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Gauss quadrature

I. Newton, Philosophiæ Naturalis Principia Mathematica, 1723;
R. Cotes, Harmonia Mensurarum, 1722

Interpolation

C. F. Gauss, Methodus nova integralium valores per approximationem
inveniendi, 1814

Interpolatory quadrature with maximal algebraic degree of exactness

C. G. J. Jacobi, Uber Gauss’ neue Methode, die Werthe der Integrale
näherungsweise zu finden, 1826

Orthogonality and three term recurrence
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Work recalled in this talk

G. H. Golub, Z. S., Estimates in quadratic formulas, 1994

Numerical stability analysis of the error estimates in iterative methods,
Gauss and Gauss-Radau, sliding window

Z. S., P. Tichý, On error estimation in the conjugate gradients and why it
works in finite precision computation, 2002

Based on formulas from the Hestenes and Stiefel 1952 paper; numerical
stability analysis

D. P. O’Leary, Z. S. and P. Tichý, On sensitivity of Gauss-Christoffel
quadrature, 2007

Not of computation of the Gauss-Christoffel quadrature

S. Pozza, M. S. Pranic, Z. S., Gauss quadrature for quasi-definite linear
functionals, 2016

Generalization of Gauss quadrature to complex plane?
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Outline

1. Stieltjes moment problem

2. Gauss Quadrature in complex plane

3. Sensitivity of Gauss quadrature

4. Guaranteed upper bounds for error norms in CG computations?
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1 Stieltjes moment problem (1894) of order n

Consider 2n real numbers m0, m1, . . . , m2n−1.
Solve the 2n equations

n∑

j=1

ω
(n)
j {θ

(n)
j }

ℓ = mℓ , ℓ = 0, 1, . . . , 2n− 1 ,

for the 2n real unknowns ω
(n)
j > 0, θ

(n)
j .

Is this problem linear?
Does it look easy?
When does it have a solution?
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1 Positive definite linear functionals on polynomials

Linear functional L(x) is positive definite on the space of polynomials Pn

of degree at most n if its first 2n + 1 moments

L(xℓ) = mℓ, ℓ = 0, 1, . . . , 2n

are real and the Hankel matrix Mn of moments is positive definite, i.e.,
∆n > 0 , where

∆n = |Mn| =

∣∣∣∣∣∣∣∣∣∣

m0 m1 · · · mn

m1 m2 · · · mn+1

...
...

. . .
...

mn mn+1 · · · m2n

∣∣∣∣∣∣∣∣∣∣

.
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1 Related Riemann-Stieltjes integral representation

With the positive definite L(x) we can restrict ourselves to real
polynomials of a real variable and write, using a non-decreasing positive
distribution function µ defined on the real axis having finite limits at ±∞,

L(f) =

∫
f(x) dµ(x) ,

with the inner product

(p, q) := L(p(x)q(x)) =

∫
p(x)q(x) dµ(x) .

Solution of the Stieltjes moment problem of order n exists
and it is unique if and only if (with some m2n > 0) we have ∆n > 0 .
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1 The unknown ω
(n)
j , θ

(n)
j ?

● Cholesky decomposition of the matrix of moments Mn = LnLT
n

● The entries of the ℓth row of the the inverse L−1
n give the coefficients

of the ℓth orthonormal polynomial determined by the positive definite
linear functional L(x) associated with the matrix of moments Mn .

● Roots of the ℓth orthogonal polynomial give the quadrature nodes θ
(ℓ)
j .

The weights ω
(ℓ)
j are given by the formula for the interpolatory

quadrature.

● Computations are done differently
(Gragg and Harrod, Gautschi, Laurie, ...)
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Outline

1. Stieltjes moment problem

2. Gauss Quadrature in complex plane

3. Sensitivity of Gauss quadrature

4. Guaranteed upper bounds for error norms in CG computations?
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2 Generalization to complex Gauss quadrature?

Linear functional L(x) is quasi-definite on the space of polynomials Pn

of degree at most n if the Hankel matrix Mn of moments

L(xℓ) = mℓ, ℓ = 0, 1, . . . , 2n

is strongly regular, i.e., ∆j 6= 0 , j = 0, 1, . . . , n , where

∆j =

∣∣∣∣∣∣∣∣∣∣

m0 m1 · · · mj

m1 m2 · · · mj+1

...
...

. . .
...

mj mj+1 · · · m2j

∣∣∣∣∣∣∣∣∣∣

.
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2 Three conditions for generalization

● G1: The n-node Gauss quadrature attains the maximal algebraic
degree of exactness 2n− 1.

● G2: The n-node Gauss quadrature is well-defined and it is unique.
Moreover, the Gauss quadratures with a smaller number of nodes also
exist and they are unique.

● G3: The Gauss quadrature of a function f can be written in the form
m0 e

T
1 f(Jn)e1, where Jn is the Jacobi matrix containing the

coefficients from the three-term recurrence relation for orthonormal
polynomials associated with L ; m0 = L(x0).
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2 Principal difficulty

Theorem (e.g. Chihara 1978, Lorentzen and Waadeland 1992)

A sequence {πj}
k
j=0 of orthogonal polynomials with respect to the

linear functional L exists if and only if L is quasi-definite on Pk.

Unlike in the positive-definite case, for L quasi-definite the coefficients of
the associated orthogonal polynomials are not necessarily real, the
coefficients in the three-term recurrence relation are, in general, complex,
and zeros of the orthogonal polynomials can be complex and multiple.
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2 n-weight quadrature

Instead of the usual form of an n-node quadrature

L(f) =

n∑

i=1

ωif(λi) + Rn(f),

where the nodes λ1, . . . , λn are complex and distinct (and the last term
stands for the quadrature error), we will consider (see also Milovanovic
and Cvetkovic 2003) the n-weight quadrature formula

L(f) =
k∑

i=1

si−1∑

j=0

ωi,j f (j)(λi) + Rn(f) ,

where n = s1 + . . . + sk .
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2 Main result

Theorem

Quasi-definitness of the linear functional L is the necessary and
sufficient condition for the n-weight quadrature

L(f) =
k∑

i=1

si−1∑

j=0

ωi,j f (j)(λi) + Rn(f) .

to have all three properties G1, G2 and G3. For non-definite linear
functionals all three properties cannot hold.
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3 Matching moments

Consider a non-decreasing distribution function ω(λ), λ ≥ 0 with the
moments

mk =

∫
∞

0

λk dω(λ) , k = 0, 1, . . . .

Find the distribution function ω(n)(λ) with n points of increase θ
(n)
i

which matches the first 2n moments for the distribution function ω(λ) ,

∫
∞

0

λk dω(n)(λ) ≡
n∑

i=1

ω
(n)
i (θ

(n)
i )k = mk, k = 0, 1, . . . , 2n− 1 .
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3 Moment problem illustration (finite case)

For a given n find a distribution function with n mass points in such a
way that it in a best way captures the properties of the original distribution
function

0

t
ω1

λ1

②
ω2

λ2

r ✇ . . . ✈ r ⑤ ✈
ωN

λN

0

s
ω

(n)
1

θ
(n)
1

③
ω

(n)
2

θ
(n)
2

. . . ✇
ω

(n)
n

θ
(n)
n
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3 CG is matrix formulation of the Gauss Q

Ax = b , x0 ←→

∫
(λ)−1 dω(λ)

↑ ↑

Tn yn = ‖r0‖ e1 ←→
n∑

i=1

ω
(n)
i

(
θ
(n)
i

)
−1

xn = x0 + Wn yn

ω(n)(λ) −→ ω(λ)
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3 CG and Gauss quadrature errors

At any iteration step n , CG represents the matrix formulation of the
n-point Gauss quadrature of the R-S integral determined by A and r0 ,

∫
f(λ) dω(λ) =

n∑

i=1

ω
(n)
i f(θ

(n)
i ) + Rn(f) .

For f(λ) ≡ λ−1 the formula takes the form

‖x− x0‖
2
A

‖r0‖2
= n-th Gauss quadrature +

‖x− xn‖
2
A

‖r0‖2
.

This has became a base for the CG error estimation (see above); see the
surveys in S and Tichý, 2002; Meurant and S, 2006; Liesen and S, 2013.
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3 Gauss quadrature (CG) with tight clusters

④
ωj

−→ ttttt
ωj

single eigenvalue

λj

−→
many close eigenvalues

λ̂j1 , λ̂j2 , . . . , λ̂jℓ

Replacing single eigenvalues by tight clusters can make a difference; see
Greenbaum (1989); Greenbaum, S (1992); Golub, S (1994).
Otherwise CG behaves almost linearly and it can be described by
contraction. In such case - is it worth using?
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3 Sensitivity of the Gauss Quadrature
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3 Simplified problem
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3 : Theorem - O’Leary, S, Tichý (2007)

Consider distribution functions ω(x) and ω̃(x) . Let
pn(x) = (x− x1) . . . (x− xn) and p̃n(x) = (x− x̃1) . . . (x− x̃n) be the
nth orthogonal polynomials corresponding to ω and ω̃ respectively,
with p̂c(x) = (x− ξ1) . . . (x− ξc) their least common multiple.

If f ′′ is continuous, then the difference ∆n
ω,ω̃ = |In

ω − In
ω̃ | between

the approximations In
ω to Iω and In

ω̃ to Iω̃ , obtained from the
n-point Gauss quadrature, is bounded as

|∆n
ω,ω̃| ≤

∣∣∣∣

∫
p̂c(x)f [ξ1, . . . , ξc, x] dω(x) −

∫
p̂c(x)f [ξ1, . . . , ξc, x] dω̃(x)

∣∣∣∣

+

∣∣∣∣
∫

f(x) dω(x) −

∫
f(x) dω̃(x)

∣∣∣∣ .
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3 Modified moments do not tell the story
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Condition numbers of the matrix of the modified moments (GM) and the
matrix of the mixed moments (MM). Left - enlarged supports, right -
shifted supports.
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3 Summary

1. Gauss-Christoffel quadrature for a small number of quadrature nodes
can be highly sensitive to small changes in the distribution function
enlarging its support.

In particular, the difference between the corresponding quadrature
approximations (using the same number of quadrature nodes) can be
many orders of magnitude larger than the difference between the
integrals being approximated.

2. This sensitivity in Gauss-Christoffel quadrature can be observed
for discontinuous, continuous, and even analytic distribution functions,
and for analytic integrands uncorrelated with changes in the
distribution functions and with no singularity close to the interval of
integration.
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3 CG in finite precision arithmetic
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4 When are exact precision results applicable?

● Assuming exact arithmetic, Gauss quadrature gives a lover bound on
the energy norm of the CG error.

● Assuming exact arithmetic, Gauss-Radau quadrature gives a
reasonable upper bound on the energy norm of the CG error, providing
that we have a very tight (positive) approximation of the smallest
eigenvalue of the system matrix.

● CG behaviour in finite precision arithmetic can be very different from its
exact arithmetic counterpart. Without numerical stability analysis, no
claim on estimating its behavior using formulas derived under the exact
arithmetic assumptions can be made.

● Golub, S, 1994 : Gauss quadrature estimates are relevant even in finite
precision arithmetic; see also S, Tichý, 2002. But there is no way we
can guarrantee that the Gauss-Radau-based estimates give in finite
precision arithmetic an upper bound.
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4 Delay of convergence due to inexactness
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Thank you for your patience and help!
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