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Hackbusch, Computing (1995)

Adaptivity has created a new paradigm in mathematical computation. In
traditional numerical mathematics, the fields “discretization” (e.g., FEM),
its “numerical analysis” (e.g., error estimates), and “solution algorithms”
(e.g., solvers for linear systems) are well separated. Adaptive techniques,
however, require a combination of all three. For example, the error
estimation has become a part of the algorithm. The concrete
discretization is now an outgrowth of the algorithm.”

PROBLEM ⇋ MODEL ⇋ DISCRETIZATION ⇋ COMPUTATION

Individual stages are accompanied by errors, in particular by
approximation errors of the model, discretization errors, linearization
errors, truncation and/or rounding errors in numerical matrix
computations.
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Adaptivity (take AFEM as an example)

After setting the model and its initial discrete approximation, AFEM
adaptivity proceeds with iterating the step

SOLVE −→ ESTIMATE −→ MARK −→ REFINE

Here SOLVE can very rarely be considered in the exact sense, i.e., with a
negligible computational error.
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Von Neumann and Goldstine (1947)

When a problem in pure or in applied mathematics is ‘solved’ by numerical
computation, errors, that is, deviations of the numerical ‘solution’ obtained
from the true, rigorous one, are unavoidable. Such a ‘solution’ is therefore
meaningless, unless there is an estimate of the total error in the above
sense.

This analysis of the sources of errors should be objective and strict
inasmuch as completeness is concerned, . . .
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Example, Málek and S, SIAM Spotlight, 2015
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1 Introduction

● Is inexact computing an unpleasant reality that is going to be changed
by the progress of computer architectures, or is it the way to go?

● What is meant by numerical stability analysis and do we have a theory
of inexact computing?

● Are the computed results endangered by stochastic accumulation of
rounding errors, or by their deterministic amplification during their
propagation?

● Can we assume exact arithmetic while evaluating computational
behaviour of Krylov subspace methods?

Section 8 of the paper on CG by Hestenes and Stiefel (1952) offers an
instructive reading (and ideas rediscovered decades later).
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2 How do we measure computational error?

● Residual norm is a clear winner in practice. Even for CG, where it can
significantly grow or oscillate and where the classical works strongly
argue against using it; see Hestenes and Stiefel (1952).

● When the condition number is small, the residual norm can be trusted.
But do we need Krylov subspace methods then? In particular, when
considering a highly parallel (exascale) environment?

● Backward error interpretation, normwise and componentwise backward
error. Backward error analysis and perturbation (sensitivity) analysis
give the normwise forward error estimates.

● Does the existing methodology allow for estimation of the
componentwise forward error?
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2 L-shape domain, Papež, Liesen, S (2014)
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Exact solution x (left) and the discretisation error x− xh (right) in the
Poisson model problem, linear FEM.
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2 L-shape domain, Papež, Liesen, S (2014)
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2 Iterative and Krylov subspace methods?

● Iterative methods and fixed point theorem

● Iterative methods as a sequence of steps, with each representing
a contraction

● Convergence is identified with a contraction parameter uniformly
bounded from the value one.

● Iterative methods are self-correcting; see the letter of Gauss to Gerling
from 1823 (?)

● Does the previous apply to Krylov subspace methods? See Lanczos
(1952)!
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2 Basic Krylov subspace methods

● CG and MINRES (SYMMLQ) for symmetric problems

● BiCG (CGS, BiCGStab) and QMR for nonsymmetric problems

● FOM and GMRES for nonsymmetric problems

The basic methods with powerful preconditioners will serve in most
problems. In analysis, we must understand the basic methods first.
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2 Computational cost and inaccurate computations

● The main distinction between direct and iterative computations

● How fast can we reach the desired accuracy? By the way, what is it?

● Can we ever get there?

The second item refers to the possible delay due to inaccurate
computations.

The third item questions the maximal attainable accuracy.
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3 Self-adjoint bounded and coercive A , CG

CG in Hilbert spaces : r0 = b−Ax0 ∈ V #, p0 = τr0 ∈ V

For n = 1, 2, . . . , nmax

αn−1 =
〈rn−1, τrn−1〉

〈Apn−1, pn−1〉
=

(τrn−1, τrn−1)V

(τApn−1, pn−1)V

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
〈rn, τrn〉

〈rn−1, τrn−1〉
=

(τrn, τrn)V

(τrn−1, τrn−1)V

pn = τrn + βnpn−1

End
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3 Preconditioned algebraic CG (Ahxh = bh )

r0 = b−Ax0, solve Mz0 = r0, p0 = z0

For n = 1, . . . , nmax

αn−1 =
z∗n−1rn−1

p∗

n−1Apn−1

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

zn = M−1rn , solve for zn

βn =
z∗nrn

z∗n−1rn−1

pn = zn + βnpn−1

End
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3 CG, large outliers and condition numbers

Consider the desired accuracy ǫ , κs(A) ≡ λN−s/λ1 . Then

k = s +

⌈
ln(2/ǫ)

2

√
κs(A)

⌉

CG steps will produce the approximate solution xn satisfying

‖x− xn‖A ≤ ǫ ‖x− x0‖A .

This statement qualitatively explains superlinear convergence of CG
at the presence of large outliers in the spectrum, assuming exact
arithmetic.
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3 Liesen, S (2013); Gergelits, S (2014)
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Short recurrences typically mean in practical computations loss of
(bi-)orthogonality and linear independence due to rounding errors.
This means delay of convergence.
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3 Clusters = fast convergence ?

● Finite precision arithmetic CG computation with a matrix having t
isolated well separated eigenvalues may require for reaching a
reasonable approximate solution a significantly larger number of steps
than t .
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3 Self adjoint bounded operators

B u = f ←→ ω(λ),

∫
F (λ) dω(λ)

↑ ↑

Tn yn = e1 ←→ ω(n)(λ),
n∑

i=1

ω
(n)
i F

(
θ
(n)
i

)

Using F (λ) = λ−1 gives

∫ λU

λL

λ−1 dω(λ) =
n∑

i=1

ω
(n)
i

(
θ
(n)
i

)
−1

+
‖u− un‖

2
a

‖f‖2V

Stieltjes and Vorobyev moment problems are for self-adjoint bounded
operators equivalent; infinite dimensional CG (Lanczos).
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3 Analysis of the FP CG behaviour
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3 Moment problem illustration of exact CG

For a given n find a distribution function with n mass points in such a
way that it in a best way captures the properties of the distribution function
determined by the matrix A and the initial residual r0 .
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3 Finite precision CG

Paige (1971–80); Greenbaum (1989); S (1991); Greenbaum, S (1992)

④
Mj

−→ ttttt
Mj

single eigenvalue

λj

−→
many close eigenvalues

λ̂j1 , λ̂j2 , . . . , λ̂jℓ
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3 Omitted issue

● We skipped the issue of maximal attainable accuracy (comparison of
the iteratively and directly computed residuals, Greenbaum (1997), ... ,
analogous methodology used in relaxing accuracy of the matrix-vector
multiplication in the works on inexact Krylov subspace methods)
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3 We are not done!

● The bounds on the cluster widths in Greenbaum (1989) are not optimal
● Other approaches based on the augmented systems due to Paige and

others
● Do we remain close to the theoretical Krylov subspaces?

Gergelits and S (?)
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3 Reaching an arbitrary accuracy in AFEM?
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4 Formally look similar ...

● Effects of rounding errors at individual iterations can not be bounded
due to the possible (near) breakdowns in nonsymmetric Lanczos

● Look-ahead can not guarantee well conditioning of the computed
Lanczos vectors

● Stabilization of the CGS (BiCG) may destabilize the computation of the
recurrence coefficients

● Estimates in quadratic formulas need numerical stability justifications
(that applies also to the symmetric case)
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4 The BiCG approximation to c
∗
A
−1

b

Using local biorthogonality

c∗A−1b =
n−1∑

j=0

αjs
∗

jrj + s∗nA−1rn .

Using global biorthogonality

c∗A−1b = c∗xn + s∗nA−1rn .

Finally,

c∗A−1
n b = (c∗v1) ‖b‖ (T−1

n )1,1 = c∗xn =

n−1∑

j=0

αjs
∗

jrj .
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4 RCWA problem - comparison of estimates
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5 They are!

● Using short recurrences, global loss of orthogonality leading to loss of
linear independence among generating vectors means loss of
information and, consequently, delay of convergence

● In modified Gram-Schmidt GMRES the orthogonality among the
computed generating vectors is completely lost only after the GMRES
reaches its maximal attainable accuracy

● Modified Gram-Schmidt GMRES is backward stable; see Paige,
Rozložník, S (2006)

● Loss of orthogonality and the normwise backward error are in MGS
GMRES inversely proportional

● Classical Gram-Schmidt GMRES? Nice results on classical
Gram-Schmidt QR ...
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5 MGS GMRES computation
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6 It depends ...

● Yes. Poisson problem is easy. CG will exhibit almost no loss of
orthogonality (therefore it makes a little sense to use it as a test problem
for numerical stability issues)

● No. Even with 1D Poisson problem we can observe very surprising
phenomena

Here we mean using model problem for challenging the solvers. We
definitely do not argue for solving the Poisson problem using the CG
method.
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6 1D Poisson, Papež, Liesen and S (2014)
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7 Conclusions

● Plethora of Krylov subspace methods and their implementations

● Understanding of the basic ones forms a solid ground for further
algorithmic development

● While formulating results of an analysis, equal emphasize should be on
the assumptions restricting their applicability. They offer a valuable
guidance on what is yet to be done

● With increasing computing power, the role of rigorous analysis
dramatically increases
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7 Conclusions

Patrick J. Roache’s book Validation and Verification in Computational
Science, 1998, p. 387:

“With the often noted tremendous increases in computer speed and
memory, and with the less often acknowledged but equally powerful
increases in algorithmic accuracy and efficiency, a natural question
suggest itself. What are we doing with the new computer power? with
the new GUI and other set-up advances? with the new algorithms?
What should we do? ... Get the right answer.”
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Thank you very much for kind patience!
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