the unitary transformation from L to B1/2 and vice versa

L = B1/2Q∗
, B1/2 = LQ .
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Which goal should preconditioning target in transforming the problem?

Problem Ax = b
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Condition and spectral numbers?

It can indeed be useful to investigate condition and spectral numbers
providing that this is not considered, in general, the end of the story.
See Faber, Manteuffel and Parter (1990).
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Condition and spectral numbers?

It can indeed be useful to investigate condition and spectral numbers
providing that this is not considered, in general, the end of the story.
See Faber, Manteuffel and Parter (1990).

Rutishauser (1959) as well as Lanczos (1952) considered CG principally
different in their nature from the method based on Chebyshev polynomials.

Daniel (1967) did not identify the CG convergence with the Chebyshev
polynomials-based bound. He carefully writes (modifyling slightly his notation)

“assuming only that the spectrum of the matrix A lies inside the interval
[λ1, λN ], we can do no better than Theorem 1.2.2.”

That means that the Chebyshev polynomials-based bound holds for any
distribution of eigenvalues between λ1 and λN and for any distribution of
the components of the initial residuals in the individual invariant subspaces.
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Adaptive Chebyshev bound principally fails to resolve the matter
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The finite precision computation (the thick black line) is not captured
quantitatively nor described qualitatively!
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Better conditioning does not necessarily mean faster convergence!
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Nonhomogeneous diffusion function, uniform mesh.
ICHOLPCG (drop-off tolerance 1e-02); Laplace operator PCG.

Condition numbers of At,h : 1.6e01, 1.61e02.
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1 Extensive literature related to operator preconditioning

Gunn, D’yakonov, Faber, Manteuffel, Parter, Klawonn, Arnold, Falk, Winther,
Axelsson, Karátson, Hiptmair, Vassilevski, Neytcheva, Notay, Elmann, Silvester,
Wathen, Zulehner, Simoncini, Oswald, Griebel, Rüde, Steinbach, Wohlmuth,
Bramble, Pasciak, Xu, Kraus, Nepomnyaschikh, Dahmen, Kunoth, Yserentant,
Mardal, Nordbotten, Rees, Smears, Pearson, ..........

Details, proofs and (certainly far from complete) references can be found in

J. Málek and Z.S., Preconditioning and the Conjugate Gradient Method

in the Context of Solving PDEs. SIAM Spotlight Series, SIAM (2015)

J. Hrnč́ı̌r, I. Pultarová, Z.S., Decomposition into subspaces and operator

preconditioning (2017, submitted for publication)
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1 Basic setting on the Hilbert space V

Inner product
(·, ·)V : V × V → R , ‖ · ‖V ,

dual space V # of bounded linear functionals on V with the duality pairing and
the associated Riesz map

〈·, ·〉 : V
# × V → R , τ : V

# → V such that (τf, v)V := 〈f, v〉 for all v ∈ V.

Equation in the functional space V #

Au = b

with a linear, bounded, coercive, and self-adjoint operator

A : V → V
#

, a(u, v) := 〈Au, v〉 ,

CA := sup
v∈V, ‖v‖V =1

‖Av‖V # < ∞ ,

cA := inf
v∈V, ‖v‖V =1

〈Av, v〉 > 0 .
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1 Operator preconditioning

Linear, bounded, coercive, and self-adjoint B with CB , cB ,

(·, ·)B : V × V → R, (w, v)B := 〈Bw, v〉 for all w, v ∈ V ,

τB : V
# → V, (τBf, v)B := 〈f, v〉 for all f ∈ V

#
, v ∈ V .

Instead of the equation in the functional space V #

Au = b

we solve the equation in the solution space V

τB Au = τB b ,

i.e.
B−1 A u = B−1

b.
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1 Norm equivalence of infinite dimensional operators

Theorem (Norm equivalence and condition number)

Assuming that the linear, bounded, coercive and self-adjoint operators A and B
are V #-norm equivalent on V , i.e. there exist 0 < α ≤ β < ∞ such that

α ≤
‖Aw‖V #

‖Bw‖V #

≤ β, for all w ∈ V, w 6= 0 .

Then

κ(B−1A) := ‖B−1A‖L(V,V )‖A
−1B‖L(V,V ) ≤

β

α
.
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1 Spectral equivalence of infinite dimensional operators

Theorem (Spectral equivalence and spectral number)

Assuming that the linear, bounded, coercive and self-adjoint operators A and B
are spectrally equivalent on V , i.e. there exist 0 < γ ≤ δ < ∞ such that

γ ≤
〈Aw, w〉

〈Bw, w〉
≤ δ, for all w ∈ V, w 6= 0 .

Then

κ̂(A,B) :=
supz∈V, ‖z‖V =1

(

(τB)−1/2τA (τB)−1/2z, z
)

V

infv∈V, ‖v‖V =1 ((τB)−1/2τA (τB)−1/2v, v)V

≤
δ

γ
.
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2 Galerkin discretization

Consider N-dimensional subspace Vh ⊂ V and look for uh ∈ Vh, uh ≈ u ∈ V

such that

〈Auh − b, v〉 = 0 for all v ∈ Vh .

Restrictions Ah : Vh → V
#

h , bh : Vh → R give the problem in V
#

h

Ahuh = bh, uh ∈ Vh, bh ∈ V
#
h .

With the inner product (·, ·)B and the associated restricted Riesz map

τB,h : V
#

h → Vh

we get the abstract form of the preconditioned discretized problem in Vh

τB,h Ah uh = τB,h bh .
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2 Preconditioning - straight consequence of the Vh −→ V
#
h setting

Using the discretization basis Φh = (φ1, . . . , φN ) of Vh

and the canonical dual basis Φ#
h = (φ#

1 , . . . , φ
#
N ) of V

#
h , (Φ#

h )∗Φh = IN ,

M−1
h Ah xh = M−1

h bh,

where

Ah, Mh ∈ R
N×N

, xh,bh ∈ R
N

,

(xh)i = 〈φ#
i , uh〉 , (bh)i = 〈b, φi〉 ,

Ah = (a(φj , φi))i,j=1,...,N = (〈Aφj , φi〉)i,j=1,...,N ,

Mh = (〈Bφj , φi〉)i,j=1,...,N ,

or
Ah = (AΦh)∗Φh, Mh = (BΦh)∗Φh .
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2 Matrix representation – symmetric form

Using (an arbitrary) decomposition Mh = LhL∗
h , the resulting preconditioned

algebraic system can be transformed into

(L−1

h
AhL

∗
h

−1
) (L∗

hxh) = L−1
h bh ,

i.e.,

At,h xt
h = bt

h .
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2 Preconditioning as transformation of discretization basis

Consider

Φh → Φ̃t,h such that Mt,h = (BΦ̃t,h)∗Φ̃t,h = I ,

i.e. orthogonalization of the basis with respect to the inner product (·, ·)B . Then

Φ̃t,h = ΦhMh

−1/2
, Φ̃#

t,h = Φ#
h Mh

1/2

gives immediately the preconditioned system Ãt,h x̃t
h = b̃t

h corresponding to
Lh := Mh

1/2 . Any other choice

Φt,h = ΦhL∗
h

−1
, Φ#

t,h = Φ#
h Lh

is given via orthogonal transformation

Φt,h = Φ̃t,hQ
∗
, Q∗ = Mh

1/2L∗
h

−1
, Q∗Q = I .
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2 Points that are worth noticing

Transformation of the discretization basis (preconditioning) is different from a
change of the algebraic basis (similarity transformation).

Any algebraic preconditioning can be put into the operator preconditioning
framework by transformation of the discretization basis and the associated
change of the inner product in the infinite dimensional Hilbert space V .

20 / 34



2 Norm equivalence and the condition number independent of h

Theorem (Norm equivalence and condition number)

Let the linear, bounded, coercive and self-adjoint operators A and B from V to
V # be V #-norm equivalent with the lower and upper bounds α and β ,
respectively, i.e.

α ≤
‖Aw‖V #

‖Bw‖V #

≤ β for all w ∈ V , w 6= 0, 0 < α ≤ β < ∞ .

Let Sh be the Gram matrix of the discretization basis Φh = (φ1, . . . , φN ) of
Vh ⊂ V ,

(Sh)ij = (φi, φj)V .

Then the condition number of the matrix M−1
h Ah is bounded as

κ(M−1
h Ah) := ‖M−1

h Ah‖ ‖A
−1
h Mh‖ ≤

β

α
κ(Sh) .
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2 Spectral equivalence and the spectral number independent of h

Theorem (Spectral equivalence and spectral number)

Let the linear, bounded, coercive and self-adjoint operators A and B be
spectrally equivalent with the lower and upper bounds γ and δ respectively, i.e.

γ ≤
〈Aw, w〉

〈Bw, w〉
≤ δ for all w ∈ V , 0 < γ ≤ δ < ∞ .

Then the spectral number κ̂(Ah,Mh) , which is equal to the condition number of
the matrix At,h = L−1

h Ah(L∗
h)−1 for any Lh such that Mh = LhL

∗
h , is

bounded as

κ̂(Ah,Mh) :=
sup

z∈RN , ‖z‖=1

(

M
−1/2
h AhM

−1/2
h z, z

)

infv∈RN , ‖v‖=1

(

M
−1/2
h AhM

−1/2
h v,v

) = κ(At,h) ≤
δ

γ
.
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3 Decomposition of subspaces

Decomposition with non-unique representation of elements in V

V =
∑

j∈J

Vj , i.e., v =
∑

j∈J

vj , vj ∈ Vj , for all v ∈ V, J is finite;

Sufficient condition for V # ⊂ V
#

j :

cVj
‖v‖2

V ≤ ‖v‖2
j for all v ∈ Vj , 0 < cVj

, j ∈ J ;

Other side inequality:

‖v‖2
S := inf

v=
∑

j∈J vj

{

∑

j∈J

‖vj‖
2
j

}

≤ CS ‖v‖
2
V , for all v ∈ V .
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3 Construction of the abstract splitting-based preconditioning

Consider local preconditioners

Bj : Vj → V
#

j , 〈Bjw, z〉 = 〈Bjz, w〉 for all w, z ∈ Vj ,

with CBj
, cBj

defined as above. Then B−1
j : V

#
j → Vj , V # ⊂ V

#
j , and

M−1 :=
∑

j∈J

B−1
j , M−1 : V

# → V

gives the global preconditioner. The preconditioned (equivalent?) problem

M−1 A u = M−1
b .
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3 Equivalence of the preconditioned system

Boundedness and coercivity of M−1

‖M−1‖L(V #,V ) = sup
f∈V #, ‖f‖

V #=1

‖M−1
f‖V ≤ CM−1 :=

∑

j∈J

1

cBj
cVj

< ∞ ,

inf
f∈V #, ‖f‖

V #=1
〈f,M−1

f〉 ≥ cM−1 :=
1

CS maxj∈J CBj

> 0 ,

gives equivalence of Au = b and M−1Au = M−1b .

Moreover, we can get norm equivalence and spectral equivalence of A and M .
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3 Bound using norms of the locally preconditioned residuals

Theorem

For any v ∈ V ≈ u

a
(

M−1A (v − u), v − u
)

=
∑

j∈J

‖r̄j‖
2
Bj

,

minj∈J cBj

C2
A

(

∑

k∈J

1

cVk
cBk

)−1
∑

j∈J

‖r̄j‖
2
j ≤

‖v − u‖2
V ≤

CS(maxj∈J CBj
)2

c2
A

∑

j∈J

‖r̄j‖
2
j ,

where r̄j := B−1
j A v − B−1

j b are the locally preconditioned residuals of v.
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3 Stable splitting

Theorem

If we consider the stable splitting

cS‖v‖
2
V ≤ ‖v‖2

S ≤ CS‖v‖
2
V for all v ∈ V,

then

cA

CS maxj∈J CBj

≤
〈Av, v〉

〈Mv, v〉
≤

CA

cS minj∈J cBj

for all v ∈ V, v 6= 0,

cS minj∈J cBj

CA
≤

‖A−1f‖V

‖M−1f‖V
≤

CS maxj∈J CBj

cA
for all f ∈ V

#
, f 6= 0.
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4 Conclusions and outlook

Given framework may help in comparison of existing approaches (work in
progress).

Results guaranteeing fast convergence in practice are based on the subspace
splitting and construction of preconditioning that use information on (the inner
structure of) the operator A .

Relationship between the operators A and B ? What can be said about the
whole spectrum of the matrix B−1A ? (Work in progress).

Adaptation to the problem is the key to efficient solvers.
Adaptation in many ways!

O(n) reliable approximate solvers? A posteriori error analysis leading to
efficient and reliable balancing the errors of various origin (including the
inaccuracy of algebraic computations).
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Appendix – coercivity and boundedness constants

Theorem

Let A : V → V # be a linear, bounded, coercive and self-adjoint operator. Then
its boundedness constant CA and the coercivity constant cA can be expressed as

CA = ‖A‖L(V,V #) = sup
v∈V, ‖v‖V =1

〈Av, v〉, (1)

cA = inf
v∈V, ‖v‖V =1

〈Av, v〉 =
1

supf∈V #, ‖f‖
V #=1 ‖A

−1f‖V
(2)

=
1

‖A−1‖L(V #,V )

.
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Proof of (1)

Statement (1) follows from

‖A‖L(V,V #) = ‖τA‖L(V,V ) = sup
v∈V, ‖v‖V =1

(τAv, v)V = sup
v∈V, ‖v‖V =1

〈Av, v〉,

where we used the fact that for any self-adjoint operator S in a Hilbert space V

‖S‖L(V,V ) = sup
z∈V, ‖z‖V =1

‖Sz‖V = sup
z∈V, ‖z‖V =1

(Sz, Sz)
1/2
V

= sup
z∈V, ‖z‖V =1

|(Sz, z)V |.
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Proof of (2)

1

supf∈V #, ‖f‖
V #=1 ‖A

−1f‖V
= inf

v∈V, ‖v‖V =1
‖Av‖V # = inf

v∈V, ‖v‖V =1
‖τAv‖V

We have to prove

mA := inf
v∈V, ‖v‖V =1

(τAv, v)V = inf
v∈V, ‖v‖V =1

‖τAv‖V .

Here ”≤” is trivial. We will show that ”<” leads to a contradiction. Since mA

belongs to the spectrum of τA , there exists a sequence v1, v2, · · · ∈ V , ‖vk‖V = 1,
such that

lim
k→∞

‖τAvk − mAvk‖
2
V = 0. (3)

Assuming
mA < inf

v∈V, ‖v‖V =1
‖τAv‖V −△, △ > 0,

we get

‖τAvk − mAvk‖
2
V = ‖τAvk‖

2
V + m

2
A − 2mA(τAvk, vk)V

≥ ‖τAvk‖
2
V + m

2
A − 2mA‖τAvk‖V = (‖τAvk‖V − mA)2 > △2

.
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Thank you for your kind patience!
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