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Many thanks

I am indebted to very many collaborators and friends at home and abroad. In this
talk I will touch results of only some of them. I wish to particularly mention a
friend whom I never wrote any paper with, but to whom I am greatly indebted for
the invaluable moral support at the very beginning of my mathematical career.
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Many thanks

I am indebted to very many collaborators and friends at home and abroad. In this
talk I will touch results of only some of them. I wish to particularly mention a
friend whom I never wrote any paper with, but to whom I am greatly indebted for
the invaluable moral support at the very beginning of my mathematical career.

I would like to devote this lecture to the memory of

Professor Ivo Marek
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Těžký je úděl dobrodruha

Tibor Dévényi,
Kariéra Dr. Gézy támhletoho aneb vědci a hlodavci,
Kapitola UMĚNÍ PŘEDNÁŠKY, MF, Praha (1981), p. 111

“Co neumı́š povědět za třicet minut,
to necht’ z̊ustane tajemstv́ım”
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Not just one old paper but five. Old does not mean obsolete!
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Even at our (post-)modern, advanced, progressive, excellent, post-factual times!
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Not just one old paper but five. Old does not mean obsolete!

Even at our (post-)modern, advanced, progressive, excellent, post-factual times!

Cornelius Lanczos, Why Mathematics, 1966

“The naive optimist, who believes in progress and is convinced that today is better
than yesterday and in ten years time the world will be infinitely better off than today,
will come to the conclusion that mathematics (and more generally all the exact
sciences) started only about twenty years ago, while all the predecessors must have
walked in a kind of limbo of half-digested and improperly conceived ideas. { ... }
In a recent comment on mathematical preparation an educator wanted to
characterize our backwardness by the following statement: ”Is it not astonishing
that a person graduating in mathematics today knows hardly more than what Euler
knew already at the end of the eighteenth century?”. On its face value this sounds a
convincing argument. Yet it misses the point completely. Personally I would not
hesitate not only to graduate with first class honors, but to give the Ph.D. (and with
summa cum laude) without asking any further questions, to anybody who knew only
one quarter of what Euler knew, provided that he knew it in the way in which Euler
knew it.”

4 / 116



Connections ... Why does science exist?
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Question: How to make things work?
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Connections ... Why does science exist?

Humans must do science in order to survive.
Question: How to make things work?

Humans must do science because they are humans.
Question: Why and how does the world work?

Success as a measure, avalanche of performance metrics, overspecialization,
fragmentation, confusion .....

Pure against (!) applied mathematics,
basic research against (!) applied research, .....
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Words have lost their meaning - the well known story!

Gen 11, 1-7

“The whole world spoke the same language, using the same words. { ... } They said
to one another, “Come, let us mold bricks and harden them with fire. { ... } Then
they said, “Come, let us build ourselves a city and a tower with its top in the sky,
and so make a name for ourselves; otherwise we will be scattered all over the earth.”

The Lord came down to see the city and the tower that men had built.Then the Lord
said: { . . . } “Let us go down and confuse their language, so that one will not
understand what another says.” Thus the Lord scattered them from there all over
the earth ... ”
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Matrix computations Ax = b , A z(λ) = λ z(λ)

Here we concentrate on solving systems of linear algebraic equations, which may
seem at the first look a linear problem. Possible approaches:

Direct methods - decomposition of A , e.g. A = LU

Classical (fixed point) iterations - splitting A = K − L

Any other possibility?

What does it mean linearity in solving the linearly formulated problem Ax = b ?

Moreover, the input finite data (such as the finite matrix A and vector b )
typically represent a reduction of a problem formulated at infinite dimensional
spaces.
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What we will do for the remaining eighty five minutes

Important and hard challenges of the contemporary computational
mathematics are shown to be very closely related to some 19th century
seminal works.
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What we will do for the remaining eighty five minutes

Important and hard challenges of the contemporary computational
mathematics are shown to be very closely related to some 19th century
seminal works.

Revealing this historical link has a very deep impact to understanding the
state-of-the-art computations.

The work of Stieltjes (Gauss, Jacobi, ...) helps in solving the crucial problem
of rounding error propagation in the Lanczos and conjugate gradient methods
based on short recurrences.
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Outline

1 Infinite dimensional problems and finite dimensional computations

2 Krylov subspace methods: Hestenes, Stiefel, Lanczos (1950-52)

3 Problem of moments: Stieltjes (1894)

4 Projections onto highly nonlinear Krylov subspaces

5 Model reduction and moment matching

6 Convergence and spectral information

7 Inexact computations and numerical stability

8 Mathematical mythology

9 Optimistic outlook

Appendix: Operator preconditioning, discretization and algebraic computation
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1 Hierarchy of linear problems starting at infinite dimension

Problem with bounded invertible operator G on the infinite dim. Hilbert space S

G u = f

is approximated on a finite dimensional subspace Sh ⊂ S by the problem with the
finite dimensional operator

Gh uh = fh ,

represented, using an appropriate basis of Sh , by the (sparse?) matrix problem

Ax = b .

Bounded invertible operators in Hilbert spaces can be approximated by compact or
finite dimensional operators only in the sense of strong convergence (pointwise limit)

‖Gh w − G w ‖ → 0 as h → 0 for all w ∈ S ;

The convergence Gh w → G w is not uniform w.r.t. w ; the role of right hand sides.
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1 Fundamental theorem of discretization of G u = f

How closely Gh uh = fh approximates G u = f ? The residual measure

Gh πhu − fh

gives
πhu − uh = G−1

h (Gh πhu − fh ).

If ‖G−1
h ‖h is bounded from above uniformly in h (the discretization is stable),

then consistency

‖Gh πhu − fh ‖h → 0 as h → 0

implies convergence of the discretization scheme

‖πhu − uh ‖h → 0 as h → 0 .

Additional important point: In computations we only approximate uh by u
(n)
h .
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2 Polynomial (Krylov subspace) methods

Consider, as above, a linear invertible operator G : S → S and the equation

G u = f , f ∈ S .

Krylov subspace methods at the step n implicitly construct a finite dimensional
approximation Gn of G with the desired approximate solution un defined by
(u0 = 0)

un := pn−1(Gn) f ≈ u = G−1f ,

where pn−1(λ) is a particular polynomial of degree at most n − 1 and Gn is
obtained by restricting and projecting G onto the nth Krylov subspace

Kn(G, f) := span
{
f,Gf, . . . , Gn−1f

}
.

A.N. Krylov (1931), Gantmakher (1934)
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2 Cornelius Lanczos, March 9, 1947

On (what are now called) the Lanczos and CG methods:

“The reason why I am strongly drawn to such
approximation mathematics problems is ... the fact that
a very “economical” solution is possible only when it is very “adequate”.

To obtain a solution in very few steps
means nearly always that one has found a way
that does justice to the inner nature of the problem.”
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2 Albert Einstein, March 18, 1947

“Your remark on the importance of
adapted approximation methods makes very
good sense to me, and I am convinced
that this is a fruitful mathematical aspect,
and not just a utilitarian one.”
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2 Albert Einstein, March 18, 1947

“Your remark on the importance of
adapted approximation methods makes very
good sense to me, and I am convinced
that this is a fruitful mathematical aspect,
and not just a utilitarian one.”

Nonlinear and globally optimal adaptation of the iterations
in Krylov subspaces to the problem.
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2 Four basic questions

1 How fast the iterations un, n = 1, 2, . . . approximate the desired solution u ?
Nonlinear adaptation.

2 Which characteristics of G and f determine behaviour of the method?
Inner nature of the problem.

3 How to handle efficiently discretization and computational issues?
Provided that Kn(G, f) can be computed, the projection provides
discretization of the infinite dimensional problem Gu = f .

4 How to handle transformation of Gu = f into
an easier-to-solve problem? Preconditioning.

Vlastimil Pták: Finite dimensional nonlinearity is most difficult.
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2 C. Lanczos (1950, 1952)
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2 M. Hestenes and E. Stiefel (1952)
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2 Conjugate Gradient (CG) method for Ax = b with A HPD (1952)

r0 = b − Ax0, p0 = r0 . For n = 1, . . . , nmax :

αn−1 =
r∗n−1rn−1

p∗
n−1Apn−1

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
r∗nrn

r∗n−1rn−1

pn = rn + βnpn−1

Here αn−1 ensures the minimization of the energy norm ‖x − xn‖A along the line

z(α) = xn−1 + αpn−1 .
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2 Mathematical elegance of CG: orthogonality and optimality

Provided that

pi ⊥A pj , i 6= j,

the one-dimensional line minimizations at the individual steps 1 to n result in the
n-dimensional minimization over the whole shifted Krylov subspace

x0 + Kn(A, r0) = x0 + span{p0, p1, . . . , pn−1} .

Indeed,

x − x0 =
N−1∑

ℓ=0

αℓpℓ =
n−1∑

ℓ=0

αℓpℓ + x − xn ,

where

x − xn ⊥A Kn(A, r0) , or, equivalently, rn ⊥ Kn(A, r0) .
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2 Mathematical elegance of CG (Lanczos) destroyed by rounding errors?

Mathematically, the orthogonality condition leads to short recurrences due to
the relationship to the orthogonal polynomials that define the algebraic residuals
and search vectors, see below.

Numerically, rounding errors can completely destroy the orthogonality and even
linear independence of the computed search and residual vectors. As a consequence
of experimental observations it was believed for several decades that the beautiful
mathematical structure of the exact CG (Lanczos) was in practical computations
inevitably lost and the finite precision behaviour would remain a mystery.

Crucial question: Is there any optimality of CG (Lanczos) left in the presence
of rounding errors?
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2 The depth of confusion and of unwillingness to listen

Referee report (2005): “The only new items presented here have to do with analysis
involving floating point operations ( ... ). These are likely to bear very little interest
to the audience of CMAME.

... the author give a misguided argument. The main advantage of iterative methods
over direct methods does not primarily lie in the fact that the iteration can be
stopped early (whatever this means), but that their memory (mostly) and
computational requirements are moderate.

It appears obvious to the authors that the A-norm is the quantity to measure to stop
the iteration. In some case ... it is the residual norm (yes) that matters. For
example, in nonlinear iterations, it is important to monitor the decrease of the
residual norm - because the nonlinear iteration looks at the non-linear residual to
build globally convergent strategies. This is known to practitioners, yet it is
vehemently rejected by the authors.”
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2 Lanczos, Hestenes and Stiefel - phrases from the four papers

Numerical analysis

Rounding error analysis

Least squares solutions

Gaussian elimination

Matrix theory

Optimisation

Structure and sparsity

Convex geometry

Convergence analysis

Cornelius Lanczos

An iteration method for the solution

of the eigenvalue problem of linear 

diff ti l d i t l t  1950

Polynomial preconditioningIterative methods Stopping criteria

Vandermonde determinant

Floating point computationsCost of computations

Data uncertainty

y

Projections

Orthogonalisation
Orthogonal polynomials

Linear algebra
Approximation theory

Chebyshev, Jacobi and

Legendre polynomials

Minimising functionals

g y
differential and integral operators, 1950

Solution of systems of linear equations

by minimized iterations, 1952

Chebyshev polynomials in the solution

of large-scale linear systems, 1952

Cauchy-Schwarz inequality

General inner products

Gauss-Christoffel quadrature Riemann-Stieltjes integral

Sturm sequences

Rayleigh quotients Differential and integral operators

Fredholm problem

Functional analysis

g p y

Continued fractions

Liouville-Neumann expansion

Magnus R. Hestenes & Eduard Stiefel

Methods of conjugate gradients for

solving linear systems, 1952

Green s function

Fourier series

Dirichlet and Fejér kernel

Trigonometric interpolation

Gibbs oscillation

Gauss Christoffel quadrature Riemann Stieltjes integral

Real analysis

Dirichlet and Fejér kernel
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2 Antoine de Saint-Exupéry, The Wisdom of the Sands, 1944

“I would not bid you pore upon a heap of stones, and turn them over and over, in
the vain hope of learning from them the secret of meditation. For on the level of the
stones there is no question of meditation; for that, the temple must have come into
being. But, once it is built, a new emotion sways my heart, and when I go away, I
ponder on the relations between the stones. ...

I must begin by feeling love; and I must first observe a wholeness. After that I
may proceed to study the components and their groupings. But I shall not trouble to
investigate these raw materials unless they are dominated by something on which my
heart is set. Thus I began by observing the triangle as a whole; then I sought to
learn in it the functions of its component lines. ...

So, to begin with, I practise contemplation. After that, if I am able, I analyse
and explain. ...

Little matter the actual things that are linked together; it is the links that I must
begin by apprehending and interpreting.”
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Outline

1 Infinite dimensional problems and finite dimensional computations

2 Krylov subspace methods: Hestenes, Stiefel, Lanczos (1950-52)

3 Problem of moments: Stieltjes (1894)
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3 Thomas Jan Stieltjes (1856 - 1894)
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3 Continued fractions - approximation of (not only) irrationals
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2 +
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2 +
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. . .

= 1.5 = 1.4 = 1.41666̄ −→
√

2
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3 Convergence of continued fractions approximating functions

The nth convergent

Fn(λ) ≡ 1

λ − γ1 −
δ2
2

λ − γ2 − δ2
3

λ − γ3 − . . .

. . .

λ − γn−1 − δ2
n

λ − γn

=
Rn(λ)

Pn(λ)
.

Stieltjes (1894): “we shall determine in which cases this convergent tends to a limit
for n → ∞ and we shall investigate more closely the nature of this limit regarded
as a function of λ .”

Here we use notation different from Stieltjes (1894), in particular λ ≡ −z .
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3 Remarkable mathematical object with remarkably long history

Euclid (300BC), Hippassus from Metapontum (before 400BC), ...... ,

Bhascara II (around 1150), Brouncker and Wallis (1655-56):
Three term recurrences (for numbers)

Euler (1737, 1748), ...... , Brezinski (1991), Khrushchev (2008)

Gauss (1814), Jacobi (1826), Christoffel (1858, 1857), ....... ,
Chebyshev (1855, 1859), Markov (1884), Stieltjes (1884, 1893-94):
Orthogonal polynomials, quadrature, analytic theory of continued fractions,
problem of moments, minimal partial realization, Riemann-Stieltjes integral
Gautschi (1981, 2004), Brezinski (1991), Van Assche (1993), Kjeldsen (1993)

Hilbert (1906, 1912), ...... , Von Neumann (1927, 1932), Wintner (1929):
resolution of unity, integral representation of operator functions, mathematical
foundation of quantum mechanics
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3 More recent - matrix computation and control theory context

Krylov (1931), Lanczos (1950, 1952, 1952c), Hestenes and Stiefel (1952),
Rutishauser (1953), Henrici (1958), Stiefel (1958), Rutishauser (1959), ...... ,
Vorobyev (1954, 1958, 1965), Golub and Welsch (1968), ..... , Laurie (1991 -
2001), ......

Gordon (1968), Schlesinger and Schwartz (1966), Steen (1973), Reinhard
(1979), ... , Horáček (1983-...), Simon (2007)

Paige (1971), Reid (1971), Greenbaum (1989), .......

Magnus (1962a,b), Gragg (1974), Kalman (1979), Gragg, Lindquist (1983),
Gallivan, Grimme, Van Dooren (1994), ....

Who is Yu. V. Vorobyev?

All what we know can be found in the monograph Liesen, S, Krylov subspace
methods, Principles and Analysis , OUP, 2013, Section 3.7.
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3 Book (1958, 1965), very few other traces ...
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3 Motivation - homework problem

Consider 2n real numbers m0, m1, . . . , m2n−1.

Determine under which conditions the solution of the system of 2n equations

n∑

j=1

ω
(n)
j {θ(n)

j }ℓ = mℓ , ℓ = 0, 1, . . . , 2n − 1 ,

for the 2n real positive unknowns ω
(n)
j > 0, θ

(n)
j > 0 , j = 1, . . . , n

exists and is unique, and give the solution.
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3 Motivation - homework problem

Consider 2n real numbers m0, m1, . . . , m2n−1.

Determine under which conditions the solution of the system of 2n equations

n∑

j=1

ω
(n)
j {θ(n)

j }ℓ = mℓ , ℓ = 0, 1, . . . , 2n − 1 ,

for the 2n real positive unknowns ω
(n)
j > 0, θ

(n)
j > 0 , j = 1, . . . , n

exists and is unique, and give the solution.

Is this problem linear?
Mathematical description of the solution?
How to compute the solution?

33 / 116



3 Moment problem defined and solved by Stieltjes in (1894)

Consider an infinite sequence of real numbers m0, m1, m2, . . . .

Find necessary and sufficient conditions for the existence of a Riemann-Stieltjes
integral with the (positive nondecreasing) distribution function ω(λ) such that

∫ ∞

0

λℓ dω(λ) = mℓ , ℓ = 0, 1, 2, . . .

and determine ω(λ) .
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3 Distribution of mass points on the positive half real line

0

w
M1

λ1

y
M2

λ2

t
M3

λ3

0

1

λ
1

λ
2

λ
3

Meaning of mℓ =

∫ ∞

0

λℓ dω(λ) for m = 0, 1, 2, . . . ?
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3 Many points of various weights between λ1 and λN

0

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
λ1 λN

0

1

λ
1

λ
N

How is this related to approximating numerically the solution of a system of linear
algebraic equations or the solution of a matrix eigenvalue problem?
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3 CG and Lanczos give the solution of the homework problem!

Distribution function ω(λ) associated with Ax = b, r0 = b − Ax0, A HPD,

λi, yi are the eigenpairs of A , ωi = |(yi, w1)|2 , (w1 = r0/‖r0‖)

...

0

1

ω1

ω2

ω3

ω4

ωN

λ1 λ2 λ3
. . . . . . λN
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3 Spectral decomposition A =
∑

N

ℓ=1 λℓ yℓy
∗

ℓ

Symbolically

w∗
1Aw1 = w∗

1

(
N∑

ℓ=1

λℓ yℓy
∗
ℓ

)

w1 ≡ w∗
1

(∫
λ dE(λ)

)
w1

=
N∑

ℓ=1

λℓ |(yℓ, w1)|2 =
N∑

ℓ=1

λℓ ωℓ =

∫
λ dω(λ) ,

where the spectral function E(λ) of A is understood to be a nondecreasing family
of projections with increasing λ , symbolically dE(λℓ) ≡ yℓy

∗
ℓ and

I =

N∑

ℓ=1

yℓy
∗
ℓ ≡

∫
dE(λ) .

Hilbert (1906, 1912, 1928), Von Neumann (1927, 1932), Wintner (1929) .
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3 Integral representation of self-adjoint operators on Hilbert spaces

Finite dimensional self-adjoint operators (finite Hermitian matrices)

G =
1

2πι

∫

Γ

λ (λIN − G)−1 dλ =
1

2πι

N∑

j=1

∫

Γj

λ (λIN − G)−1 dλ

=

N∑

j=1

Y diag

(
1

2πι

∫

Γj

λ

λ − λj
dλ

)

Y ∗ =

N∑

j=1

λj yjy
∗
j

=

∫
λdE(λ) .

Compact infinite dimensional self-adjoint operators

Bounded infinite dimensional self-adjoint operators

Generalization to bounded normal and non-normal operators
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Outline
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4 Krylov subspace methods: orthogonality and optimality

Conjugate gradient (CG) method:

Well defined for HPD matrices A; short recurrences.
Orthogonality rn ⊥ Kn(A, v) is equivalent to optimality:

‖x − xn‖A = min
z∈x0+Kn(A,r0)

‖x − z‖A.
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Orthogonality rn ⊥ Kn(A, v) is equivalent to optimality:

‖x − xn‖A = min
z∈x0+Kn(A,r0)

‖x − z‖A.

GMRES method:

Well defined for nonsingular matrices A; full recurrences.
Orthogonality rn ⊥ AKn(A, v) is equivalent to optimality:

‖b − Axn‖2 = min
z∈x0+Kn(A,r0)

‖b − Az‖2.
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4 Krylov subspace methods: orthogonality and optimality

Conjugate gradient (CG) method:

Well defined for HPD matrices A; short recurrences.
Orthogonality rn ⊥ Kn(A, v) is equivalent to optimality:

‖x − xn‖A = min
z∈x0+Kn(A,r0)

‖x − z‖A.

GMRES method:

Well defined for nonsingular matrices A; full recurrences.
Orthogonality rn ⊥ AKn(A, v) is equivalent to optimality:

‖b − Axn‖2 = min
z∈x0+Kn(A,r0)

‖b − Az‖2.

Numerous Krylov subspace methods. Some of them are not well defined for
each n (e.g. BiCGStab or QMR). They are not linear in A and b .
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4 Orthogonal projections and optimality in CG

Using the formulation via the Lanczos process, w1 = r0/‖r0‖ ,

AWn = Wn Tn + δn+1wn+1e
T
n , Tn = W ∗

n(A, r0) AWn(A, r0) ,

the CG approximations are given by

Tn tn = ‖r0‖e1 , xn = x0 + Wn tn .

The nonlinearity of the CG projection process giving the CG optimality, wrt both
A and b , is clearly visible.
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4 (Petrov-) Galerkin framework

Projection idea in Krylov subspace methods is analogous to the (Petrov-) Galerkin
framework, as, e.g., in numerical solution of PDEs.

Let S be an infinite dimensional Hilbert space, a(·, ·) : S × S → R be a bounded
and coercive bilinear form, f : S → R be a bounded linear functional.
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4 (Petrov-) Galerkin framework

Projection idea in Krylov subspace methods is analogous to the (Petrov-) Galerkin
framework, as, e.g., in numerical solution of PDEs.

Let S be an infinite dimensional Hilbert space, a(·, ·) : S × S → R be a bounded
and coercive bilinear form, f : S → R be a bounded linear functional.

Weak formulation: Find u ∈ S with

a(u, v) = f(v) for all v ∈ S .

Discretization: Find uh ∈ Sh ⊂ S with

a(uh, vh) = f(vh) for all vh ∈ Sh.

Galerkin orthogonality:

a(u − uh, vh) = 0 for all vh ∈ Sh.
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4 Operator problem formulation (more in Appendix)

Equivalently, there exists a bounded and coercive operator A : S → S#, with
the problem formulated as the following equation in the dual space:

Au = f.

Or, using the Riesz map τ : S# → S defined by the inner product in S , as the
following operator preconditioned equation in the function space

τAu = τf.

Discretization then gives

τhAhuh − τhfh ⊥ Sh.

Krylov subspace methods (here CG for A self-adjoint with respect to the duality
pairing) can be formulated in infinite dimensional Hilbert spaces and extended to
Banach spaces.
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4 CG in infinite dimensional Hilbert spaces (more in Appendix)

r0 = f −Au0 ∈ S#, p0 = τr0 ∈ S . For n = 1, 2, . . . , nmax :

αn−1 =
〈rn−1, τrn−1〉
〈Apn−1, pn−1〉

un = un−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
〈rn, τrn〉

〈rn−1, τrn−1〉
pn = τrn + βnpn−1

Superlinear convergence for (identity + compact) operators.

Karush (1952), Hayes (1954), Vorobyev (1958)

Here the Riesz map τ represents preconditioner.
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4 Summary of this part and motivation

Well defined Krylov subspace methods are based on orthogonality wrt nested
Krylov-related subspaces, which can be equivalently formulated using the
associated optimality property.

Therefore the resulting methods are highly nonlinear in the data defining the
problem to be solved.

The nonlinearity allows to adapt to the problem as the iteration proceeds.
This can be overlooked while using the derivation of CG based on the
minimization of the quadratic functional. Therefore this fundamental
nonlinearity of CG for solving system of linear equations is typically not
presented in textbooks.

The adaptation is obvious from the matching moments model reduction view
presented next.

46 / 116



Outline

1 Infinite dimensional problems and finite dimensional computations

2 Krylov subspace methods: Hestenes, Stiefel, Lanczos (1950-52)

3 Problem of moments: Stieltjes (1894)

4 Projections onto highly nonlinear Krylov subspaces

5 Model reduction and moment matching

6 Convergence and spectral information

7 Inexact computations and numerical stability

8 Mathematical mythology

9 Optimistic outlook

Appendix: Operator preconditioning, discretization and algebraic computation

47 / 116



5 Recall the CG (Lanczos) relationship with Jacobi matrices

Let Wn = [w1, . . . , wn] , AWn = Wn Tn + δn+1wn+1e
T
n , form the Lanczos

orthonormal basis of the Krylov subspace Kn(A, r0) . Here the Jacobi matrix of
the orthogonalization coefficients

Tn =





γ1 δ2

δ2

. . .
. . .

. . .
. . .

. . .

. . .
. . . δn

δn γn





represents, at the same time, the matrix of the restricted and orthogonally
projected operator WW ∗A on Kn(A, r0) in the basis Wn . The CG
approximation is determined by

Tn tn = ‖r0‖e1 , xn = x0 + Wn tn .
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5 CG as the matrix-formulated model reduction

This can be viewed as a model reduction from a (large) system of order N
to a (small) system of order n.

In order to be efficient, the projection process should capture fast substantial
part of information contained in the original data.

Intuition: Repeated application of the operator tends to transfer into the
projected system dominating information.

Can this model reduction be defined by a matching moments property?
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5 Recall the distribution functions and moments

Let A be HPD with spectral decomposition A = Y ΛY ∗ , where
0 < λ1 < λ2 < · · · < λN be the (distinct) eigenvalues (for simplicity).

Let ωk = |(w1, yk)|2 > 0, k = 1, . . . , N , and define the distribution function

ω(λ) =






0, if λ < λ1,∑ℓ
k=1 ωk, if λℓ ≤ λ < λℓ+1, for ℓ = 1, . . . , N − 1,

1, if λN ≤ λ.

The moments of ω(λ) are given by

∫ ∞

0

λkdω(λ) =
N∑

ℓ=1

ωℓ{λℓ}k = w∗
1Akw1 k = 0, 1, 2, . . .

Analogous construction applied to Tn = W ∗
nAWn yields a distribution

function ω(n)(λ) with moments given by

∫ ∞

0

λkdω(n)(λ) =

n∑

j=1

ω
(n)
j {λ(n)

j }k = eT
1 T k

n e1 , k = 0, 1, 2, . . .
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5 Stieltjes recurrence for orthonormal polynomials and Jacobi matrix

Let φ0(λ) ≡ 1, φ1(λ), . . . , φn(λ) be the first n + 1 orthonormal polynomials
corresponding to the distribution function ω(λ) . Then, writing
Φn(λ) = [φ0(λ), . . . , φn−1(λ)]∗,

λ Φn(λ) = Tn Φn(λ) + δn+1 φn(λ) en

represents the Stieltjes recurrence (1893-4), see Chebyshev (1855), Brouncker
(1655), Wallis (1656), Toeplitz and Hellinger (1914) with the same Jacobi matrix
as above

Tn ≡





γ1 δ2

δ2 γ2

. . .

. . .
. . .

δn

δn γn




, δl > 0 , ℓ = 2, . . . , n .
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5 Relationship between CG (Lanczos) and Gauss quadrature

Let ω(n)(λ) be the distribution function determined by the n-node Gauss
quadrature approximation of the Riemann-Stieltjes integral with the distribution
function ω(λ).

The quadrature nodes λ
(n)
j are the eigenvalues θ

(n)
j of Tn and the weights ω

(n)
j

are the squared first components of the associated normalized eigenvectors.
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5 Continued fraction corresponding to ω(λ) defined by A, r0

FN(λ) ≡ 1

λ − γ1 −
δ2
2

λ − γ2 − δ2
3

λ − γ3 − . . .

. . .

λ − γN−1 − δ2
N

λ − γN

=
RN (λ)

PN(λ)
.

The entries γ1, . . . , γN and δ2, . . . , δN represent, as above, the coefficients of the
Stieltjes recurrence.
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5 Partial fraction decomposition

b∗ (zI − A)−1 b =

∫ ∞

0

dω(λ)

z − λ
=

N∑

j=1

ωj

z − λj
=

RN (z)

PN (z)
= FN (z)

≈
n∑

j=1

ω
(n)
j

z − λ
(n)
j

=
Rn(z)

Pn(z)
= Fn(z) ,

The denominator Pn(z) corresponding to the nth convergent Fn(z) of FN (z) ,
n = 1, 2, . . . is the nth monic orthogonal polynomial in the sequence determined by
the distribution function ω and the numerator Rn(z) is determined by the same
recurrence started instead of 1 and z with 0 and 1 , see Chebyshev (1855).

54 / 116



5 Additional comments: History repeats

The first 2n moments of the reduced model match those of the original model

The n-node Gauss-Christoffel quadrature has algebraic degree 2n − 1, hence

w∗
1Akw1 = eT

1 T k
n e1 for k = 0, 1, . . . , 2n − 1.

Moment matching properties can also be derived for non-Hermitian matrices
using the Vorobyev method of moments

For the infinite dimensional Hilbert spaces and self-adjoint bounded operators
it was described by Vorobyev (1958, 1965).

We are in fact back (now using the language of matrix-vector algebra) to the
investigations of Stieltjes (1894), or even Jacobi (1826) and Gauss (1814).
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5 The problem of moments in Hilbert space

Let z0, z1, . . . , zn be n + 1 linearly independent elements of a Hilbert space V .
Consider the subspace Vn generated by all possible linear combinations of
z0, z1, . . . , zn−1 and construct a linear operator Bn defined on Vn such that

z1 = Bnz0,

z2 = Bnz1,

...

zn−1 = Bnzn−2,

Enzn = Bnzn−1,

where Enzn is the (orthogonal or oblique) projection of zn onto Vn .

56 / 116



5 Approximation of bounded linear operators

Let B be a bounded linear operator on Hilbert space V . Choosing an
element z0 , we first form a sequence of elements z1, z2, . . . , zn, . . . such that

z0, z1 = Bz0, z2 = Bz1 = B2z0, . . . , zn = Bzn−1 = Bnzn−1, . . .

For the present z1, . . . , zn are assumed to be linearly independent. Determine a
sequence of operators Bn defined on the sequence of nested subspaces Vn such
that

z1 = Bz0 = Bnz0,

z2 = B2z0 = (Bn)2z0,

...

zn−1 = Bn−1z0 = (Bn)n−1z0,

Enzn = EnBnz0 = (Bn)nz0.
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5 Model reduction using Krylov subspaces

Using the projection En onto Vn we can write for the operators constructed
above (here we need the linearity of B )

Bn = En B En .

The finite dimensional operators Bn can be used to obtain approximate solutions
to various linear problems. The choice of the elements z0, . . . , zn, . . . as above
gives Krylov subspaces that are determined by the operator and the initial element
z0 (e.g. by a partial differential equation, boundary conditions and outer forces).

See CG in infinite dimensional Hilbert spaces given above in part 4.
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6 Linear convergence bounds for the nonlinear CG method

The CG optimality property

‖x − xn‖A = min
z∈x0+Kn(A,r0)

‖x − z‖A = min
p∈Pn(0)

‖p(A)(x− x0)‖A

yields the convergence bounds

‖x − xn‖A

‖x − x0‖A
≤ min

p∈Pn(0)
max

1≤j≤N
|p(λj)| ≤ min

p∈Pn(0)
max

λ∈[λ1,λN ]
|p(λ)|

≤ 2

(√
κ − 1√
κ + 1

)n

, κ =
λN

λ1
.

The worst-case behavior of the method is completely determined by the
distribution of the eigenvalues of A.

The widely known κ-bound is derived using Chebyshev polynomials on the
interval [λ1, λN ]. It does not depend on any other properties of A, b, x0.

The κ-bound is linear and it can not capture the adaptation of the CG method
to the problem!
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6 Large outliers and adapted condition numbers attempt

Consider the desired accuracy ǫ , κs(A) ≡ λN−s/λ1 . Then

k = s +

⌈
ln(2/ǫ)

2

√
κs(A)

⌉

CG steps will produce the approximate solution xn satisfying

‖x − xn‖A ≤ ǫ ‖x − x0‖A .

This statement qualitatively explains superlinear convergence of
CG at the presence of large outliers in the spectrum, assuming
exact arithmetic.
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6 Adaptive Chebyshev bound fails to resolve the matter
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The finite precision computation (the thick black line) is not captured
quantitatively nor described qualitatively!
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6 Recall the moment problem illustration

For a given n find a distribution function with n mass points in such a way that
it in a best way captures the properties of the original distribution function
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r w . . . v r | v
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θ
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2

θ
(n)
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. . . w
ω

(n)
n

θ
(n)
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6 Back to CG and Gauss quadrature - equivalence of errors!

At any iteration step n , CG represents the matrix formulation of the n-point
Gauss quadrature of the Riemann-Stieljes integral determined by A and r0 ,

∫ ∞

0

f(λ) dω(λ) =
n∑

i=1

ω
(n)
i f(θ

(n)
i ) + Rn(f) .

For f(λ) ≡ λ−1 ,

‖x − x0‖2
A

‖r0‖2
= n-th Gauss quadrature +

‖x − xn‖2
A

‖r0‖2
.

This has became a base for the CG error estimation; see the surveys in S and
Tichý, 2002; Meurant and S, 2006; Liesen and S, 2013.
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6 Clustering of eigenvalues does make a change! Even for A HPD!

{
Mj

−→ ttttt
Mj

single eigenvalue

λj

−→
many close eigenvalues

λ̂j1 , λ̂j2 , . . . , λ̂jℓ

Replacing a single eigenvalue by a tight cluster can make a substantial difference;
Greenbaum (1989); Greenbaum, S (1992); Golub, S (1994).

If it does not, then it means that CG can not adapt to the problem, and it
converges almost linearly. In such cases - is it worth using?
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6 Gauss quadrature can be highly sensitive to small changes of ω(λ) !
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6 Illustration - only the largest eigenvalue is replaced by a cluster
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6 Theorem - O’Leary, S, Tichý (2007)

Consider distribution functions ω(x) and ω̃(x) . Let

pn(x) = (x − x1) . . . (x − xn) and p̃n(x) = (x − x̃1) . . . (x − x̃n)

be the nth orthogonal polynomials corresponding to ω and ω̃ respectively,
with

p̂c(x) = (x − ξ1) . . . (x − ξc)

their least common multiple. If f ′′ is continuous, then the difference
∆n

ω,ω̃ = |In
ω − In

ω̃ | between the approximations In
ω to Iω and In

ω̃ to Iω̃ ,
obtained from the n-node Gauss quadrature, is bounded as

|∆n
ω,ω̃| ≤

∣∣∣∣

∫
p̂c(x)f [ξ1, . . . , ξc, x] dω(x) −

∫
p̂c(x)f [ξ1, . . . , ξc, x] dω̃(x)

∣∣∣∣

+

∣∣∣∣

∫
f(x) dω(x) −

∫
f(x) dω̃(x)

∣∣∣∣ .
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6 Summary of the CG/Lanczos part in relation to the Gauss quadrature

1 Gauss-Christoffel quadrature for a small number of quadrature nodes can be
highly sensitive to small changes in the distribution function enlarging its
support.

2 In particular, the difference between the corresponding quadrature
approximations (using the same number of quadrature nodes) can be many
orders of magnitude larger than the difference between the integrals being
approximated.

3 This sensitivity in Gauss-Christoffel quadrature can be observed
for discontinuous, continuous, and even analytic distribution functions,
and for analytic integrands uncorrelated with changes in the distribution
functions and with no singularity close to the interval of integration.
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6 Another issue - convergence results for the GMRES method

For diagonalizable A = Y ΛY −1 the GMRES optimality property

‖rn‖2 = min
z∈x0+Kn(A,r0)

‖b − Az‖2 = min
p∈Pn(0)

‖p(A)r0‖2

yields the convergence bound

‖rn‖2

‖r0‖2
≤ κ(Y ) min

p∈Pn(0)
max

1≤j≤N
|p(λj)| .

The eigenvalue distribution and the GMRES convergence are (closely) related
only when κ(Y ) is small (A is close to normal).

In general, the eigenvalues alone do not describe GMRES convergence:

Any non-increasing convergence curve is attainable by GMRES for a matrix
having any prescribed set of eigenvalues.
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6 Any GMRES convergence with any spectrum

Given any spectrum and any sequence of the nonincreasing residual norms,
a complete parametrization is known of the set of all GMRES associated matrices
and right hand sides.

The set of problems for which the distribution of eigenvalues alone does not
correspond to convergence behavior is not of measure zero and it is not pathological.

Widespread eigenvalues alone can not be identified with poor convergence.

Clustered eigenvalues alone can not be identified with fast convergence.

Equivalent orthogonal matrices; pseudospectrum indication.
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6 Theorem: Any GMRES convergence with any spectrum

1◦ The spectrum of A is given by {λ1, . . . , λN} and GMRES(A, b) yields
residuals with the prescribed nonincreasing sequence (x0 = 0)

‖r0‖ ≥ ‖r1‖ ≥ · · · ≥ ‖rN−1‖ > ‖rN‖ = 0 .

2◦ Let C be the spectral companion matrix, h = (h1, . . . , hN)T ,
h2

i = ‖ri−1‖2 − ‖ri‖2 , i = 1, . . . , N be the vector with its elements measuring
the GMRES progress at the individual steps. Let R be a nonsingular upper
triangular matrix such that Rs = h with s being the first column of C−1 ,
and let W be unitary matrix. Then

A = WRCR−1W ∗ and b = Wh.

Greenbaum, Pták, Arioli and S (1994 - 98); Liesen (1999); Eiermann and Ernst
(2001); Meurant (2012); Meurant and Tebbens (2012, 2014); .....
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6 Quiz: Convection-diffusion model problem

0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

−ν ∆u + w · ∇u = 0, in Ω = (0, 1) × (0, 1), u = g on ∂Ω .

Quiz: In one case the convergence of GMRES is substantially faster than in the
other; for the solution see Liesen, S (2005).
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6 Adaptation to the inner nature of the problem?

Problem Ax = b

A normal A non-normal
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7 CG convergence behavior in finite precision arithmetic
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FP computation
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Rounding errors in finite precision CG

computations cause a delay of conver-

gence.
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exact comp. with single eigenvalues

Exact CG computation for a matrix,

where each eigenvalue is replaced by a

tight cluster.
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7 Delay of convergence and numerical rank of Krylov subspaces
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Shifting the finite precision curve by the

number of delayed iteration steps yields

the curve for the exact computation.

The observations given above have been proved by rigorous mathematical means!
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7 Mathematical model of FP CG - back to Stieltjes and clusters!

Lanczos (with small inaccuracy also CG) in finite precision
arithmetic can be seen as the exact arithmetic Lanczos (CG) for
the problem with the slightly modified distribution function with
single eigenvalues replaced by tight clusters.

Paige (1971-80), Greenbaum (1989),
Parlett (1990), S (1991), Greenbaum and S (1992), Notay (1993), ... , Druskin,
Kniznermann, Zemke, Wülling, Meurant, ...
Recent reviews and updates in Meurant and S, Acta Numerica (2006); Meurant
(2006); Liesen and S (2013).

Now it is obvious why in FP computations the composite convergence bounds
eliminating large outlying eigenvalues at the cost of one iteration per eigenvalue (see
Axelsson (1976), Jennings (1977)) are not applicable for description of the
superlinear convergence behaviour of CG. They represent for methods with short
recurrences a principally misleading concept.
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7 Finite precision Lanczos (CG) computations are optimal!

In exact arithmetic, local orthogonality properties of CG are equivalent to the
global orthogonality properties and therefore also to the CG optimality recalled
above.

In finite precision arithmetic the local orthogonality properties are preserved
proportionally to machine precision, but the global orthogonality and therefore
the optimality wrt the underlying distribution function is lost.

In finite precision arithmetic computations (or, more generally, in inexact
Krylov subspace methods) the optimality property does not have any easily
formulated meaning with respect to the subspaces generated by the computed
residual (or direction) vectors.

Using the results of Greenbaum from 1989, it does have, however, a well
defined meaning with respect to the particular distribution functions defined
by the original data and the rounding errors in the steps 1 through n.
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7 Optimality in finite precision Lanczos (CG) computations?

Using the mathematically equivalent formulation of CG

AWn = Wn Tn + δn+1wn+1e
T
n , Tn = W ∗

n(A, r0) AWn(A, r0) ,

with the CG approximation given by

Tn tn = ‖r0‖e1 , xn = x0 + Wn tn ,

Greenbaum proved that the Jacobi matrix computed in finite precision
arithmetic can be considered a left principal submatrix of a certain larger
Jacobi matrix having all its eigenvalues close to the eigenvalues of the original
matrix A .

This is equivalent to saying that convergence behavior in the first n steps of
the given finite precision Lanczos computation can equivalently be described as
the result of the exact Gauss quadrature for certain distribution function that
depends on n and has tight clusters of points of increase around the original
eigenvalues of A .
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7 Trajectories in spaces of different dimension
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7 Analysis of numerical stability of GMRES is different

In finite precision, the loss of orthogonality using the modified Gram-Schmidt
GMRES is inversely proportional to the normwise relative backward error

‖b − Axn‖2

‖b‖2 + ‖A‖2‖xn‖2
.

Loss of orthogonality (blue) and normwise relative backward error (red) for a
convection-diffusion model problem with two different “winds”:
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It can be shown that the MGS-GMRES is normwise backward stable.
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7 Major unresolved challenge - delay of convergence due to inexactness
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Here numerical inexactness due to roundoff. How much may we relax accuracy of
the most costly operations without causing an unwanted delay and/or affecting the
maximal attainable accuracy? That will be crucial in exascale computations.
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7 A questionable conclusion - an arbitrary accuracy in AFEM?
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Including inexactness and maximal attainable accuracy in matrix computations?
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8 Myths in Mathematics?

Myth:
A belief given uncritical acceptance by the members of a group especially in support
of existing or traditional practices and institutions.

Webster’s Third New International Dictionary, Enc. Britannica Inc., Chicago (1986)
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8 Myths in Mathematics?

Myth:
A belief given uncritical acceptance by the members of a group especially in support
of existing or traditional practices and institutions.

Webster’s Third New International Dictionary, Enc. Britannica Inc., Chicago (1986)

A. Einstein,
in Oxford User’s Guide to Mathematics, E. Zeidler (ed), OUP (2004), p. 3:

“Everything should be made as simple as possible, but not simpler.”
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8 Examples of widespread myths concern

Minimal polynomials and finite termination property

Chebyshev bounds and CG

Spectral information and clustering of eigenvalues

Operator-based bounds and functional analysis arguments on convergence

Finite precision computations seen as a minor modification of the exact
considerations

Linearization of nonlinear phenomenon

Considering CG in matrix computations as a simplification of CG in general
nonlinear optimization

Well conditioned basis and short recurrences (look-ahead)

Sparsity as an ultimate positive feature

Discretization and algebraic errors in numerical PDEs
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8 Minimal polynomials, asymptotics

It is not true that CG (or other Krylov subspace methods used for solving
systems of linear algebraic equations with symmetric matrices) applied to a
matrix with t distinct well separated tight clusters of eigenvalues produces in
general a large error reduction after t steps; see Sections 5.6.5 and 5.9.1 of
Liesen, S (2013). The associated myth has been proved false more than 25
years ago; see Greenbaum (1989); S (1991); Greenbaum, S (1992). Still it is
persistently repeated in literature as an obvious fact.

With no information on the structure of invariant subspaces
it can not be claimed that distribution of eigenvalues provides insight into
the asymptotic behavior of Krylov subspace methods (such as GMRES)
applied to systems with generally nonsymmetric matrices; see Sections 5.7.4,
5.7.6 and 5.11 of Liesen, S (2013). As above, the relevant results Greenbaum, S
(1994); Greenbaum, Pták, S (1996) and Arioli, Pták, S (1998) are more than 20
years old.
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8 How the mathematical myths contradict the historical facts

Lanczos, Hestenes and Stiefel did consider CG as iterative algorithm. In order
to see that it is enough to read the titles and the abstracts of their papers
published within 1950 - 52. Still, how many papers claim the opposite, even
those published to celebrate the anniversaries of the original publications!

Rutishauser (1959) as well as Lanczos (1952) considered CG principally
different in their nature from the method based on Chebyshev polynomials.

Daniel (1967) did not identify the CG convergence with the Chebyshev
polynomials-based bound. He carefully writes (modifyling slightly his notation)

“assuming only that the spectrum of the matrix A lies inside the interval
[λ1, λN ], we can do no better than Theorem 1.2.2.”

That means that the Chebyshev polynomials-based bound holds for any
distribution of eigenvalues between λ1 and λN and for any distribution of
the components of the initial residuals in the individual invariant subspaces.
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8 Are algebraic errors in numerical PDEs easy to handle?
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Exact solution u (left) and the discretization error u − uh (right) in the Poisson
model problem, linear FEM, adaptive mesh refinement.

Quasi equilibrated discretization error over the domain.
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8 L-shape domain, Papež, Liesen, S (2014)
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of CG iterations guaranteeing

‖∇(u − uh)‖ ≫ ‖x − xn‖A .
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9 Concluding remarks and outlook

Krylov subspace methods adapt to the problem. Exploiting this adaptation is
the key to their efficient use.

Unlike in nonlinear problems and/or multilevel methods, analysis of Krylov
subspace methods can not be based, in general, on contraction arguments.

Individual steps modeling-analysis-discretization-computation should not be
considered separately within isolated disciplines. They form a single problem.
Operator preconditioning follows this philosophy.

Fast HPC computations require handling all involved issues.
A posteriori error analysis and stopping criteria are essential ...

Assumptions must be honored.

Historia Magistra Vitae
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9 An optimistic view

⇒

Formulation of the model, discretization and algebraic computation, including the
evaluation of the error, stopping criteria for the algebraic solver, adaptivity etc.
are very closely related to each other.
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9 Lanczos, Why Mathematics (1966)

“We will go on pondering and meditating, the great mysteries still ahead of us, we
will err and stumble on the way, and if we win a little victory, we will be jubilant
and thankful, without claiming, however, that we have done something that can
eliminate the contribution of all the millenia before us.”
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Thank you very much for your kind patience!

96 / 116



Outline

1 Infinite dimensional problems and finite dimensional computations

2 Krylov subspace methods: Hestenes, Stiefel, Lanczos (1950-52)

3 Problem of moments: Stieltjes (1894)

4 Projections onto highly nonlinear Krylov subspaces

5 Model reduction and moment matching

6 Convergence and spectral information

7 Inexact computations and numerical stability

8 Mathematical mythology

9 Optimistic outlook

Appendix: Operator preconditioning, discretization and algebraic computation

97 / 116



A Functional analysis and iterative methods

R. C. Kirby, SIREV (2010):

“We examine condition numbers, preconditioners and iterative methods for FEM
discretization of coercive PDEs in the context of the solvability result, the
Lax-Milgram lemma.

Moreover, useful insight is gained as to the relationship between Hilbert space and
matrix condition numbers, and translating Hilbert space fixed point iterations into
matrix computations provides new ways of motivating and explaining some classic
iteration schemes. [ ... ] This paper is [ ... ] intending to bridge the functional
analysis techniques common in finite elements and the linear algebra community.”
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A Functional analysis and iterative methods

K. A. Mardal and R. Winther, NLAA (2011):

“The main focus will be on an abstract approach to the construction of
preconditioners for symmetric linear systems in a Hilbert space setting [ ... ] The
discussion of preconditioned Krylov space methods for the continuous systems will be
a starting point for a corresponding discrete theory.

By using this characterization it can be established that the conjugate gradient
method converges [ ... ] with a rate which can be bounded by the condition number [
... ] However, if the operator has a few eigenvalues far away from the rest of the
spectrum, then the estimate is not sharp. In fact, a few ‘bad eigenvalues’ will have
almost no effect on the asymptotic convergence of the method.”

99 / 116



A Functional analysis and iterative methods

O. Axelsson and J. Karátson, Numer. Alg. (2009):

“To preserve sparsity, the arising system is normally solved using an iterative
solution method, commonly a preconditioned conjugate gradient method [ ... ] the
rate of convergence depends in general on a generalized condition number of the
preconditioned operator [ ... ]

if the two operators (original and preconditioner) are equivalent, then the
corresponding PCG method provides mesh independent linear convergence [ ...]

if the two operators (original and preconditioner) are compact-equivalent, then
the corresponding PCG method provides mesh independent superlinear
convergence.”
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A Mesh independent condition number

R. Hiptmair, CMA (2006):

“There is a continuous operator equation posed in infinite-dimensional spaces that
underlines the linear system of equations [ ... ] awareness of this connection is key
to devising efficient solution strategies for the linear systems.

Operator preconditioning is a very general recipe [ ... ]. It is simple to apply, but
may not be particularly efficient, because in case of the
[ condition number ] bound of Theorem 2.1 is too large, the operator preconditioning
offers no hint how to improve the preconditioner. Hence, operator preconditioner
may often achieve [ ... ] the much-vaunted mesh independence of the
preconditioner, but it may not perform satisfactorily on a given mesh.”
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A Linear asymptotic behavior?

V. Faber, T. Manteuffel and S. V. Parter, Adv. in Appl. Math. (1990):

“For a fixed h, using a preconditioning strategy based on an equivalent operator may
not be superior to classical methods [ ... ] Equivalence alone is not sufficient for a
good preconditioning strategy. One must also choose an equivalent operator for
which the bound is small.

There is no flaw in the analysis, only a flaw in the conclusions drawn from the
analysis [ ... ] asymptotic estimates ignore the constant multiplier. Methods with
similar asymptotic work estimates may behave quite differently in practice.”
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A Literature on operator preconditioning

Gunn, D’yakonov, Faber, Manteuffel, Parter, Klawonn, Arnold, Falk, Winther,
Axelsson, Karátson, Hiptmair, Vassilevski, Neytcheva, Notay, Elmann, Silvester,
Wathen, Zulehner, Simoncini, Oswald, Griebel, Rüde, Steinbach, Wohlmuth,
Bramble, Pasciak, Xu, Nyepomnyaschkikh, Dahmen, Kunoth, Yserentant, Mardal,
Nordbotten, ..........

Details, proofs and (incomplete) references can be found in

J. Málek and Z.S., Preconditioning and the Conjugate Gradient Method
in the Context of Solving PDEs. SIAM Spotlight Series, SIAM (2015)

J. Hrnč́ı̌r, I. Pultarová, Z.S., Decomposition into subspaces and operator
preconditioning (submitted 2017)
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A Basic setting

Hilbert space V with the inner product

(·, ·)V : V × V → R , ‖ · ‖V ,

dual space V # of bounded linear functionals on V with the duality pairing and
the associated Riesz map

〈·, ·〉 : V # × V → R , τ : V # → V such that (τf, v)V := 〈f, v〉 for all v ∈ V.

Equation in the functional space V #

Au = b

with a linear, bounded, coercive, and self-adjoint operator

A : V → V # , a(u, v) := 〈Au, v〉 ,

CA := sup
v∈V, ‖v‖V =1

‖Av‖V # < ∞ ,

cA := inf
v∈V, ‖v‖V =1

〈Av, v〉 > 0 .
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A Operator preconditioning

Linear, bounded, coercive, and self-adjoint B , CB , cB defined analogously. Define

(·, ·)B : V × V → R, (w, v)B := 〈Bw, v〉 for all w, v ∈ V ,

τB : V # → V, (τBf, v)B := 〈f, v〉 for all f ∈ V #, v ∈ V .

Instead of the equation in the functional space V #

Au = b

we solve the equation in the solution space V

τB Au = τB b ,

i.e.
B−1 A u = B−1b.
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A Norm equivalence of infinite dimensional operators

Theorem (norm equivalence and condition number)

Assuming that the linear, bounded, coercive and self-adjoint operators A and B
are V #-norm equivalent on V , i.e. there exist 0 < α ≤ β < ∞ such that

α ≤ ‖Aw‖V #

‖Bw‖V #

≤ β, for all w ∈ V, w 6= 0 .

Then

κ(B−1A) := ‖B−1A‖L(V,V )‖A−1B‖L(V,V ) ≤ β

α
.
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A Spectral equivalence of infinite dimensional operators

Theorem (spectral equivalence and spectral number)

Assuming that the linear, bounded, coercive and self-adjoint operators A and B
are spectrally equivalent on V , i.e. there exist 0 < γ ≤ δ < ∞ such that

γ ≤ 〈Aw, w〉
〈Bw, w〉 ≤ δ, for all w ∈ V, w 6= 0 .

Then

κ̂(A,B) :=
supz∈V, ‖z‖V =1

(
(τB)−1/2τA (τB)−1/2z, z

)

V

infv∈V, ‖v‖V =1 ((τB)−1/2τA (τB)−1/2v, v)V

≤ δ

γ
.
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A Galerkin discretization

N-dimensional subspace Vh ⊂ V ; abstract Galerkin discretization gives uh ∈ Vh,
uh ≈ u ∈ V satisfying Galerkin orthogonality

〈Auh − b, v〉 = 0 for all v ∈ Vh .

Restrictions Ah : Vh → V #
h , bh : Vh → R give the problem in V #

h

Ahuh = bh, uh ∈ Vh, bh ∈ V #
h .

With the inner product (·, ·)B and the associated restricted Riesz map

τB,h : V #
h → Vh

we get the abstract form of the preconditioned discretized problem in Vh

τB,h Ah uh = τB,h bh .
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A Preconditioning - straight consequence of the Vh −→ V
#
h

setting

Using the discretization basis Φh = (φ1, . . . , φN ) of Vh

and the canonical dual basis Φ#
h = (φ#

1 , . . . , φ#
N ) of V #

h , (Φ#
h )∗Φh = IN ,

M−1
h Ah xh = M−1

h bh,

where

Ah, Mh ∈ R
N×N , xh,bh ∈ R

N ,

(xh)i = 〈φ#
i , uh〉 , (bh)i = 〈b, φi〉 ,

Ah = (a(φj , φi))i,j=1,...,N = (〈Aφj , φi〉)i,j=1,...,N ,

Mh = (〈Bφj , φi〉)i,j=1,...,N ,

or
Ah = (AΦh)∗Φh, Mh = (BΦh)∗Φh .
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A Matrix representation – symmetric form

Indeed, for the restricted Riesz map τB,h for v and f , with f = Φ#
h f , v = Φhv

(τB,hf, v)B = (τB,hΦ#
h f , Φhv)B = (ΦhMτ f , Φhv)B = 〈BΦhMτ f , Φhv〉 = v∗MhMτ f ,

(τB,hf, v)B = 〈f, v〉 = v∗f

and therefore
Mτ = M−1

h .

Using (an arbitrary) decomposition Mh = LhL∗
h , the resulting preconditioned

algebraic system can be transformed into

(L−1

h
AhL

∗
h

−1
) (L∗

hxh) = L−1
h bh ,

i.e.,
At,h xt

h = bt
h .
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A Transformation of discretization basis and of the inner product

Φh → Φ̃t,h such that Mt,h = (BΦ̃t,h)∗Φ̃t,h = I ,

i.e. orthogonalization of the basis with respect to the inner product (·, ·)B ,

Φ̃t,h = ΦhMh

−1/2, Φ̃#
t,h = Φ#

h Mh

1/2

gives immediately the preconditioned system Ãt,h x̃t
h = b̃t

h with the reference
choice Lh := Mh

1/2 . Any other choice

Φt,h = ΦhL∗
h

−1
, Φ#

t,h = Φ#
h Lh

is given via an associated orthogonal transformation Q ,

Φt,h = Φ̃t,hQ
∗ , Q∗ = Mh

1/2L∗
h

−1
.
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A Points that are worth noticing

Transformation of the discretization basis (preconditioning) is different from a
change of the algebraic basis (similarity transformation).

Any algebraic preconditioning can be put into the operator preconditioning
framework by transformation of the discretization basis and the associated
change of the inner product in the infinite dimensional Hilbert space V .
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A Better conditioning does not necessarily mean faster convergence!
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A Transformed FEM nodal basis elements have global support
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A Norm equivalence and the condition number independent of h

Theorem (norm equivalence and condition number)

Let the linear, bounded, coercive and self-adjoint operators A and B from V to
V # be V #-norm equivalent with the lower and upper bounds α and β ,
respectively, i.e.

α ≤ ‖Aw‖V #

‖Bw‖V #

≤ β for all w ∈ V , w 6= 0, 0 < α ≤ β < ∞ .

Let Sh be the Gram matrix of the discretization basis Φh = (φ1, . . . , φN ) of
Vh ⊂ V , with (Φ#

h )∗Φh = I ,

(Sh)ij = (φi, φj)V .

Then the condition number of the matrix M−1
h Ah is bounded as

κ(M−1
h Ah) := ‖M−1

h Ah‖ ‖A−1
h Mh‖ ≤ β

α
κ(Sh) .
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A Spectral equivalence and the spectral number independent of h

Theorem (Spectral equivalence and spectral number)

Let the linear, bounded, coercive and self-adjoint operators A and B be
spectrally equivalent with the lower and upper bounds γ and δ respectively, i.e.

γ ≤ 〈Aw, w〉
〈Bw, w〉 ≤ δ for all w ∈ V , 0 < γ ≤ δ < ∞ .

Then the spectral number κ̂(Ah,Mh) , which is equal to the condition number of
the matrix At,h = L−1

h Ah(L∗
h)−1 for any Lh such that Mh = LhL

∗
h , is

bounded as

κ̂(Ah,Mh) :=
sup

z∈RN , ‖z‖=1

(
M

−1/2
h AhM

−1/2
h z, z

)

infv∈RN , ‖v‖=1

(
M

−1/2
h AhM

−1/2
h v,v

) = κ(At,h) ≤ δ

γ
.
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