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Basic notation

Let V be a real (infinite dimensional) Hilbert space with the inner
product

(·, ·)V : V × V → R, the associated norm ‖ · ‖V ,

V # be the dual space of bounded (continuous) linear functionals on V
with the duality pairing

〈·, ·〉 : V # × V → R .

For each f ∈ V # there exists a unique τf ∈ V such that

〈f, v〉 = (τf, v)V for all v ∈ V .

In this way the inner product (·, ·)V determines the Riesz map

τ : V # → V .
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Numerical solution of PDEs

Consider a PDE problem described in the form of the functional equation

Ax = b, A : V → V #, x ∈ V, b ∈ V #,

where the linear, bounded, and coercive operator A is self-adjoint with
respect to the duality pairing 〈·, ·〉 .

Standard approach to solving boundary-value problems using the
preconditioned conjugate gradient method (PCG) preconditions the
algebraic problem,

A, 〈b, ·〉 → A,b → preconditioning → PCG with Ax = b ,

i.e., discretization and preconditioning are often considered separately.
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Galerkin discretization and preconditioning

Finite dimensional solution subspace Vh ⊂ V . The restriction to Vh

gives the approximation xh ∈ Vh to x ∈ V ,

〈Axh, v〉 = 〈b, v〉 for all v ∈ Vh .

With the basis Φh = (φ
(h)
1 , . . . , φ

(h)
N ) of Vh , the discretization gives the

algebraic system

Ahxh = bh

and the algebraic preconditioning (PCG) is derived using the transformed
algebraic problem using some matrix preconditioner M̂ = L̂L̂∗ ,

(L̂−1Ah (L̂∗)−1) (L̂∗xh) = L̂−1bh .
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Minimization of the energy functional

Defining the energy functional

J(v) :=
1

2
〈Av, v〉 − 〈b, v〉 , v ∈ V,

the solution is equivalently given by the condition

x ∈ V minimizes the functional J over V .

The Galerkin solution (of the discretized problem) then solves

xh ∈ Vh minimizes the functional J over Vh .

Observation: Minimization of the energy functional over the sequence of
Krylov manifolds defines the iterates of the conjugate gradient method.
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Outline

1. Operator preconditioning

2. CG in infinite dimensional Hilbert spaces

3. Finite dimensional CG and matrix formulation

4. Algebraic preconditioning and the functional spaces

5. Summary and outlook
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1 Transformation of the functional equation

Functional equation in the data space V #

Ax = b, , A : V → V #, x ∈ V, b ∈ V #

is written using the bounded and V -elliptic bilinear form
a(·, ·) : V × V → R defined by a(u, v) ≡ 〈Au, v〉 for all u, v ∈ V as

a(x, v) = 〈b, v〉 for all v ∈ V .

With the transformation using the the Riesz map we get the formulation of
the problem in the solution space

τAx = τb, τA : V → V, x ∈ V, τb ∈ V ,

Here τA is self-adjoint with respect to the inner product (·, ·) . This
transformation is commonly (and inaccurately) called preconditioning.
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1 Operator preconditioning references

Klawonn (1995, 1996); Arnold, Falk, and Winther (1997, 1997); Steinbach
and Wendland (1998); Mc Lean and Tran (1997); Christiansen and
Nédélec (2000, 2000); Powell and Silvester (2003); Elman, Silvester, and
Wathen (2005); Hiptmair (2006); Axelsson and Karátson (2009); Mardal
and Winther (2011); Kirby (2011); Zulehner (2011); Preconditioning
Conference 2013, Oxford; ...

Related ideas can be found also in Faber, Manteuffel and Parter (1990)
with references to D’Yakonov (1961) and Gunn(1964, 1965).

The focus is on achieving mesh (model) parameters independence on the
condition number-based convergence bounds.
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2 Krylov manifolds in Hilbert spaces

Using the Riesz map, τA : V → V . One can form for g ∈ V the
Krylov sequence

g, τAg , (τA)2g , . . . in V

and define Krylov subspace methods in the Hilbert space operator setting
(here CG) such that with r0 = b−Ax0 ∈ V # the approximations xn to
the solution x , n = 1, 2, . . . belong to the Krylov manifolds in V

xn ∈x0 + Kn(τA, τr0) ≡

x0 + span{τr0, τA(τr0), (τA)2(τr0), . . . , (τA)n−1(τr0)} .

Approximating the solution x = (τA)−1τb using Krylov subspaces is
not the same as approximating the operator inverse (τA)−1 by the
operators I, τA, (τA)2, . . .
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2 Self-adjoint A wrt the duality pairing

The approximate solution xn minimizing the energy functional J over
x0 + Kn is equivalently expressed as

‖x− xn‖a = min
z∈x0+Kn

‖x− z‖a ,

where ‖z‖2a = a(z, z) , or by the Galerkin orthogonality condition

〈b−Axn, w〉 = 〈rn, w〉 = 0 for all w ∈ Kn ≡ Kn(τA, τr0) .

Since Kn is finite dimensional, this provides in a straightforward way the
discretization of the problem matching the maximal number, i.e. 2n , of
moments. The first n steps of the infinite dimensional CG in Hilbert
spaces can always be expressed using the n by n linear algebraic
system with the Jacobi matrix Tn .
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2 Preconditioned CG in Hilbert spaces

r0 = b−Ax0 ∈ V #, p0 = τr0 ∈ V

For n = 1, 2, . . . , nmax

αn−1 =
〈rn−1, τrn−1〉

〈Apn−1, pn−1〉
=

(τrn−1, τrn−1)V

(τApn−1, pn−1)V

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
〈rn, τrn〉

〈rn−1, τrn−1〉
=

(τrn, τrn)V

(τrn−1, τrn−1)V

pn = τrn + βnpn−1

End

Hayes (1954); ... ; Glowinski (2003); Axelsson and Karatson (2009);
Mardal and Winther (2011); Günnel, Herzog and Sachs (2013)
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2 CG ≡ Gauss-Christoffel quadrature

τA, w1 = τr0/‖τr0‖V ←→ ω(λ),

∫
f(λ) dω(λ)

↑ ↑

Tn, e1 ←→ ω(n)(λ),
n∑

i=1

ω
(n)
i f

(
θ
(n)
i

)

Using f(λ) = λ−1 gives

∫
λ−1 dω(λ) =

n∑

i=1

ω
(n)
i

(
θ
(n)
i

)−1

+
‖x− xn‖

2
a

‖τr0‖2V

Condition number bounds should always be checked against th is
CG - Gauss-Christoffel quadrature equivalence.
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3 Finite dimensional CG and matrix formulation

Let Φh = (φ
(h)
1 , . . . , φ

(h)
N ) be the basis of Vh ⊂ V ,

let Φ#
h = (φ

(h)#
1 , . . . , φ

(h)#
N ) be the canonical basis of its dual V #

h ,
(recall V #

h = AVh) . Using the coordinates in Φh and in Φ#
h ,

〈f, v〉 → v∗f , (u, v)V → v∗Mu, (Mij) = ((φj , φi)V )
i,j=1,...,N

,

Au→ Au , Au = AΦhu = Φ#
h Au ;

(Aij) = (a(φj , φi))i,j=1,...,N
= (〈Aφj , φi〉)i,j=1,...,N

,

τf → M−1f , τf = τΦ#
h f = ΦhM

−1f ;

we get with b = Φ#
h b , xn = Φh xn , pn = Φh pn , rn = Φ#

h rn
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3 Preconditioned algebraic CG

r0 = b−Ax0, solve Mz0 = r0, p0 = z0

For n = 1, . . . , nmax

αn−1 =
z∗n−1rn−1

p∗

n−1Apn−1

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

Mzn = rn , solve for zn

βn =
z∗nrn

z∗n−1rn−1

pn = zn + βnpn−1

End
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3 Observations

● Unpreconditioned CG, i.e. M = I corresponds to the basis Φ
orthonormal wrt (·, ·)V .

● Operator preconditioning on the discrete space can be interpreted as
orthogonalization of the discretization basis.

● Interpretation of the algebraic preconditioning with the preconditioner

M̂ = L̂L̂∗

different from the discretized operator preconditioner

M = LL∗ ?
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4 Interpretation of the algebraic preconditioning

Consider the matrix formulation of the finite dimensional CG using the
transformed discretization bases

Φ̂ = Φ (L̂∗)−1, Φ̂# = Φ# L̂ .

together with the change of the inner product in Vh

(recall (u, v)V = v∗Mu )

(u, v)new,Vh
= (Φ̂û, Φ̂v̂)new,Vh

:= v̂∗û = v∗L̂L̂∗u = v∗M̂u .

Then the discretized Hilbert space formulation of CG gives the
algebraically preconditioned matrix formulation of CG (in particular,
the unpreconditioned CG applied to the algebraically preconditioned
discretized system) with the preconditioner M̂ .
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4 Local representations and preconditioning

Sparsity of matrices of the algebraic systems is always presented as an
advantage of the FEM discretizations.

Sparsity means locality of information. In order to solve the problem, we
need a global transfer of information. Therefore preconditioning! It is
needed on the computational level in order to take care for the trouble
caused by the (computationally) inconvenient approximation of the
mathematical model when the appropriate globally supported basis
functions are missing (cf. hierarchical bases preconditioning, DD with
coarse space components, multilevel methods, ...). Recall Rüde (2009).

Preconditioning can be interpreted in part as addressing th e difficulty
related to sparsity (locality of the supports of the basis fu nctions).
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5 Discretization via Krylov subspaces

● Coarse grid components, inverted dense blocks etc. means handling
global information. The focus on locality of FEM bases?

● Approximation subspaces with coarse components.

● What if an approximation to the the n-th Krylov subspace Kn is taken
as the finite dimensional subspace Vh ⊂ V in

{A, b, τ} → {τAn : Kn → Kn} → PCG with {Ah,Mh} ?
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5 Please help with explaining the myths

● It is not true that CG (or other Krylov subspace methods used for solving
systems of linear algebraic equations with symmetric matrices) applied
to a matrix with t distinct well separated tight clusters of eigenvalues
produces in general a large error reduction after t steps; see Sections
5.6.5 and 5.9.1 of Liesen, S (2013). This myth has been disproved more
than 20 years ago; see Greenbaum (1989); S (1991); Greenbaum, S
(1992). Still it is persistently repeated in literature as an obvious fact.

● With no information on the structure of invariant subspaces
it is not true that distribution of eigenvalues provides insight into
the asymptotic behavior of Krylov subspace methods (such as GMRES)
applied to systems with generally nonsymmetric matrices; see Sections
5.7.4, 5.7.6 and 5.11 of Liesen, S (2013). As before, the relevant results
Greenbaum, S (1994); Greenbaum, Pták, S (1996) and Arioli, Pták, S
(1998) are (almost) twenty years old.
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Recent references

● J. Málek and Z.S., Preconditioning and the Conjugate Gradient Method
in the Context of Solving PDEs. SIAM Spolight Series, SIAM (2014), in
print

● J. Liesen and Z.S., Krylov Subspace Methods, Principles and Analysis.
Oxford University Press (2013)

● T. Gergelits and Z.S., Composite convergence bounds based on
Chebyshev polynomials and finite precision conjugate gradient
computations, Numerical Algorithms 65, 759-782 (2013)

● J. Papez, J. Liesen and Z.S., On distribution of the discretization and
algebraic error in numerical solution of partial differential equations,
LAA 449, 89-114 (2014)

● M. Arioli, J. Liesen, A. Miedlar, and Z.S., Interplay between
discretization and algebraic computation in adaptive numerical solution
of elliptic PDE problems, GAMM Mitteilungen 36, 102-129 (2013)
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Thank you very much for kind patience!
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