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Meaning of the words

Matrix iterative methods −→ Krylov subspace methods

Matrices and operators in infinite dimensional Hilbert spaces.

Euler
Gauss
Jacobi
Chebyshev, Markov
Stieltjes
Hilbert, von Neumann
Krylov, Gantmakher
Lanczos, Hestenes, Stiefel
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Meaning of the words

Matrix iterative methods −→ Krylov subspace methods

Cornelius Lanczos, Why Mathematics, 1966

“ In a recent comment on mathematical preparation an educator wanted to
characterize our backwardness by the following statement: ”Is it not astonishing
that a person graduating in mathematics today knows hardly more than what Euler
knew already at the end of the eighteenth century?”. On its face value this sounds a
convincing argument. Yet it misses the point completely. Personally I would not
hesitate not only to graduate with first class honors, but to give the Ph.D. (and with
summa cum laude) without asking any further questions, to anybody who knew only
one quarter of what Euler knew, provided that he knew it in the way in which Euler
knew it. ”
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Meaning of the words

Matrix iterative methods −→ Krylov subspace methods

historical: Without understanding the history we are confused in the presence
and we will get lost in the future. This holds also for mathematics.

Cornelius Lanczos, Linear Differential Operators, 1961

“To get an explicit solution of a given boundary value problem is in this age of large
electronic computers no longer a basic question. The problem can be coded for the
machine and the numerical answer obtained. But of what value is the numerical
answer if the scientist does not understand the peculiar analytical properties and
idiosyncrasies of the given operator?”
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Meaning of the words

Matrix iterative methods −→ Krylov subspace methods

historical: Without understanding the history we are confused in the presence
and we will get lost in the future. This holds also for mathematics.

analytic: The progress in computing technology and the need for solving
practical problems forces us to think algorithmically and do things fast.
Analytic view is by its nature slow and it does not keep up with the pace.
But analytic view is absolutely crucial. It makes a little sense to progress fast
in a wrong direction.

Cornelius Lanczos, The Inspired Guess in the History of Physics, 1964,

“Once the great mathematician Gauss was engaged in a particularly important
investigation, but seemed to make little headway. His colleagues inquired when the
publication was to appear. Gauss gave them an apparently paradoxical and yet
perfectly correct answer: ‘I have all the results but I don’t know yet how I am going
to get them’.”
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Meaning of the words

Matrix iterative methods −→ Krylov subspace methods

historical: Without understanding the history we are confused in the presence
and we will get lost in the future. This holds also for mathematics.

analytic: The progress in computing technology and the need for solving
practical problems forces us to think algorithmically and do things fast.
Analytic view is by its nature slow and it does not keep up with the pace.
But analytic view is absolutely crucial. It makes a little sense to progress fast
in a wrong direction.

application: Development and application of mathematics lives in an
unbreakable symbiosis. I do not believe in “pure” against “applied”
mathematics. This division is artificial, caused by proudness and ambitions. As
a malign disease it leads mathematics to fragmentation and the fields of
mathematics to dangerous isolation. Applications are like a fresh water. Any
application must honor the assumptions of the theory.
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Meaning of the words - application

Henri Poincaré, 1909, graduate of the Polytechnique

“The scientist does not study nature because it is useful; he studies it because he
delights in it, and he delights in it because it is beautiful. If nature were not
beautiful, it would not be worth knowing, and if nature were not worth knowing, life
would not be worth living. ...
I mean that deeper beauty coming from the harmonious order of the parts, and that
a pure intelligence can grasp.

Science has had marvelous applications, but a science that would only have
applications in mind would not be science anymore, it would be only cookery.”
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Meaning of the words

Matrix iterative methods −→ Krylov subspace methods

historical: Without understanding the history we are confused in the presence
and we will get lost in the future. This holds also for mathematics.

analytic: The progress in computing technology and the need for solving
practical problems forces us to think algorithmically and do things fast.
Analytic view is by its nature slow and it does not keep up with the pace.
But analytic view is absolutely crucial. It makes a little sense to progress fast
in a wrong direction.

application: Development and application of mathematics lives in an
unbreakable symbiosis. I do not believe in “pure” against “applied”
mathematics. This division is artificial, caused by proudness and ambitions. As
a malign disease it leads mathematics to fragmentation and the fields of
mathematics to dangerous isolation. Applications are like a fresh water. Any
application must honor the assumptions of the theory.

computational: Computing is a very involved process. Computers should serve
in solving properly mathematically formulated problems. Mathematics must
respect limitations of the computing technology.
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Meaning of the words - computational

John von Neumann and Herman H. Goldstine, Numerical ... , 1947

“When a problem in pure or in applied mathematics is ‘solved’ by numerical
computation, errors, that is, deviations of the numerical ‘solution’ obtained from the
true, rigorous one, are unavoidable. Such a ‘solution’ is therefore meaningless,
unless there is an estimate of the total error in the above sense.

Such estimates have to be obtained by a combination of several different methods,
because the errors that are involved are aggregates of several different kinds of
contributory, primary errors. These primary errors are so different from each other
in their origin and character, that the methods by which they have to be estimated
must differ widely from each other. A discussion of the subject may, therefore,
advantageously begin with an analysis of the main kinds of primary errors, or rather
of the sources from which they spring.

This analysis of the sources of errors should be objective and strict inasmuch as
completeness is concerned, . . . .”
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Cornelius Lanczos, March 9, 1947

On (what are now called) the Lanczos and CG methods:

“The reason why I am strongly drawn to such
approximation mathematics problems is ... the fact that
a very “economical” solution is possible only when it is very “adequate”.

To obtain a solution in very few steps
means nearly always that one has found a way
that does justice to the inner nature of the problem.”
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Albert Einstein, March 18, 1947

“Your remark on the importance of
adapted approximation methods makes very
good sense to me, and I am convinced
that this is a fruitful mathematical aspect,
and not just a utilitarian one.”
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Albert Einstein, March 18, 1947

“Your remark on the importance of
adapted approximation methods makes very
good sense to me, and I am convinced
that this is a fruitful mathematical aspect,
and not just a utilitarian one.”

Main principle behind Krylov subspace methods:

Highly nonlinear adaptation of the iterations to the problem.
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Conjugate Gradient (CG) method for Ax = b with A HPD (1952)

r0 = b − Ax0, p0 = r0 . For n = 1, . . . , nmax :

αn−1 =
r∗n−1rn−1

p∗
n−1Apn−1

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
r∗nrn

r∗n−1rn−1

pn = rn + βnpn−1

Here αn−1 ensures the minimization of ‖x − xn‖A along the line

z(α) = xn−1 + αpn−1 .
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Mathematical elegance of CG

Provided that

pi ⊥A pj , i 6= j,

the one-dimensional line minimizations at the individual steps 1 to n result in
the n-dimensional minimization over the whole shifted Krylov subspace

x0 + Kn(A, r0) = x0 + span{p0, p1, . . . , pn−1} .
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The orthogonality condition leads to short recurrences due to the relationship
to the orthogonal polynomials that define the algebraic residuals and search
vectors.

Inexact computation?
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Antoine de Saint-Exupéry , The Wisdom of the Sands, 1944

“I would not bid you pore upon a heap of stones, and turn them over and over, in
the vain hope of learning from them the secret of meditation. For on the level of the
stones there is no question of meditation; for that, the temple must have come into
being. But, once it is built, a new emotion sways my heart, and when I go away, I
ponder on the relations between the stones. ...

I must begin by feeling love; and I must first observe a wholeness. After that I
may proceed to study the components and their groupings. But I shall not trouble to
investigate these raw materials unless they are dominated by something on which my
heart is set. Thus I began by observing the triangle as a whole; then I sought to
learn in it the functions of its component lines. ...

So, to begin with, I practise contemplation. After that, if I am able, I analyse
and explain. ...

Little matter the actual things that are linked together; it is the links that I must
begin by apprehending and interpreting.”
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Outline

1 What are the Krylov subspace methods and what kind of mathematics is
involved?

2 Linear projections onto highly nonlinear Krylov subspaces

3 Model reduction and moment matching

4 Convergence and spectral information

5 Inexact computations and numerical stability

6 Functional analysis and infinite dimensional considerations

7 Operator preconditioning, discretization and algebraic computation

8 HPC computations with Krylov subspace methods?

9 Myths about Krylov subspace methods
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1. What are the Krylov subspace methods and what
kind of mathematics is involved?
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1 Historical development and context

Mechanical quadrature

Newton, Cotes 1720s

Gauss quadrature

Gauss 1814

Gauss quadrature and

orthogonal polynomials

Jacobi 1826

Generalisations of the

Gauss quadrature, 

minimal partial realisation

Christoffel 1858/77

Three-term recurrences

and continued fractions

Brouncker, Wallis 1650s

Infinite series expansions

and continued fractions

Euler 1744/48

Continued fractions and

three-term recurrence for

orthogonal polynomials

Chebyshev 1855/59

Continued fractions and 

Chebyshev inequalities

Chebyshev 1855,  

Markov, Stieltjes 1884 

Real symmetric matrices

have real eigenvalues, 

interlacing property

Cauchy 1824

Reduction of bilinear

form to tridiagonal form

Jacobi 1848

Diagonalisation of

quadratic forms

Jacobi 1857

Jordan canonical form

Weierstrass 1868,

Jordan 1870

Minimal polynomial

Frobenius 1878

Analytic theory of continued fractions,

Riemann-Stieltjes integral,

solution of the moment problem

Stieltjes 1894 

Jacobi form (or matrix)

Hellinger & Toeplitz 1914

Foundations of functional analysis, including continuous spectrum, resolution

of unity, self-adjoined operators, Hilbert space

Hilbert 1906-1912 

Orthogonalisation via

the Gramian

Gram 1883

Orthogonalisation algorithms

for functions and vectors

Schmidt 1905/07, Szász 1910

Mathematical foundations of 

quantum mechanics

Hilbert 1926/27,

von Neumann 1927/32,

Wintner 1929

Representation theorem

Riesz 1909

Modern numerical analysis

von Neumann & Goldstine 1947

Turing 1948

Krylov subspace methods

Lanczos 1950/52, Hestenes & Stiefel 1952

Transformation of the

characteristic equation

Krylov 1931

Orthogonalisation idea

Laplace 1820

1950

1650

Secular equation of the

moon

Lagrange 1774

Characteristic equation

Cauchy 1840

Krylov sequences

Gantmacher 1934
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2 Lanczos, Hestenes and Stiefel

Numerical analysis

Rounding error analysis

Least squares solutions

Gaussian elimination

Matrix theory

Optimisation

Structure and sparsity

Convex geometry

Convergence analysis

Cornelius Lanczos

An iteration method for the solution

of the eigenvalue problem of linear 

diff ti l d i t l t  1950

Polynomial preconditioningIterative methods Stopping criteria

Vandermonde determinant

Floating point computationsCost of computations

Data uncertainty

y

Projections

Orthogonalisation
Orthogonal polynomials

Linear algebra
Approximation theory

Chebyshev, Jacobi and

Legendre polynomials

Minimising functionals

g y
differential and integral operators, 1950

Solution of systems of linear equations

by minimized iterations, 1952

Chebyshev polynomials in the solution

of large-scale linear systems, 1952

Cauchy-Schwarz inequality

General inner products

Gauss-Christoffel quadrature Riemann-Stieltjes integral

Sturm sequences

Rayleigh quotients Differential and integral operators

Fredholm problem

Functional analysis

g p y

Continued fractions

Liouville-Neumann expansion

Magnus R. Hestenes & Eduard Stiefel

Methods of conjugate gradients for

solving linear systems, 1952

Green s function

Fourier series

Dirichlet and Fejér kernel

Trigonometric interpolation

Gibbs oscillation

Gauss Christoffel quadrature Riemann Stieltjes integral

Real analysis

Dirichlet and Fejér kernel
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1 Homework problem

Consider 2n real numbers m0, m1, . . . , m2n−1.
Solve the 2n equations

n∑

j=1

ω
(n)
j {θ(n)

j }ℓ = mℓ , ℓ = 0, 1, . . . , 2n − 1 ,

for the 2n real unknowns ω
(n)
j > 0, θ

(n)
j .
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1 Homework problem

Consider 2n real numbers m0, m1, . . . , m2n−1.
Solve the 2n equations

n∑

j=1

ω
(n)
j {θ(n)

j }ℓ = mℓ , ℓ = 0, 1, . . . , 2n − 1 ,

for the 2n real unknowns ω
(n)
j > 0, θ

(n)
j .

Is this problem linear?
Does it look easy?
When does it have a solution?
How the solution can be determined?
How the solution can be computed?
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1 Positive definite linear functionals on polynomials

Linear functional L(x) is positive definite on the space of polynomials Pn of
degree at most n if its first 2n + 1 moments

L(xℓ) = mℓ, ℓ = 0, 1, . . . , 2n

are real and the Hankel matrix Mn of moments is positive definite, i.e., ∆n > 0 ,
where

∆n = |Mn| =

∣∣∣∣∣∣∣∣∣

m0 m1 · · · mn

m1 m2 · · · mn+1

...
...

. . .
...

mn mn+1 · · · m2n

∣∣∣∣∣∣∣∣∣

.
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1 Stieltjes moment problem (1894) of order n

With the positive definite L(x) we can restrict ourselves to real polynomials of a
real variable and write, using a non-decreasing positive distribution function µ
defined on the real axis having finite limits at ±∞,

L(f) =

∫
f(x) dµ(x) ,

with the inner product

(p, q) := L(p(x)q(x)) =

∫
p(x)q(x) dµ(x) .
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1 Stieltjes moment problem (1894) of order n

With the positive definite L(x) we can restrict ourselves to real polynomials of a
real variable and write, using a non-decreasing positive distribution function µ
defined on the real axis having finite limits at ±∞,

L(f) =

∫
f(x) dµ(x) ,

with the inner product

(p, q) := L(p(x)q(x)) =

∫
p(x)q(x) dµ(x) .

Solution of the Stieltjes moment problem of order n exists
and it is unique if and only if (with some m2n > 0) we have ∆n > 0 .
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1 The unknown ω
(n)
j , θ

(n)
j ?

Cholesky decomposition of the matrix of moments Mn = LnLT
n

The entries of the ℓth row of the the inverse L−1
n give the coefficients of the

ℓth orthonormal polynomial determined by the positive definite linear
functional L(x) associated with the matrix of moments Mn .

Roots of the ℓth orthogonal polynomial give the quadrature nodes θ
(ℓ)
j . The

weights ω
(ℓ)
j are given by the formula for the interpolatory quadrature.

Computations are done differently

(Gragg and Harrod, Gautschi, Laurie, ...)

O’Leary, S, Tichý, On Sensitivity of Gauss-Christoffel quadrature, Numerische
Mathematik, 107, 2007, pp. 147 –174

Pranic, Pozza, S, Gauss quadrature for quasi-definite linear functionals, IMA J.
Numer. Anal, 2016 (to appear)
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1 All we talk about is the conjugate gradient or the Lanczos method!

Distribution function ω(λ) associated with Ax = b, r0 = b − Ax0, A SPD:

λi, si are the eigenpairs of A , ωi = |(si, w1)|2

...

0

1

ω1

ω2

ω3

ω4

ωN

ζ λ1 λ2 λ3
. . . . . . λN ξ
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1 Spectral decomposition A =
∑N

ℓ=1 λℓ sℓs
∗

ℓ

Symbolically

w∗
1Aw1 = w∗

1

(
N∑

ℓ=1

λℓ sℓs
∗
ℓ

)
w1 ≡ w∗

1

(∫ b

a

λdE(λ)

)
w1

=

N∑

ℓ=1

λℓ w∗
1sℓ s∗ℓw1 =

N∑

ℓ=1

λℓ ωℓ =

∫ b

a

λ dω(λ) ,

where dE(λℓ) ≡ sℓs
∗
ℓ and

I =
N∑

ℓ=1

sℓs
∗
ℓ ≡

∫ b

a

dE(λ) .

Hilbert (1906, 1912, 1928), Von Neumann (1927, 1932), Wintner (1929) .
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2. Linear projections onto highly nonlinear Krylov
subspaces

References:

J. Liesen. and Z.S., Krylov Subspace Methods, Principles and Analysis. Oxford
University Press (2013), Chapter 2
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2 Krylov sequences and (cyclic) Krylov subspaces

The Krylov sequence generated by A ∈ C
N×N and v ∈ C

N

v, Av, A2v, . . .

The nth Krylov subspace generated by A ∈ C
N×N and v ∈ C

N

Kn(A, v) := span{v, Av, . . . , An−1v}, n = 1, 2, . . .

By construction,

K1(A, v) ⊂ K2(A, v) ⊂ · · · ⊂ Kd(A, v) = Kd+k(A, v) for all k ≥ 1.

v

A

##
Av

A

  
· · ·

A

""
Ad−2v

A

$$
Ad−1v

K1(A, v)

A

;;K2(A, v)

A

>>· · ·

A

<<Kd−1(A, v)

A

::Kd(A, v)

A

DD
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2 Krylov subspace methods

Krylov subspace methods are based on a sequence of projections onto the
nested Krylov subspaces that form the search spaces.

Linear algebraic system Ax = b: x0 (possibly zero), r0 = b − Ax0.

xn ∈ x0 + Sn = x0 + Kn(A, r0) such that rn = b − Axn ⊥ Cn, n = 1, 2, . . .

n-dimensional constraints space Cn determines the different methods.

Eigenvalue problem Ax = λx: v (nonzero), find (λn, xn) such that

xn ∈ Kn(A, v) and rn = Axn − λnxn ⊥ Cn.

Examples: The Lanczos and Arnoldi methods, where Cn = Kn(A, v).
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2 Examples of Krylov subspace methods for Ax = b

Method is well defined when xn is uniquely determined for n = 1, 2, . . . , d − 1,
and xd = x (in exact arithmetic).

Conjugate gradient (CG) method: Sn = Cn = Kn(A, r0).

Well defined for HPD matrices A; short recurrences.
Orthogonality rn ⊥ Kn(A, v) is equivalent to optimality:

‖x − xn‖A = min
z∈x0+Kn(A,r0)

‖x − z‖A.

GMRES method: Sn = Kn(A, r0), Cn = AKn(A, r0).

Well defined for nonsingular matrices A; full recurrences.
Orthogonality rn ⊥ AKn(A, v) is equivalent to optimality:

‖b − Axn‖2 = min
z∈x0+Kn(A,r0)

‖b − Az‖2.

Numerous other Krylov subspace methods. Some of them are not well defined
in the above sense (e.g. BiCGStab or QMR).
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2 Conjugate gradients (CG), orthogonal projections and optimality

‖x − xn‖A = min
u∈ x0+Kn(A,r0)

‖x − u‖A

with the formulation via the Lanczos process, w1 = r0/‖r0‖ ,

A Wn = Wn Tn + δn+1wn+1e
T
n , Tn = W ∗

n(A, r0) AWn(A, r0) ,

and the CG approximation given by

Tn yn = ‖r0‖e1 , xn = x0 + Wn yn .

An = Qn A Qn = WnW ∗
n AWnW ∗

n = Wn Tn W ∗
n ,

Clearly, the projection process is very highly nonlinear in both A and r0 .
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2 (Petrov-) Galerkin framework

Projection idea in Krylov subspace methods is analogous to the Galerkin framework
in numerical solution of PDEs (here for convenience we take C = S).

Let S be an infinite dimensional Hilbert space, a(·, ·) : S × S → R be a bounded
and coercive bilinear form, f : S → R be a bounded linear functional.

Weak formulation: Find u ∈ S with

a(u, v) = f(v) for all v ∈ S .

Discretization: Find uh ∈ Sh ⊂ S with

a(uh, vh) = f(vh) for all vh ∈ Sh.

Galerkin orthogonality:

a(u − uh, vh) = 0 for all vh ∈ Sh.
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2 Operator problem formulation - motivation for part 7

Equivalently, there exists a bounded and coercive operator A : S → S#, with
the problem formulated as the following equation in the dual space:

Au = f.

Or, using the Riesz map τ : S# → S defined by the inner product in S , as the
following operator preconditioned equation in the function space

τAu = τf.

Discretization then gives

τhAhuh − τhfh ⊥ Sh.

Krylov subspace methods (here CG for A self-adjoint with respect to the duality
pairing) can be formulated in infinite dimensional Hilbert spaces and extended to
Banach spaces.
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2 CG in infinite dimensional Hilbert spaces - motivation for part 7

r0 = f −Au0 ∈ S#, p0 = τr0 ∈ S . For n = 1, 2, . . . , nmax :

αn−1 =
〈rn−1, τrn−1〉
〈Apn−1, pn−1〉

un = un−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
〈rn, τrn〉

〈rn−1, τrn−1〉
pn = τrn + βnpn−1

Superlinear convergence for (identity + compact) operators.

Karush (1952), Hayes (1954), Vorobyev (1958)

Here the Riesz map τ indeed serves as a preconditioner.
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2 Summary and motivation

Krylov subspace methods for solving linear algebraic problems are based on
linear projections onto nested subspaces.

Krylov subspaces and therefore the resulting methods are highly nonlinear in
the data defining the problem.

The nonlinearity allows to adapt to the problem as the iteration proceeds.
This is not apparent, e.g., from the derivation of CG based on the
minimization of the quadratic functional, and this fact has affected negatively
the presentation of Krylov subspace methods in textbooks.

The adaptation can be better understood via the model reduction and moment
matching properties of Krylov subspace methods.
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3. Model reduction and moment matching

References:

J. Liesen. and Z.S., Krylov Subspace Methods, Principles and Analysis. Oxford
University Press (2013), Chapter 3
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Jacobi matrix and the conjugate gradient method

Tn =




γ1 δ2

δ2

. . .
. . .

. . .
. . .

. . .

. . .
. . . δn

δn γn




is the Jacobi matrix of the orthogonalization coefficients and the CG method is
formulated by

Tntn = ‖r0‖ e1, xn = x0 + Vntn .
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3 The projected system, A HPD, CG method

Let the columns of Vn = [v1, . . . , vn] form an orthonormal basis of Kn(A, r0).

Matrix formulation of xn ∈ x0 + Kn(A, r0) and rn ⊥ Kn(A, r0):

xn = x0 + Vntn

and tn ∈ C
n is found by solving

V ∗
n AVn tn = ‖r0‖e1.

This can be viewed as a model reduction from a (large) system of order N to a
(small) system of order n.

Intuition: Projected system should capture fast a sufficient part of information
contained in the original data.

Intuition: Powering the operator tends to transfer dominant information as
quickly as possible into the projected system.
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3 Distribution functions and moments

Let A be HPD with spectral decomposition A = Y ΛY ∗, where
0 < λ1 < λ2 < · · · < λN (distinct eigenvalues for simplicity).

Suppose ωk = |(v1, yk)|2 > 0, k = 1, . . . , N , and define the distribution function

ω(λ) =






0, if λ < λ1,∑ℓ

k=1 ωk, if λℓ ≤ λ < λℓ+1, for ℓ = 1, . . . , N − 1,

1, if λN ≤ λ.

The moments of ω(λ) are given by

∫
λkdω(λ) =

N∑

ℓ=1

ωℓ{λℓ}k = v∗
1Akv1, k = 0, 1, 2, . . .

Analogous construction applied to Tn = V ∗
n AVn yields a distribution function

ω(n)(λ) with moments given by

∫
λkdω(n)(λ) =

n∑

ℓ=1

ω
(n)
ℓ {λ(n)

ℓ }k = eT
1 T k

ne1, k = 0, 1, 2, . . .
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3 Stieltjes recurrence and Jacobi matrix

Let φ0(λ) ≡ 1, φ1(λ), . . . , φn(λ) be the first n + 1 orthonormal

polynomials corresponding to the distribution function ω(λ) .

Then, writing Φn(λ) = [φ0(λ), . . . , φn−1(λ)]∗ ,

λ Φn(λ) = Tn Φn(λ) + δn+1 φn(λ) en

represents the Stieltjes recurrence (1893-4), see Chebyshev (1855), Brouncker
(1655), Wallis (1656), Toeplitz and Hellinger (1914) with the Jacobi matrix

Tn ≡




γ1 δ2

δ2 γ2

. . .

. . .
. . .

δn

δn γn




, δl > 0 , ℓ = 2, . . . , n .
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3 Fundamental relationship with Gauss quadrature

ω(n)(λ) is the distribution function determined by the n-node Gauss-Christoffel
quadrature approximation of the Riemann-Stieltjes integral with ω(λ).
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3 Continued fraction corresponding to ω(λ)

FN (λ) ≡ 1

λ − γ1 − δ2
2

λ − γ2 − δ2
3

λ − γ3 − . . .

. . .

λ − γN−1 − δ2
N

λ − γN

The entries γ1, . . . , γN and δ2, . . . , δN represent coefficients of the Stieltjes
recurrence.
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3 Partial fraction decomposition

b∗(λI − A)−1b =

∫ U

L

dω(µ)

λ − µ
=

N∑

j=1

ωj

λ − λj

=
RN (λ)

PN (λ)
,

RN (λ)

PN(λ)
≡ FN (λ)

The denominator Pn(λ) corresponding to the nth convergent Fn(λ) of FN (λ) ,
n = 1, 2, . . . is the nth orthogonal polynomial in the sequence determined by
ω(λ) ; see Chebyshev (1855).
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3 Fundamental relationship with Gauss quadrature

The first 2n moments of the reduced model match those of the original model

The n-node Gauss-Christoffel quadrature has algebraic degree 2n − 1, hence

v∗
1Akv1 = eT

1 T k
ne1 for k = 0, 1, . . . , 2n − 1.

Moment matching properties can also be derived for non-Hermitian matrices
using the Vorobyev method of moments

For the infinite dimensional Hilbert spaces and self-adjoint bounded operators
it was described by Vorobyev (1958, 1965).
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3 The problem of moments in Hilbert space

Let z0, z1, . . . , zn be n + 1 linearly independent elements of Hilbert space V .
Consider the subspace Vn generated by all possible linear combinations of
z0, z1, . . . , zn−1 and construct a linear operator Bn defined on Vn such that

z1 = Bnz0,

z2 = Bnz1,

...

zn−1 = Bnzn−2,

Enzn = Bnzn−1,

where Enzn is the (orthogonal or oblique) projection of zn onto Vn .
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3 Approximation of bounded linear operators

Let B be a bounded linear operator on Hilbert space V . Choosing an
element z0 , we first form a sequence of elements z1, . . . , zn, . . .

z0, z1 = Bz0, z2 = Bz1 = B2z0, . . . , zn = Bzn−1 = Bnzn−1, . . .

For the present z1, . . . , zn are assumed to be linearly independent. Determine a
sequence of operators Bn defined on the sequence of nested subspaces Vn such
that

z1 = Bz0 = Bnz0,

z2 = B2z0 = (Bn)2z0,

...

zn−1 = Bn−1z0 = (Bn)n−1z0,

Enzn = EnBnz0 = (Bn)nz0.
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3 Model reduction using Krylov subspaces

Using the projection En onto Vn we can write for the operators constructed
above (here we need the linearity of B )

Bn = En B En .

The finite dimensional operators Bn can be used to obtain approximate solutions
to various linear problems. The choice of the elements z0, . . . , zn, . . . as above
gives Krylov subspaces that are determined by the operator and the initial element
z0 (e.g. by a partial differential equation, boundary conditions and outer forces).

Challenges:

Convergence

Krylov subspace methods in infinite dimensional Hilbert spaces?
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4. Convergence and spectral information

References

J. Liesen. and Z.S., Krylov Subspace Methods, Principles and Analysis. Oxford
University Press (2013), Chapter 5, Sections 5.1 - 5.7

T. Gergelits and Z.S., Composite convergence bounds based on Chebyshev
polynomials and finite precision conjugate gradient computations, Numer. Alg.
65, 759-782 (2014)
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4 Convergence bounds for the CG method

The CG optimality property

‖x − xn‖A = min
z∈x0+Kn(A,r0)

‖x − z‖A = min
p∈Pn(0)

‖p(A)(x− x0)‖A

yields the convergence bounds

‖x − xn‖A

‖x − x0‖A

≤ min
p∈Pn(0)

max
1≤j≤N

|p(λj)|

≤ 2

(√
κ − 1√
κ + 1

)n

, κ =
λN

λ1
.

The worst-case behavior of the method is completely determined by the
distribution of the eigenvalues of A.

The widely known κ-bound is derived using Chebyshev polynomials on the
interval [λ1, λN ]. It does not depend on any other properties of A, b, x0.

The κ-bound is linear and it can not capture the adaptation of the CG method
to the problem!
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4 CG, large outliers and condition numbers

Consider the desired accuracy ǫ , κs(A) ≡ λN−s/λ1 . Then

k = s +

⌈
ln(2/ǫ)

2

√
κs(A)

⌉

CG steps will produce the approximate solution xn satisfying

‖x − xn‖A ≤ ǫ ‖x − x0‖A .

This statement qualitatively explains superlinear convergence of
CG at the presence of large outliers in the spectrum, assuming
exact arithmetic.
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4 Adaptive Chebyshev bound?
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4 Moment problem illustration

For a given n find a distribution function with n mass points in such a way that
it in a best way captures the properties of the original distribution function

0

t
ω1

λ1

②
ω2

λ2

r ✇ . . . ✈ r ⑤ ✈
ωN

λN

0

s
ω

(n)
1

θ
(n)
1

③
ω

(n)
2

θ
(n)
2

. . . ✇
ω

(n)
n

θ
(n)
n
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4 CG and Gauss quadrature errors

At any iteration step n , CG represents the matrix formulation of the n-point
Gauss quadrature of the R-S integral determined by A and r0 ,

∫
f(λ) dω(λ) =

n∑

i=1

ω
(n)
i f(θ

(n)
i ) + Rn(f) .

For f(λ) ≡ λ−1 the formula takes the form

‖x − x0‖2
A

‖r0‖2
= n-th Gauss quadrature +

‖x − xn‖2
A

‖r0‖2
.

This has became a base for the CG error estimation (see above); see the surveys in
S and Tichý, 2002; Meurant and S, 2006; Liesen and S, 2013.
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4 Gauss quadrature (CG) with tight clusters

Replacing single eigenvalues by tight clusters can make a difference;
see Greenbaum (1989); Greenbaum, S (1992); Golub, S (1994).

The point is obvious. Orthogonal polynomials can be very sensitive to certain
changes of the underlying distribution function.

Otherwise CG behaves almost linearly and it can be described by contraction.
In such case - is it worth using?
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4 Sensitivity of the Gauss Quadrature
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4 Simplified problem - only the largest eigenvalue is replaced
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4 Theorem - O’Leary, S, Tichý (2007)

Consider distribution functions ω(x) and ω̃(x) . Let

pn(x) = (x − x1) . . . (x − xn) and p̃n(x) = (x − x̃1) . . . (x − x̃n)

be the nth orthogonal polynomials corresponding to ω and ω̃ respectively,
with

p̂c(x) = (x − ξ1) . . . (x − ξc)

their least common multiple. If f ′′ is continuous, then the difference
∆n

ω,ω̃ = |In
ω − In

ω̃ | between the approximations In
ω to Iω and In

ω̃ to Iω̃ ,
obtained from the n-point Gauss quadrature, is bounded as

|∆n
ω,ω̃| ≤

∣∣∣∣
∫

p̂c(x)f [ξ1, . . . , ξc, x] dω(x) −
∫

p̂c(x)f [ξ1, . . . , ξc, x] dω̃(x)

∣∣∣∣

+

∣∣∣∣
∫

f(x) dω(x) −
∫

f(x) dω̃(x)

∣∣∣∣ .
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4 Modified moments do not tell the story
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Condition numbers of the matrix of the modified moments (GM) and the matrix of
the mixed moments (MM). Left - enlarged supports, right - shifted supports.
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4 Summary of the CG/Lanczos part

1 Gauss-Christoffel quadrature for a small number of quadrature nodes can be
highly sensitive to small changes in the distribution function enlarging its
support.

2 In particular, the difference between the corresponding quadrature
approximations (using the same number of quadrature nodes) can be many
orders of magnitude larger than the difference between the integrals being
approximated.

3 This sensitivity in Gauss-Christoffel quadrature can be observed
for discontinuous, continuous, and even analytic distribution functions,
and for analytic integrands uncorrelated with changes in the distribution
functions and with no singularity close to the interval of integration.
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4 Convergence results for the GMRES method

For diagonalizable A = Y ΛY −1 the GMRES optimality property

‖rn‖2 = min
z∈x0+Kn(A,r0)

‖b − Az‖2 = min
p∈Pn(0)

‖p(A)r0‖2

yields the convergence bound

‖rn‖2

‖r0‖2
≤ κ(Y ) min

p∈Pn(0)
max

1≤j≤N
|p(λj)|.

The eigenvalue distribution and the GMRES convergence are (closely) related
only when κ(Y ) is small (A is close to normal).

In general, the eigenvalues alone do not describe GMRES convergence:

Any non-increasing convergence curve is attainable by GMRES for a matrix
having any prescribed set of eigenvalues.
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4 Any GMRES convergence with any spectrum

Given any spectrum and any sequence of the nonincreasing residual norms, a
complete parametrization is known of the set of all GMRES associated matrices
and right hand sides.

The set of problems for which the distribution of eigenvalues alone does not
correspond to convergence behavior is not of measure zero and it is not pathological.

Widespread eigenvalues alone can not be identified with poor convergence.

Clustered eigenvalues alone can not be identified with fast convergence.

Equivalent orthogonal matrices; pseudospectrum indication.
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4 Any GMRES convergence with any spectrum

1◦ The spectrum of A is given by {λ1, . . . , λN} and GMRES(A,b) yields
residuals with the prescribed nonincreasing sequence (x0 = 0)

‖r0‖ ≥ ‖r1‖ ≥ · · · ≥ ‖rN−1‖ > ‖rN‖ = 0 .

2◦ Let C be the spectral companion matrix, h = (h1, . . . , hN )T ,
h2

i = ‖ri−1‖2 − ‖ri‖2 , i = 1, . . . , N . Let R be a nonsingular upper triangular
matrix such that Rs = h with s being the first column of C−1 , and let
W be unitary matrix. Then

A = WRCR
−1

W
∗ and b = Wh .

Greenbaum, Pták, Arioli and S (1994 - 98); Liesen (1999); Eiermann and Ernst
(2001); Meurant (2012); Meurant and Tebbens (2012, 2014); .....
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4 Convection-diffusion model problem
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−0.025
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−0.005

0

0.005

0.01

0.015

0.02

0.025

Quiz: In one case the convergence of GMRES is substantially faster than in the
other; for the solution see Liesen, S (2005).
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5. Inexact computation and numerical stability

References

J. Liesen. and Z.S., Krylov Subspace Methods, Principles and Analysis. Oxford
University Press (2013), Chapter 5, Sections 5.8 - 5.11

T. Gergelits and Z.S., Composite convergence bounds based on Chebyshev
polynomials and finite precision conjugate gradient computations, Numer. Alg.
65, 759-782 (2014)
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5 CG convergence behavior in finite precision arithmetic
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Rounding errors in finite precision CG

computations cause a delay of conver-
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exact computation with clusters
exact comp. with single eigenvalues

CG in finite precision corresponds to

an exact CG computation for a matrix,

where each eigenvalue is replaced by a

tight cluster.
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5 Delay of convergence and numerical rank of Krylov subspaces
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Shifting the finite precision curve by the

number of delayed iteration steps yields

the curve for the exact computation.

The statements above can be proven by rigorous mathematical means!
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5 Mathematical model of FP CG

CG in finite precision arithmetic can be seen as the exact arithmetic CG for the
problem with the slightly modified distribution function with larger support, i.e.,
with single eigenvalues replaced by tight clusters.

Paige (1971-80), Greenbaum (1989),
Parlett (1990), S (1991), Greenbaum and S (1992), Notay (1993), ... , Druskin,
Kniznermann, Zemke, Wülling, Meurant, ...
Recent reviews and updates in Meurant and S, Acta Numerica (2006); Meurant
(2006); Liesen and S (2013).

One particular consequence is becoming very relevant: In FP computations, the
composite convergence bounds eliminating large outlying eigenvalues at the cost of
one iteration per eigenvalue (see Axelsson (1976), Jennings (1977)) are not valid.
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5 Optimality in finite precision Lanczos (CG) computations?

In exact arithmetic, local orthogonality properties of CG are equivalent to the
global orthogonality properties and therefore also to the CG optimality recalled
above.

In finite precision arithmetic the local orthogonality properties are preserved
proportionally to machine precision, but the global orthogonality and therefore
the optimality wrt the underlying distribution function is lost.

in finite precision arithmetic computations (or, more generally, in inexact
Krylov subspace methods) the optimality property does not have any easily
formulated meaning with respect to the subspaces generated by the computed
residual (or direction) vectors.

Using the results of Greenbaum from 1989, it does have, however, a well
defined meaning with respect to the particular distribution functions defined
by the original data and the rounding errors in the steps 1 trough n.
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5 Optimality in finite precision Lanczos (CG) computations?

Consider the following mathematically equivalent formulation of CG

A Wn = Wn Tn + δn+1wn+1e
T
n , Tn = W ∗

n(A, r0) AWn(A, r0) ,

and the CG approximation given by

Tn yn = ‖r0‖e1 , xn = x0 + Wn yn .

Greenbaum proved that the Jacobi matrix computed in finite precision
arithmetic can be considered a left principal submatrix of a certain larger
Jacobi matrix having all its eigenvalues close to the eigenvalues of the original
matrix A.

This is equivalent to saying that convergence behavior in the first n steps of
the given finite precision Lanczos computation can equivalently be described as
the result of the exact Gauss quadrature for certain distribution function that
depends on n having tight clusters of points of increase around the original
eigenvalues of A.
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5 Analysis of the FP CG behaviour
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5 Numerical stability of GMRES

In finite precision, the loss of orthogonality using the modified Gram-Schmidt
GMRES is inversely proportional to the normwise relative backward error

‖b − Axn‖2

‖b‖2 + ‖A‖2‖xn‖2
.

Loss of orthogonality (blue) and normwise relative backward error (red) for a
convection-diffusion model problem with two different “winds”:
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It can be shown that the MGS-GMRES is normwise backward stable.
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5 Delay of convergence due to inexactness
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Here numerical inexactness due to roundoff. How much may we relax accuracy of
the most costly operations without causing an unwanted delay and/or affecting the
maximal attainable accuracy? That will be crucial in exascale computations.
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5 Reaching an arbitrary accuracy in AFEM?
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Inexactness and maximal attainable accuracy in matrix computations?
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6. Functional analysis and infinite dimensional
considerations

References

J. Málek and Z.S., Preconditioning and the Conjugate Gradient Method in the
Context of Solving PDEs. SIAM Spotlight Series, SIAM (2015), Chapter 9
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6 Bounded invertible operators

Let V be an infinite dimensional Hilbert space, B a bounded linear operator on
V that has a bounded inversion. Consider the problem

B u = f , f ∈ V .

The identity operator on an infinite dimensional Hilbert space is not compact.

Since BB−1 = I , it follows that B can not be compact.

Approximation of B by finite dimensional operators
Bn : V → Vn , Vn is finite dimensional?
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6 Compact and finite dimensional operators

A uniform (in norm) limit of finite dimensional operators Bn is a compact
operator.

Every compact operator on a Hilbert space is a uniform limit of a sequence of
finite dimensional operators.

A uniform limit of compact operators is a compact operator.

Bounded invertible operators in Hilbert (holds also for Banach) spaces can not be
approximated in norm to an arbitrary accuracy by neither compact nor finite
dimensional operators! Approximation can be considered only in the sense of strong
convergence (pointwise limit); for the method of moments see Vorobyev (1958, 1965)

‖Bn w − Bw‖ → 0 ∀w ∈ V .
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6 Invalid argument in convergence analysis

Let Zh be a numerical approximation of the bounded operator Z such that, with
an appropriate extension, ‖Z − Zh‖ = O(h) .

Then we have [(λ −Z)−1 − (λ −Zh)−1] = O(h) uniformly for λ ∈ Γ , where
Γ surrounds the spectrum of Z with a distance of order O(h) or more. For any
polynomial p

p(Z) − p(Zh) =
1

2πi

∫

Γ

p(λ)[(λ −Z)−1 − (λ −Zh)−1 ] dλ ,

and it seems that one can investigate p(Z) instead of p(Zh) .

But the assumption ‖Z − Zh‖ = O(h) , h → 0 does not hold for any bounded
invertible infinite dimensional operator Z .
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7. Operator preconditioning, discretization and
algebraic computation

References

J. Málek and Z.S., Preconditioning and the Conjugate Gradient Method in the
Context of Solving PDEs. SIAM Spotlight Series, SIAM (2015)

J. Papež, J.Liesen and Z.S., Distribution of the discretization and algebraic
error in numerical solution of partial differential equations, Linear Alg. Appl.
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J. Papež, Z.S., and M. Vohraĺık Estimating and localizing the algebraic and total
numerical errors using flux reconstructions, (2016, submitted for publication)

J. Papež and Z.S., Subtleties of the residual-based a posteriori error estimator
for total error, (2016, submitted for publication)
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Functional analysis and iterative methods

R. C. Kirby, SIREV (2010):

“We examine condition numbers, preconditioners and iterative methods for FEM
discretization of coercive PDEs in the context of the solvability result, the
Lax-Milgram lemma.

Moreover, useful insight is gained as to the relationship between Hilbert space and
matrix condition numbers, and translating Hilbert space fixed point iterations into
matrix computations provides new ways of motivating and explaining some classic
iteration schemes. [ ... ] This paper is [ ... ] intending to bridge the functional
analysis techniques common in finite elements and the linear algebra community.”
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Functional analysis and iterative methods

K. A. Mardal and R. Winther, NLAA (2011):

“The main focus will be on an abstract approach to the construction of
preconditioners for symmetric linear systems in a Hilbert space setting [ ... ] The
discussion of preconditioned Krylov space methods for the continuous systems will be
a starting point for a corresponding discrete theory.

By using this characterization it can be established that the conjugate gradient
method converges [ ... ] with a rate which can be bounded by the condition number [
... ] However, if the operator has a few eigenvalues far away from the rest of the
spectrum, then the estimate is not sharp. In fact, a few ‘bad eigenvalues’ will have
almost no effect on the asymptotic convergence of the method.”
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Functional analysis and iterative methods

O. Axelsson and J. Karátson, Numer. Alg. (2009):

“To preserve sparsity, the arising system is normally solved using an iterative
solution method, commonly a preconditioned conjugate gradient method [ ... ] the
rate of convergence depends in general on a generalized condition number of the
preconditioned operator [ ... ]

if the two operators (original and preconditioner) are equivalent, then the
corresponding PCG method provides mesh independent linear convergence [ ...]

if the two operators (original and preconditioner) are compact-equivalent, then
the corresponding PCG method provides mesh independent superlinear
convergence.”
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7 Mesh independent condition number

R. Hiptmair, CMA (2006):

“There is a continuous operator equation posed in infinite-dimensional spaces that
underlines the linear system of equations [ ... ] awareness of this connection is key
to devising efficient solution strategies for the linear systems.

Operator preconditioning is a very general recipe [ ... ]. It is simple to apply, but
may not be particularly efficient, because in case of the
[ condition number ] bound of Theorem 2.1 is too large, the operator preconditioning
offers no hint how to improve the preconditioner. Hence, operator preconditioner
may often achieve [ ... ] the much-vaunted mesh independence of the
preconditioner, but it may not perform satisfactorily on a given mesh.”
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7 Linear asymptotic behavior?

V. Faber, T. Manteuffel and S. V. Parter, Adv. in Appl. Math. (1990):

“For a fixed h, using a preconditioning strategy based on an equivalent operator may
not be superior to classical methods [ ... ] Equivalence alone is not sufficient for a
good preconditioning strategy. One must also choose an equivalent operator for
which the bound is small.

There is no flaw in the analysis, only a flaw in the conclusions drawn from the
analysis [ ... ] asymptotic estimates ignore the constant multiplier. Methods with
similar asymptotic work estimates may behave quite differently in practice.”
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7 Notation

Let V be an infinite dimensional Hilbert space with the inner product

(·, ·)V : V × V → R, the associated norm ‖ · ‖V ,

V # be the dual space of bounded (continuous) linear functionals on V with the
duality pairing

〈·, ·〉 : V # × V → R .

For each f ∈ V # there exists a unique τf ∈ V such that

〈f, v〉 = (τf, v)V for all v ∈ V .

In this way the inner product (·, ·)V determines the Riesz map

τ : V # → V .
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7 Weak formulation of the BVP, assumptions

Let a(·, ·) = V × V → R be a bounded and coercive bilinear form. For u ∈ V
we can write the bounded linear functional a(u, ·) on V as

Au ≡ a(u, ·) ∈ V # , i.e. ,

〈Au, v〉 = a(u, v) for all v ∈ V .

This defines the bounded and coercive operator

A : V → V #, inf
u∈V, ‖u‖V =1

〈Au, u〉 = α > 0, ‖A‖ = C .

The Lax-Milgram theorem ensures that for any b ∈ V # there exists a unique
solution x ∈ V of the problem

a(x, v) = 〈b, v〉 for all v ∈ V .
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7 Operator problem formulation

Equivalently,
〈Ax − b, v〉 = 0 for all v ∈ V ,

which can be written as the equation in V # ,

Ax = b , A : V → V #, x ∈ V, b ∈ V # .

We will consider A self-adjoint with respect to the duality pairing 〈·, ·〉 .
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7 Discretization using Vh ⊂ V

Let Φh = (φ
(h)
1 , . . . , φ

(h)
N ) be a basis of the subspace Vh ⊂ V ,

let Φ#
h = (φ

(h)#
1 , . . . , φ

(h)#
N ) be the canonical basis of its dual V #

h .

The Galerkin discretization then gives

Ahxh = bh , xh ∈ Vh , bh ∈ V #
h , Ah : Vh → V #

h .

Using the coordinates xh = Φhx , bh = Φ#
h b , the discretization results in the

linear algebraic system

Ax = b .

85 / 109



7 Computation

Preconditioning needed for accelerating the iterations is then often build up
algebraically for the given matrix problem, giving (here illustrated as the left
preconditioning)

M
−1

Ax = M
−1

b .

Then the CG method is applied to the (symmetrized) preconditioned system, i.e.,
(PCG) (M-preconditioned CG) is applied to the unpreconditioned system. The
schema of the solution process:

A, 〈b, ·〉 → A,b→ preconditioning → PCG applied to Ax = b .
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7 A bit different view

⇒

Formulation of the model, discretization and algebraic computation, including the
evaluation of the error, stopping criteria for the algebraic solver, adaptivity etc. are
very closely related to each other.
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7 Operator formulation of the problem

Recall that the inner product (·, ·)V defines the Riesz map τ .
It can be used to transform the equation in V #

Ax = b , A : V → V #, x ∈ V, b ∈ V # .

into the equation in V

τAx = τb, τA : V → V, x ∈ V, τb ∈ V ,

This transformation is called operator preconditioning.
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7 The mathematically best preconditioning?

With the choice of the inner product (·, ·)V = a(·, ·) we get

a(u, v) = 〈Au, v〉 = a(τAu, v)

i.e.,
τ = A−1 , and the preconditioned system x = A−1b .

The inner product can be defined using an operator

B ≈ A , (·, ·)V = (·, ·)B = 〈Bu, v〉 .

Then
τ = B−1 , and the preconditioned system B−1Ax = B−1b .

What does it mean B ≈ A ?

Concept of norm equivalence and spectral equivalence of operators.
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7 CG in infinite dimensional Hilbert spaces

r0 = b −Ax0 ∈ V #, p0 = τr0 ∈ V . For n = 1, 2, . . . , nmax

αn−1 =
〈rn−1, τrn−1〉
〈Apn−1, pn−1〉

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
〈rn, τrn〉

〈rn−1, τrn−1〉
pn = τrn + βnpn−1

Hayes (1954); Vorobyev (1958, 1965); Karush (1952); Stesin (1954)
Superlinear convergence for (identity + compact) operators.
Here the Riesz map τ indeed serves as the preconditioner.
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7 Discretization of the infinite dimensional CG

Using the coordinates in the bases Φh and Φ#
h of Vh and V #

h

respectively, ( V #
h = AVh ) ,

〈f, v〉 → v
∗
f ,

(u, v)V → v
∗
Mu, (Mij) = ((φj , φi)V )

i,j=1,...,N
,

Au → Au , Au = AΦhu = Φ#
h Au ; (Aij) = (a(φj , φi))i,j=1,...,N

,

τf → M
−1

f , τf = τΦ#
h f = ΦhM

−1
f ;

we get with b = Φ#
h b , xn = Φh xn , pn = Φh pn , rn = Φ#

h rn

the algebraic CG formulation
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7 Galerkin discretization gives matrix CG in Vh

r0 = b − Ax0, solve Mz0 = r0, p0 = z0 . For n = 1, . . . , nmax

αn−1 =
z∗

n−1rn−1

p∗
n−1Apn−1

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

Mzn = rn , solve for zn

βn =
z∗

nrn

z∗
n−1rn−1

pn = zn + βnpn−1

Günnel, Herzog, Sachs (2014); Málek, S (2015)
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7 Philosophy of the a-priori robust bounds

The bound

κ(M−1
A) ≤

supu,v∈V, ‖u‖V =1,‖v‖V =1 |〈Au, v〉|
infu∈V, ‖u‖V =1〈Au, u〉

is valid independently of the discretization, see, e.g., Hiptmair (2006). If the bound
is small enough, then the matter about the rate of convergence and its monitoring
is resolved.
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7 Observations

Unpreconditioned CG, i.e. M = I , corresponds to the discretization basis Φ
orthonormal wrt (·, ·)V .

Orthogonalization of the discretization basis with respect to the given inner
product in V will result in the unpreconditioned CG that is applied to the
transformed (preconditioned) algebraic system. The resulting orthogonal
discretization basis functions do not have local support and the transformed
matrix is not sparse.

Orthogonalization is not unique. For the same inner product we can get
different bases and different discretized systems with exactly the same
convergence behaviour.

94 / 109



7 Algebraic preconditioning?

Consider an algebraic preconditioning with the (SPD) preconditioner

M̂ = L̂L̂
∗ = L̂ (QQ

∗) L̂∗

Where QQ∗ = Q∗Q = I .

Question: Can any algebraic preconditioning be expressed in the operator
preconditioning framework? How does it link with the discretization and the choice
of the inner product in V ?

95 / 109



7 Change of the basis and of the inner product

Transform the discretization bases

Φ̂ = Φ ((L̂Q)∗)−1, Φ̂# = Φ#
L̂Q .

with the change of the inner product in V (recall (u, v)V = v∗Mu )

(u, v)new,V = (Φ̂û, Φ̂v̂)new,V := v̂
∗
û = v

∗
L̂QQ

∗
L̂

∗
u = v

∗
L̂L̂

∗
u = v

∗
M̂u .

The discretized Hilbert space formulation of CG gives the algebraically
preconditioned matrix formulation of CG with the preconditioner M̂

(more specifically, it gives the unpreconditioned CG applied to the algebraically
preconditioned discretized system).
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7 Sparsity, locality, global transfer of information

Sparsity of matrices of the algebraic systems is always presented as an advantage of
the FEM discretizations.

Sparsity means locality of information in the individual matrix rows/columns.
Getting a sufficiently accurate approximation to the solution may then require
many matrix-vector multiplications (a large dimension of the Krylov space).

Preconditioning can be interpreted in part as addressing the unwanted consequence
of sparsity (locality of the supports of the basis functions). Globally supported
basis functions (hierarchical bases preconditioning, DD with coarse space
components, multilevel methods, hierarchical grids etc.) can efficiently handle the
transfer of global information.
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7 Example - Nonhomogeneous diffusion tensor
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Squared energy norm of the algebraic error

 

 
P1 FEM ; cond =2.57e+03
P1 FEM ichol ; cond =2.67e+01
P1 FEM lapl ; cond =1.00e+02
P1 FEM ichol(1e−02) ; cond =1.72e+00

PCG convergence: unpreconditioned; ichol (no fill-in); Laplace operator
preconditioning; ichol (drop-off tolerance 1e-02). Uniform mesh, condition numbers

2.5e03, 2.6e01, 1.0e02, 1.7e00.
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7 Transformed basis elements
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Discretization basis function: P1 FEM; nnz = 1
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Discretization basis function: P1 FEM ichol; nnz = 5

Original discretization basis element and its transformation corresponding to the
ichol preconditioning.
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7 Transformed basis elements
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Discretization basis function: P1 FEM lapl; nnz = 225
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Discretization basis function: P1 FEM ichol(1e−02); nnz = 214

Transformed discretization basis elements corresponding o the lapl (left) and
ichol(tol) preconditioning (right).
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8. HPC computations with Krylov subspace methods?

References

E. Carson, M. Rozložńık, Z.S., P, Tichý, and M. Tůma, On the numerical
stability analysis of pipelined Krylov subspace methods, (2016, submitted for
publication).
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9. Myths about Krylov subspace methods

Myth: A belief given uncritical acceptance by the members of a group especially in
support of existing or traditional practices and institutions.

Webster’s Third New International Dictionary, Enc. Britannica Inc., Chicago (1986)
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9 Widespread statements that are misleading or plainly incorrect

1 Minimal polynomials and finite termination property

2 Chebyshev bounds and CG

3 Spectral information and clustering of eigenvalues

4 Operator-based bounds and functional analysis arguments on convergence

5 Finite precision computations can not be seen as a minor modification of the
exact considerations

6 Linearization of nonlinear phenomenon without noticing that this eliminates
the main principle behind the phenomenon, i.e. the adaptation to the problem

7 Short term recurrences can not guarantee well conditioned basis due to
rounding errors. This is true even for symmetric positive definite problems, and
it remains true also for nonsymmetric problems

8 Sparsity can have positive as well as negative effects to computations
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9 Clustering of eigenvalues in the SPD case

④
Mj

−→ ttttt
Mj

single eigenvalue

λj

−→
many close eigenvalues

λ̂j1 , λ̂j2 , . . . , λ̂jℓ

Replacing a single eigenvalue by a tight cluster can make a substantial difference;
Greenbaum (1989); Greenbaum, S (1992); Golub, S (1994).

If it does not, then it means that CG can not adapt to the problem, and it
converges almost linearly. In such cases - is it worth using?
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9 Minimal polynomials, asymptotics

It is not true that CG (or other Krylov subspace methods used for solving
systems of linear algebraic equations with symmetric matrices) applied to a
matrix with t distinct well separated tight clusters of eigenvalues produces in
general a large error reduction after t steps; see Sections 5.6.5 and 5.9.1 of
Liesen, S (2013). This myth has been disproved more than 20 years ago; see
Greenbaum (1989); S (1991); Greenbaum, S (1992). Still it is persistently
repeated in literature as an obvious fact.

With no information on the structure of invariant subspaces
it is not true that distribution of eigenvalues provides insight into
the asymptotic behavior of Krylov subspace methods (such as GMRES)
applied to systems with generally nonsymmetric matrices; see Sections 5.7.4,
5.7.6 and 5.11 of Liesen, S (2013). As before, the relevant results Greenbaum, S
(1994); Greenbaum, Pták, S (1996) and Arioli, Pták, S (1998) are (almost)
twenty years old.
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9 How the mathematical myths are created?

Rutishauser (1959) as well as Lanczos (1952) considered CG principally
different in their nature from the method based on the Chebyshev polynomials.

Daniel (1967) did not identify the CG convergence with the Chebyshev
polynomials-based bound. He carefully writes (modifyling slightly his notation)

“assuming only that the spectrum of the matrix A lies inside the interval
[λ1, λN ], we can do no better than Theorem 1.2.2.”

That means that the Chebyshev polynomials-based bound holds for any
distribution of eigenvalues between λ1 and λ1 and for any distribution of
the components of the initial residuals in the individual invariant subspaces.

Why we do not read the original works? They are many times most valuable
sources of insight, that can be gradually forgotten and can be overshadowed by
commonly accepted myth ...
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9 Analogy with a priori and a posteriori numerical PDE analysis

Think of a priori and a posteriori numerical PDE analysis!

The Chebyshev bound is a typical a priori bound; it uses no a posteriori
information.

A priori bounds are useful for the purpose they have been derived to.
They can not take over the role of the a posteriori bounds.
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9 Concluding remarks and outlook

Krylov subspace methods adapt to the problem. Exploiting this adaptation is
the key to their efficient use.

Unlike in nonlinear problems and/or multilevel methods, analysis of Krylov
subspace methods can not be based, in general, on contraction arguments.

Individual steps modeling-analysis-discretization-computation should not be
considered separately within isolated disciplines. They form a single problem.
Operator preconditioning follows this philosophy.

Fast HPC computations require handling all involved issues.
A posteriori error analysis and stopping criteria are essential ...

Assumptions must be honored

Historia Magistra Vitae
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Thank you very much for your kind patience!
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