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Abstract

In the adaptive numerical solution of partial differential equations, local mesh
refinement is used together with a posteriori error analysis in order to equilibrate
the discretization error distribution over the domain. Since the discretized alge-
braic problems are not solved exactly, a natural question is whether the spatial
distribution of the algebraic error is analogous to the spatial distribution of the
discretization error. The main goal of this paper is to illustrate using standard
boundary value model problems that this may not hold. On the contrary, the
algebraic error can have large local components which can significantly domi-
nate the total error in some parts of the domain. The illustrated phenomenon
is of general significance and it is not restricted to some particular problems
or dimensions. To our knowledge, the discrepancy between the spatial distri-
bution of the discretization and algebraic errors has not been studied in detail
elsewhere.
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1. Introduction

In numerical solution of partial differential equations, a sufficiently accurate
solution (the meaning depends on the particular problem) of the linear algebraic
system arising from discretization has to be considered. When the finite element
method (FEM) is used for discretization, the system matrix is sparse. The
sparsity of the algebraic system matrix is presented as a fundamental advantage
of the FEM. It allows to obtain a numerical solution when the problem is hard
and the discretized linear system is very large. It is worth, however, to examine
some mathematical consequences which do not seem to be addressed in the FEM
literature.

The FEM generates an approximate solution in form of a linear combination
of basis functions with local supports. Each basis function multiplied by the
proper coefficient thus approximates the desired solution only locally. The global
approximation property of the FEM discrete solution is then ensured by solving
the linear algebraic system for the unknown coefficients; the linear algebraic
system links the local approximation of the unknown function in different parts
of the domain. If the linear algebraic system is solved exactly, then all is fine.
But in practice we do not solve exactly. In hard problems we even do not want
to achieve a small algebraic error. That might be too costly or even impossible
to get; see, e.g., [7, Sections 1–3], [24, Sections 1 and 6], [33, Section 2.6],
the discussion in [34, pp. 36 and 72], and [38, Section 1]. Then, however, one
should naturally ask whether the spatial distribution of the algebraic error in
the domain can significantly differ from the distribution of the discretization
error. There is no a priori evidence that these distributions are to be analogous.
On the contrary, from the nature of algebraic solvers, either direct or iterative,
there seems to be no reason for equilibrating the algebraic error over the domain.
Numerical results presented in this paper demonstrate that the algebraic error
can indeed significantly dominate the total error in some part of the domain.
To our knowledge, apart from a brief discussion in [26, Sections 5.1 and 5.9.4],
the presented phenomenon has not been studied elsewhere.

In order to avoid misunderstandings, it is worth to point out that the phe-
nomenon described in this paper is not related to the so-called “smoothing prop-
erties” of the conjugate gradient (CG) method [23] or to the investigation of
smoothing in the multilevel setting (for such analyses see, e.g., [36] or [41, Chap-
ter 9]). Moreover, it is not due to the particular iterative solver or due to the
specifics of the model problems used in this paper for illustration. Following the
standard methodology used in the numerical PDE literature for decades (see,
e.g., [8, 15, 19]), we start by illustrating the phenomenon using the simplest 1D
boundary value problem. Furthermore, in order to plot illustrative figures, we
use a small number of discretization nodes. In order to avoid the impression
that the simplicity or specifics of the 1D model problem diminish the message,
we also present numerical examples with more complicated 2D model problems
that illustrate the same phenomenon.

Several other phenomena, in particular the pollution error (see, e.g., [9,
31]) and superconvergence of the discretization error in the internal nodes (see,
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e.g., [42]) are also of interest in the investigation of the spatial error distributions.
Investigations of such phenomena are, however, beyond the scope of this paper.

The paper is organized as follows. The 1D model problem and experimental
observations for this problem are described in Section 2. In Section 3 the total
error is interpreted via a modification of the discretization mesh. Section 4
explains the local behavior of the algebraic error using the spectral analysis
and the approximation properties of the algebraic solver (here the CG method).
Section 5 presents some numerical results that illustrate the presence of the
described phenomenon on 2D model problems and adaptive PDE computations.
The paper ends with concluding remarks.

2. 1D model problem

We consider the 1D Poisson boundary value problem

−u′′(x) = f(x) , 0 < x < 1 , u(0) = u(1) = 0 , (1)

where f(x) is a given (continuous) function, 0 ≤ x ≤ 1. This model problem is
frequently used in mathematical literature for illustrations of various analytical
as well as numerical phenomena; see, e.g., [15, Section 6.2.2], [19, Section 5.5],
[30], [32, Section 3.2.1].

Denoting by H1
0 (Ω) the standard Sobolev space of functions having square

integrable (weak) derivatives in Ω ≡ (0, 1) and vanishing on the end points (in
the sense of traces), the weak formulation of (1) looks for u ∈ H1

0 (Ω) such that

a(u, v) = `(v) for all v ∈ H1
0 (Ω) , (2)

where

a(u, v) ≡
∫ 1

0

u′ v′ , `(v) ≡
∫ 1

0

v f .

The bilinear form a(·, ·) introduces on H1
0 (Ω) the energy norm

‖v′‖ = a(v, v)1/2 , v ∈ H1
0 (Ω) . (3)

We point out that the energy norm is relevant in many applications; see, e.g., [20,
Section 2.2.1].

We discretize the problem (2) by the FEM on the uniform mesh with n inner
nodes, i.e. with the mesh size h = 1/(n + 1), using the continuous piecewise
linear basis functions φj , j = 1, . . . , n, satisfying

φj(jh) = 1 ,

φj(x) = 0 , 0 ≤ x ≤ (j − 1)h and (j + 1)h ≤ x ≤ 1 .

The discretized problem then looks for uh ∈ Vh ≡ span{φ1, . . . , φn} such that

a(uh, vh) = `(vh) for all vh ∈ Vh . (4)
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The finite-dimensional problem (4) can be equivalently formulated as the system
of the linear algebraic equations

Ax = b , (5)

where the stiffness matrix A ∈ Rn×n and the load vector b ∈ Rn are given by

A = [Aij ] , Aij = a(φj , φi), (6)

b = [b1, . . . , bn]
T
, bi = `(φi) , i, j = 1, . . . , n . (7)

The solution x = [ξ1, . . . , ξn]T of (5) contains the coefficients of the Galerkin
FEM solution uh of (4) with the respect to the FEM basis φ1, . . . , φn, i.e.

uh =

n∑
j=1

ξjφj . (8)

In the 1D problem (1), the Galerkin FEM solution uh is known to coincide with
the solution u at the nodes of the mesh; see, e.g., [8, Corollary 4.1.1]. Therefore
the coefficients ξj are equal to the values of u in the nodes,

ξj = u(jh) , j = 1, . . . , n . (9)

The stiffness matrix A has the tridiagonal form

A = h−1



2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 2

 . (10)

The eigenvalues λi and eigenvectors yi = [η1i, . . . , ηni]
T of A, i = 1, . . . , n, are

known analytically (for details and their relationship to the eigenvalues and
eigenfunctions of the continuous Laplace operator see, e.g., [10]),

λi = 4h−1 sin2

(
i π

2(n+ 1)

)
, (11)

ηji =

√
2

n+ 1
sin

(
j i π

n+ 1

)
, j = 1, . . . , n . (12)

The approximations wi to the eigenfunctions of the continuous operator are
then given by

wi =

n∑
j=1

ηji φj , wi(`h) = η`i . (13)
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Remark 1. Unlike in the 2D Poisson problem, the stiffness matrix A in (10)
and hence its eigenvalues in (11) depend on the mesh size through the multi-
plicative factor h−1. This is often avoided by multiplying the system Ax = b
by h, which does not affect the conditioning of the matrix. However, since the
algebraic energy norms ‖z‖A and ‖z‖(hA) are different, such scaling would later
be inconvenient, which is why we prefer to keep the matrix A as in (10).

We now consider solving the system Ax = b using the (unpreconditioned)
conjugate gradient (CG) method [23]. As mentioned in the Introduction, our
point is to demonstrate on the simplest model problem the possible differences
in the distribution of the discretization error and the algebraic error.

Given an initial approximation x0 and the corresponding initial residual r0 ≡
b−Ax0, the CG method generates approximations xk ∈ x0 +Kk(A, r0), where
Kk(A, r0) ≡ span{r0,Ar0, . . . ,A

k−1r0} is the kth Krylov subspace generated
by A and r0. It is well known that these approximations minimize the A-norm
of the error, i.e.,

‖x− xk‖A = min
z∈x0+Kk(A,r0)

‖x− z‖A ;

see, e.g., [23, Theorem 4.3].
Writing xk = [ξ

(k)
1 , . . . , ξ

(k)
n ]T , the resulting approximation of the Galerkin

solution uh in (8) is given by

u
(k)
h =

n∑
j=1

ξ
(k)
j φj . (14)

If u is the exact solution of the model problem (2), then u−uh is the discretiza-
tion error, uh − u(k)h is the algebraic error, and u − u(k)h is the total error. As
a simple consequence of the Galerkin orthogonality property, the energy norms
of these errors satisfy

‖(u− u(k)h )′‖2 = ‖(u− uh)′‖2 + ‖(uh − u(k)h )′‖2

= ‖(u− uh)′‖2 + ‖x− xk‖2A ; (15)

see, e.g., [14, Theorem 1.3, p. 38]. This means that the CG method leads to
an approximation u(k)h that minimizes the energy norm of the total error over
all approximations determined by coefficient vectors from the affine subspace
x0 +Kk(A, r0).

Remark 2. The equality (15) holds for any vector xk ∈ Rn and the corre-
sponding approximation of the form (14). In particular, it holds also for the
results of finite precision CG computations.

As in [15, p. 120], we consider the exact solution

u = exp(−5 (x− 0.5)2)− exp(−5/4) (16)
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of (1). To obtain the right-hand side b of the linear algebraic system one may
use (9) and hence compute b = Ax. In order to use an approach analogous to
higher dimensions we have chosen to evaluate b as in (7) using the MATLAB
function quad (i.e. the adaptive Simpson rule). In comparison with the com-
putation of b = Ax, the differences are, however, negligible. Furthermore, we
have evaluated the error norms by applying the MATLAB function quad to the
analytic expressions for (u− uh)′ and u− uh in each subinterval.

Let us now describe our numerical results. We consider the FEM discretiza-
tion using n = 19 inner nodes. This rather small number of nodes allows us
to plot illustrative figures, but similar results can be obtained for any choice
of n. The resulting solution u and the discretization error u− uh are shown in
Figure 1. The (squared) energy and L2 norms of the discretization error are
equal to (up to the negligible rounding errors in evaluation of the norms)

‖(u− uh)′‖2 = 6.8078e-3 and ‖u− uh‖2 = 1.7006e-6. (17)

The condition number of the matrix A is κ(A) = λn/λ1 = 161.4.
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Figure 1: Left: the exact solution u (see (16)). Right: the discretization error u − uh; the
vertical axis is scaled by 10−3.

In our experiments we apply the standard implementation of the CG method
[23] with x0 = 0 to Ax = b. Figure 2 shows the relative A-norm of the alge-
braic errors ‖x− xk‖A/‖x− x0‖A. In order to show that rounding errors play
(almost) no role in our reported results, we also plot the loss of orthogonality
among the normalized residual vectors measured in the Frobenius norm for both
the standard CG implementation and the CG implementation with double re-
orthogonalized residuals, which simulates exact arithmetic; see, e.g., [22]. We
observe that the loss of orthogonality in the standard CG implementation re-
mains close to the machine precision level, so that the effect of rounding errors
indeed is negligible. Taking into account the distribution of the eigenvalues of
A and the choice x0 = 0, this is to be expected; see [28].

The squared A-norm of the algebraic error ‖x− xk‖2A at the iteration steps
k = 7, 8, 9, 10 is given in the first column of Table 1. The second column
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Figure 2: The relative A-norm of the error ‖x− xk‖A/‖x− x0‖A (solid line), the loss of
orthogonality in the standard CG implementation (dashed line) and the loss of orthogonal-
ity in the CG implementation with double reorthogonalized residuals (dotted line). In our
computations, rounding errors do not play a significant role.

Table 1: Size of the algebraic and total error at several iteration steps for the exact solu-
tion (16).

k ‖x− xk‖2A ‖x− xk‖2 ‖(u− u(k)h )′‖2 ‖u− u(k)h ‖2

7 6.3002e-2 9.9299e-3 6.9810e-2 4.9817e-4
8 1.4505e-2 9.5751e-4 2.1313e-2 4.9570e-5
9 1.2382e-3 2.7011e-5 8.0459e-3 3.0507e-6
10 6.3248e-30 2.2880e-31 6.8078e-3 1.7006e-6

contains, for comparison, the squared Euclidean norm ‖x−xk‖2. For the energy
and the L2 norm of the total error u−u(k)h see the third and the fourth column,
respectively.

The algebraic and total errors are visualized for the steps k = 8, 9 in Figure 3.
To describe our main point we look at the step k = 9. First note that at this
step we have

‖x− x9‖2A = 1.2382e-3 < 6.8078e-3 = ‖(u− uh)′‖2 ;

cf. (17). In words, the globally measured energy norm of the algebraic error
is smaller than the globally measured energy norm of the discretization error.
On the other hand, as shown in the right part of Figure 3, the algebraic error
is strongly localized in the middle of the domain; here in particular at the
component ξ(9)10 of x9, which is much less accurate than the other components.
This localization of the algebraic error substantially affects the shape of the
total error and leads to the following essential observations:

(1) The spatial distributions of the discretization error and the algebraic
error can be very different from each other.
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(2) The value of the (globally measured) energy norm may not be descriptive.

Similar observations of the error distribution can be made for k = 8, which
is shown for illustration in the left part of Figure 3. In this step, however, we
have ‖x− x8‖2A > ‖(u− uh)′‖2.
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Figure 3: The algebraic error uh − u
(k)
h (dashed-dotted line) and the total error u− u(k)h (solid

line) at the 8th iteration (left) and at the 9th iteration (right). The vertical axis in the right
part of the figure is scaled by 10−3.

The presented example considers the simplest model problem. It does not
prove that in practical problems the observed phenomenon appears on a catas-
trophic scale. On the other hand, the presented result is disturbing and poses a
question about many commonly used ways of a posteriori error evaluation using
global error measures, not distinguishing the sources of error or considering only
the discretization error.

One may object that if the error is measured in the L2 norm instead of the
energy norm, one does not see much discrepancy – both ‖x−x9‖A and ‖x−x9‖
are still relatively large in comparison to ‖u − uh‖. This, however, is not an
objection against our two points made above. For the given model problem
(as well as for a large class of problems with self-adjoint bounded and coercive
operators; see, e.g., [19, 20]) the energy norm is very natural to consider. With
the Galerkin discretization it allows the fundamental Pythagorean identity to
be expressed in the form (15), or, more generally, as

‖∇(u− u(k)h )‖2 = ‖∇(u− uh)‖2 + ‖x− xk‖2A . (18)

This relates in a straightforward way the size of the discretization and algebraic
errors. There is no equality analogous to (18) for the L2 norm of the total,
discretization and algebraic errors. Moreover, the main point is that evaluation
of the algebraic error globally using any norm is not sufficient. It should be
complemented by investigation of the spatial distribution of the error over the
domain or at the local areas of interest.

In order to demonstrate that the above observations are not an artefact of
the special solution u in (16), we show also the results for the polynomial exact
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solution
u = (x− 2) (x− 1)x (x+ 1) . (19)

We choose again n = 19. The exact solution u and the discretization error
u−uh are given in Figure 4; the discretization error u−uh is nonnegative. The
squared energy and L2 norms of the discretization error are equal to

‖(u− uh)′‖2 = 3.5000e-3 and ‖u− uh‖2 = 8.7495e-7.

Table 2 and Figures 5–6 give results analogous to those presented above in
Table 1 and Figures 2–3, respectively.
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Figure 4: Left: the exact solution u (see (19)). Right: the discretization error u − uh; the
vertical axis is scaled by 10−4.

3. Interpretation of the total error as a modification of the discretiza-
tion mesh

As argued in [26, p. 9], it is desirable to interpret the inaccuracies in the
solution process (including the algebraic errors) in terms of a meaningful mod-
ification of the mathematical model; see also [35, pp. 33–35]. This idea can
be related to the so-called functional backward error by Arioli and others (see,
e.g., [6]) where the errors are interpreted as (backward) perturbations of the
weak formulation of the problem. This can be appealing in more complicated
settings where such perturbation represents a modification of the mathematical
model that has some physical interpretation. Within the simple problem setting
considered above, an introduction of the functional backward error term count-
ing for inaccurate solving of the discretized algebraic problem into the left-hand
side of problem (2) would not satisfy this natural requirement. As pointed out
in [6], in the simple case of the Poisson problem (or in similar cases where per-
turbation of the operator would be difficult to interpret), the operator structure
can be preserved by restricting the perturbation to the right-hand side only.
This can be relevant, e.g., when the right-hand side is dominated by experimen-
tal data and the perturbation is small enough in comparison with experimental
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Table 2: Size of the algebraic and total error at several iteration steps for the exact solu-
tion (19).

k ‖x− xk‖2A ‖x− xk‖2 ‖(u− u(k)h )′‖2 ‖u− u(k)h ‖2

7 1.0112e-2 1.1899e-3 1.3612e-2 6.0367e-5
8 2.6905e-3 1.6856e-4 6.1905e-3 9.3021e-6
9 2.5563e-4 5.7123e-6 3.7556e-3 1.1605e-6
10 5.6776e-30 3.8081e-30 3.5000e-3 8.7495e-7
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Figure 5: The relative A-norm of the error ‖x− xk‖A/‖x− x0‖A (solid line), the loss of
orthogonality in the standard CG implementation (dashed line) and the loss of orthogonality
in the CG implementation with double reorthogonalized residuals (dotted line).
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Figure 6: The algebraic error uh − u
(k)
h (dashed-dotted line) and the total error u− u(k)h (solid

line) at the 8th iteration (left) and at the 9th iteration (right); the vertical axes are scaled by
10−3.
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errors. In this paper we consider the change of the discretization, i.e. the basis
functions or the mesh, as an alternative.

Interpreting the algebraic error as a transformation of the FEM basis has
been considered in [21, Section 3]. We will use the idea from [21] but present
the result in a slightly different way. Let the transformation of the basis
Φ = [φ1, . . . , φn] (in our problem the basis of continuous piecewise linear hat
functions) to the basis Φ̂ = [φ̂1, . . . , φ̂n] be represented by a square matrix
D = [D`j ] ∈ Rn×n,

φ̂j = φj +

n∑
`=1

D`j φ` , j = 1, . . . , n . (20)

Please note that unlike the original FEM basis functions φj , the transformed
basis functions φ̂j , j = 1, . . . , n, need not be of a local support. The relation (20)
can be written in the compact form as

Φ̂ = Φ (I + D) ,

where I ∈ Rn×n denotes the identity matrix.
The transformation matrix D can be constructed in the following way. An

easy calculation shows that an approximate solution x̂ = [ξ̂1, . . . , ξ̂n]T of the
algebraic system Ax = b represents the exact solution of the perturbed system

(A + E)x̂ = b , (21)

where

E =
(b−Ax̂)x̂T

‖x̂‖2
. (22)

Let the Galerkin FEM solution uh (see (4)–(8)) satisfy

uh = Φx =

n∑
j=1

ξj φj =

n∑
j=1

ξ̂j φ̂j = Φ̂x̂ = Φ (I + D)x̂ (23)

for some (unknown) matrix D. Then, considering the Galerkin discretization of
(2) with uh = Φ̂x̃, i.e. the discretization basis φ̂1, . . . , φ̂n , and the test functions
φ1, . . . , φn gives

a(uh, φi) = `(φi) , i = 1, . . . , n , (24)

which can be formulated as the system of the linear algebraic equations

Âx̃ = b,

where

Âij = a(φ̂j , φi) = a(φj +

n∑
`=1

D`j φ` , φi)

= Aij +

n∑
`=1

Ai`D`j , (25)
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i.e.
Â = A + AD. (26)

Consequently, knowing the algebraic perturbation matrix E from (21), we can
set

AD = E , giving D = A−1E , (27)

with x̂ = x̃ the exact algebraic solution of (21) representing the Galerkin solu-
tion uh of (2) in the sense of (24).

Remark 3. Since E is determined by the algebraic errors in solvingAx = b, we
have no control of the sparsity of the transformation matrix D = A−1E, which
is, in general, dense. Therefore the transformed basis functions φ̂j , j = 1, . . . , n,
have, in general, global supports. This holds also when E is determined using
componentwise backward error with its structure of nonzeros entries determined,
e.g., by the structure of nonzeros in A. Since A−1 is, in general, dense, D =
A−1E is also dense.

When we set x̂ = x8 for our experimental illustration with the exact solution
(16), the norms of the perturbation and transformation matrices are

‖E‖ = 3.2976e-1 , ‖D‖ = 1.4674e-2 .

Figure 7 gives the matrices E (see (22)) and D (see (27)) visualized using the
MATLAB surf command. We can see the effect of the multiplication by A−1:
the transformation matrix D has significantly more entries with the size far
from zero than the perturbation matrix E. It should be pointed out that our
example is on purpose very simple and the mapping from E to D = A−1E
is for the given A rather benign (the norm ‖D‖ is even smaller than ‖E‖).
In practical problems this may not be the case and D can have large nonzero
elements. The left part of Figure 8 shows (for the same approximation x̂ = x8)
the example of the transformed basis function φ̂j (here φ̂5; see (20)) . Since
the entries of the matrix D are of the order 10−3, φ̂5 looks visually the same
as φ5. The difference φ̂5 − φ5 is plotted in the right part of Figure 8. For
other basis functions the situation is analogous. The size of the differences
φ̂j − φj , j = 1, . . . , n, corresponds to the size of the algebraic error (as well
as the discretization error when the algebraic and discretization errors are in
balance).

When we consider the approximation x̂ = x9 given at the 9th CG iteration
step, the norms of the corresponding perturbation and transformation matrices
are

‖E‖ = 1.2976e-1 , ‖D‖ = 2.4469e-3 ,

and the visualization of E,D and the difference φ̂j − φj , j = 1, . . . , n, is analo-
gous.

For the second example with the exact solution (19) and the approximation
x̂ = x9 given at the 9th CG iteration step, the norms of the perturbation and
transformation matrices are

‖E‖ = 6.8757e-2 , ‖D‖ = 1.3220e-3 .
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Figure 7: The perturbation matrix E (left) and the transformation matrix D (right) (with
the entries visualized using the MATLAB surf command) for the approximation x̂ = x8 in
the example with the exact solution (16). The right vertical axis is scaled by 10−3.
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Figure 8: The transformed basis function φ̂5 (left) and the difference φ̂5 − φ5 (right) for
the approximation x̂ = x8 in the example with the exact solution (16). For the other basis
functions the situation is analogous. The right vertical axis is scaled by 10−3; see the scale in
the right part of Figure 1.

Figure 9 gives the matrix E and the matrix D. For the transformed basis
function φ̂11 and the difference φ̂11 − φ11 see Figure 10.

In the rest of this section we interpret (with some unimportant inaccuracy)
the total error u− u(9)h for the last example (the exact solution u is given by (19)
and u

(9)
h is determined using the approximation x9 computed at the 9th CG

step) as the discretization error u− uH , where the Galerkin FEM solution uH
corresponds to a new mesh and new basis functions which preserve the locality of
their support. We are aware that this interpretation is here specific for the one-
dimensional problem as it is certainly not easily applicable in general, especially
for higher-dimensional problems. However, the distortion of the mesh illustrated
below shows the possible disturbing effects of the localization of the algebraic
error.
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Figure 9: The perturbation matrix E (left) and the transformation matrix D (right) (with
the entries visualized using the MATLAB surf command) for the approximation x̂ = x9 in
the example with the exact solution (19). The right vertical axis is scaled by 10−4.
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Figure 10: The transformed basis function φ̂11 (left) and the difference φ̂11 − φ11 (right) for
the approximation x̂ = x9 in the example with the exact solution (19). For the other basis
functions the situation is analogous. The right vertical axis is scaled by 10−4; see the scale in
the right part of Figure 4.

The Galerkin FEM solution uH coincides with the solution u at the nodes of
the mesh; see [8, Corollary 4.1.1]. Therefore we construct the new mesh in such
a way that the new nodes τi are given as the roots of the total error u − u(9)h

(i.e. the discretization error u− uH) and therefore

uH(τi) = u(τi) = u
(9)
h (τi) .

In order to interpret the large total error in the middle of the interval as the
discretization error, we replace (with no claim for optimality) the central node
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0.5 of the original mesh by two nodes defined as 0.5± 0.7h, i.e.

τi , i = 1, . . . , 18 = roots of u− u(9)h for 0 < x < 0.5 ,

τ19 = 0.5− 0.7h ,

τ20 = 0.5 + 0.7h ,

τi , i = 21, . . . , 38 = roots of u− u(9)h for 0.5 < x < 1 .

(28)

The new mesh now consists of n = 38 inner nodes, with 36 of them forming 18
close pairs. Please note that the new central element is 1.4 times longer than
the elements in the original (uniform) mesh4 , i.e. τ20 − τ19 = 1.4h.

Let ψj , j = 1, . . . , n, be the continuous piecewise linear FEM basis functions
satisfying

ψj(τj) = 1 ,

ψj(x) = 0 , 0 ≤ x ≤ τj−1 and τj+1 ≤ x ≤ 1 .

As mentioned above, the Galerkin solution uH coincides with the solution u at
the nodes of the mesh. We can therefore write

uH =

n∑
j=1

ξj ψj , ξj = u(τj) , j = 1, . . . , n .

The discretization error u− uH is nonnegative and the squared energy and L2

norms of the discretization error u− uH are close to the analogous quantities
for u− u(9)h ,

‖(u− uH)′‖2 = 3.4224e-3 respectively ‖u− uH‖2 = 9.8141e-7 ,

while

‖(u− u(9)h )′‖2 = 3.7556e-3 respectively ‖u− u(9)h ‖
2 = 1.1605e-6 .

The comparison of the discretization error u− uH with the total error u− u(9)h

is given in the left part of Figure 11. With our choice of the nodes (28), the
positive values of u− u(9)h coincide, except for τ18 < x < τ21 , with the error
u− uH ; see the detail of the comparison in the right part of Figure 11. There
is a slight discrepancy between u− uH and u− u(9)h for τ18 < x < τ21 .

Interpretation of the total error as the error of the exact discretized solution
using a modified discretization mesh can rise, as illustrated above, interesting
points. First, the algebraic error can be interpreted, in the sense described
above, as the loss of locality of the support of the modified Galerkin basis
functions. Second, the computed approximate solution u(k)h which includes the

4This is the reason for denoting the Galerkin FEM solution corresponding to the new mesh
with the subscript H commonly used for denoting the quantities corresponding to a coarser
mesh.
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Figure 11: Left: the total error u−u(9)h for the original mesh (solid line) and the discretization
error u − uH on the modified mesh (dashed line); the vertical axis is scaled by 10−3. Right:
the detail showing the coincidence of the positive values of u− u(9)h with u− uH for most of
the interval and their slight discrepancy in the middle; the vertical axis is scaled by 10−4.

error in the solution of the algebraic system can be interpreted (here with a
small inaccuracy) as the discrete solution (with the vanishing algebraic error)
for a mesh which can possibly have “holes” in the areas where the algebraic error
is large (in our construction specific for the 1D problem the mesh has a “hole”
in the center of the interval).

4. Spatial distribution of the error in CG computations

In this section we explain the behavior of the algebraic error observed above;
see also [26, Section 5.9.4]. In the following we present the experimental illus-
tration with the exact solution (16); see also Figures 7 and 8. The exposition
uses the close relationship between CG and the Lanczos algorithm; for details
see the original papers [23, 25] and also the survey [28].

Consider the spectral decomposition of the CG error at the kth step,

x− xk =

n∑
i=1

(x− xk,yi)yi , (29)

where, as above, yi denotes the ith normalized eigenvector of A correspond-
ing to the eigenvalue λi ; see (11)-(12). We denote by θ(k)j , j = 1, . . . , k, the
approximations of the eigenvalues of the matrix A (Ritz values) given at the
kth iteration of the Lanczos algorithm applied to the matrix A and the start-
ing vector r0/‖r0‖ . Assuming exact arithmetic, a close approximation of the
eigenvalue λi by a Ritz value θ(k)j means that the size of the ith component
|(x− xk,yi)| of the error x− xk of the kth CG approximation in the direction
yi becomes small; see, e.g., [28, Theorem 3.3]. As mentioned above, the ef-
fect of rounding errors is in our example negligible. Consequently, the previous
statement holds also for the presented results of finite precision computations.
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Since some eigenvalues of A are approximated by Ritz values much faster
than the others, this fact is reflected in the different behavior of the size of the
spectral components |(x− xk,yi)|, i = 1, . . . , n, as k increases, k = 0, 1, . . . .
The individual eigenvectors yi have different oscillating patterns; and therefore
the individual spectral components of x−xk can develop in a rather nonuniform
way as k increases. Using

uh − u(k)h = Φ(x− xk) =

n∑
i=1

(x− xk,yi) Φyi =

n∑
i=1

(x− xk,yi)wi ,

this can result in a rather nonuniform spatial distribution of the algebraic (and
the total) error in Ω. We will illustrate this situation in the following figures.
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Figure 12: Left: the squared size of the spectral components |(x− x0,yi)|2, i = 1, . . . , n, of
the initial error x − x0. Right: convergence of the Ritz values (circles) to the eigenvalues of
A (dots) in iterations 1 through 10.

The squared size of the spectral components |(x− x0,yi)|2, i = 1, . . . , n, of
the initial error x− x0 is given in the left part of Figure 12. Recall that x0 = 0
and therefore the initial error is equal to the solution x. Since the solution
is symmetric with respect to the center 0.5 of the given interval, the spectral
components with even indices vanish (the corresponding projections computed
in finite precision arithmetic are on the machine precision level). Since the
initial error x− x0 is smooth (i.e. nonoscillating), the components of the error
with higher indices, which correspond to more oscillating eigenvectors (see (12)),
significantly decrease with increasing index i. The Ritz values θ(k)j , j = 1, . . . , k,
are for k = 1, . . . , 10 given in the right part of Figure 12. The dots represent
the eigenvalues of matrix A. As expected, the Ritz values approximate the
eigenvalues with odd indices. At the 10th iteration, all such eigenvalues are
approximated, all components of the error x − x10 become very small and the
norm of the algebraic error drops to the machine precision level; see Figure 2
and Table 1. We can observe that the eigenvalues λ1, λ3 and partially also λ5
are approximated much faster (for smaller iteration number) than the others.

In Figure 13 the development of the squared size of the spectral components
of the algebraic error x− xk is shown for k = 0, 7, 8, 9 (only the values with odd
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indices are plotted; the rest remain at the level 10−30). We can see that the
CG method reduces quickly the dominating spectral components of the error
which corresponds to the fast approximation of the eigenvalues λ1 and λ3 by
the Ritz values illustrated above. With increasing k the spectral components
of x− xk almost equilibrate. As a consequence, the spatial distribution of the
error x− xk changes as k increases and it eventually becomes highly nonuniform
in the way substantially different than the spatial distribution of the initial error
x− x0.
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Figure 13: The development of the squared size of the spectral components of the algebraic
error |(x− xk,yi)|2, i = 1, 3, . . . , 19, for the iteration steps k = 0, 7, 8, 9 (solid, dashed, dashed-
dotted and dotted lines respectively). We can observe equilibrating of the size of the spectral
components as k increases.

This situation is illustrated in Figures 14 and 15, where we plot the most
dominating approximations wi to the eigenfunctions of the continuous operator
(see (13) and (29)), corresponding to the initial error x − x0 and to the error
x−x9 respectively. The right bottom part of Figure 14 shows the algebraic part
of the initial error in the function space, which is given as the linear combination
of the eigenfunction approximations with odd indices

uh − u(0)h = Φ (x− x0) =

10∑
i=1

(x− x0,y2i−1)w2i−1 . (30)

(As mentioned above, we use x0 = 0 and therefore uh − u(0)h = uh .) The right
bottom part of Figure 15 shows the algebraic part of the error

uh − u(9)h = Φ (x− x9) ≈
10∑
i=1

(x− x9,y2i−1)w2i−1 ; (31)

please compare with the algebraic error given in the right part of Figure 3.
Here we neglect the spectral components of x− x9 in the direction of even
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eigenvectors of A which remain at the machine precision level (and therefore we
use the approximation instead of the equality).
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Figure 14: The approximate eigenfunctions wi corresponding to the largest components of the
initial algebraic error x− x0 in the eigenvector basis of the matrix A and the algebraic part
uh − u

(0)
h of the initial error u − u(0)h (see (30)) (the dashed-dotted line in the right bottom

part).

In the following remark we do not consider the effects of rounding errors (it
can easily be shown that for the given point their effects are not important).
Since the CG approximate solution xk satisfies xk ∈ x0 +Kk(A, r0) , we have

x− xk ∈ x− x0 +Kk(A, r0) .

The highly irregular spatial distribution of uh − u(9)h observed above is caused
by eliminating (to some extent) the spectral components with slowly changing
eigenvectors, which dominate the initial error uh − u(0)h . As we have seen, all
spectral components eventually become almost equal in size and the effect of
rapidly changing eigenvectors becomes pronounced. This cannot be explained
as one may seemingly suggest and as we have several times experienced during
the preparation of this paper, by adding an “oscillatory” vector from Kk(A, r0)
to x− x0 .

5. 2D illustrations

Using a simple 1D model problem, we illustrated above that the spatial
distribution of the algebraic error can significantly differ from the spatial dis-
tribution of the discretization error. Because of its possibly large components
in some parts of the domain, the algebraic error can determine the spatial dis-
tribution of the total error u− u(k)h even when its globally measured size (here
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Figure 15: The approximate eigenfunctions wi corresponding to the largest components of
the algebraic error x − x9 in the eigenvector basis of the matrix A and the algebraic part
uh − u

(9)
h of the error u − u(9)h (see (31)) (the dashed-dotted line in the right bottom part).

The vertical axis in the right bottom part of the figure is scaled by 10−3.

its energy norm) is smaller than the size of the discretization error. We em-
phasize that the described phenomenon is of general importance. It cannot be
attributed to the specifics of the 1D model problem or the CG method used here
for illustration. Of course, its appearance will be different for other problems
or algebraic solvers.

In order to illustrate that the same phenomenon can appear also in more
complicated settings, we present experiments using two well-known 2D model
problems; see, e.g., [1, 27].

Peak problem: We consider the 2D Poisson boundary value problem

−∆u = f in Ω ≡ (0, 1)× (0, 1) , u = 0 on ∂Ω . (32)

The right-hand side f is chosen so that the solution u is given by

u(x, y) = x (x− 1) y (y− 1) exp

(
−100

(
x− 1

2

)2

− 100

(
y − 117

1000

)2
)

; (33)

see the upper left part of Figure 16.

L-shape problem: We consider the 2D Poisson boundary value problem

−∆u = 0 in Ω , u = uD on ∂Ω , (34)
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where Ω ≡ (−1, 1) × (−1, 1) \ (0, 1) × (−1, 0). The Dirichlet boundary con-
dition uD is chosen so that the solution u is given in polar coordinates (r, θ)
by

u(r, θ) = r2/3 sin

(
2

3
θ

)
; (35)

see the upper left part of Figure 17.

For each model problem we consider a sequence of partitions (meshes) of the
domain Ω into the union of non-overlapping, triangular elements such that the
non-empty intersection of a distinct pair of elements is a single common node or
a single common edge. On a given mesh we discretize the problem, analogously
to Section 2, using the piecewise affine finite elements with the basis given by the
hat-functions, i.e. the piecewise affine functions such that each one corresponds
to a node of the partition taking there value 1 and vanishing in all other nodes.
The boundary condition uD is approximated by a piecewise affine function given
by the values of uD in the boundary nodes. The stiffness matrix and right-hand
side are assembled using the MATLAB code listed in [2].

Starting from the regular initial coarse mesh T0 consisting of 128 congruent
triangles for the peak problem and of 192 congruent triangles for the L-shape
problem, the sequence of adaptively refined meshes T1, T2, . . . is generated using
the Adaptive Finite Element Method (AFEM). One iteration of AFEM can
schematically be written as follows:

SOLVE→ ESTIMATE→ MARK→ REFINE

Here "SOLVE" means assembling and solving the system of the linear algebraic
equations. We solve the systems using the MATLAB backslash operator that
gives, for our experiments, sufficiently accurate approximations (i.e. approxima-
tions with a normwise relative backward error on the machine precision level).
The corresponding piecewise affine approximations are denoted by u∗h. "ESTI-
MATE" means the local a posteriori estimation of the error between the exact
solution u and its numerical approximation u∗h. We consider the residual-based
local error estimator (indicator), for an element T of partition T` and a piecewise
affine approximation u∗h

η2R,T (u∗h) ≡ h2T ‖f‖2L2(T ) +
∑

E⊂∂T

hE‖[∇u∗h · nE ]‖2L2(E) , (36)

where hT ≡ diam(T ) denotes the diameter of the element T , hE ≡ diam(E)
denotes the length of an edge E ⊂ ∂T , and [∇u∗h · nE ] denotes the jump of
piecewise constant function ∇u∗h over edge E. In a comparison of 13 a posteriori
error estimators on five benchmark problems, the estimator ηR,T (u∗h) was found
appropriate for practical use in adaptive algorithms in [11, Section 8]. For
marking the elements ("MARK") we consider the so-called greedy algorithm;
see [11, Section 6]. Let the elements of T` be enumerated such that ηR,T1

(u∗h) ≥
ηR,T2

(u∗h) ≥ · · · (this enumeration is used here for the sake of a full rigor;
practical algorithms use techniques described in literature given below).
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For a given Θ ∈ (0, 1] we find the smallest index m such that

Θ
∑
T∈T`

η2R,T (u∗h) ≤
m∑
j=1

η2R,Tj
(u∗h) ;

see [12, Section 4.2] and for further development [37]. In the experiments we
set Θ ≡ 0.25. Finally, "REFINE" stands for the refinement of the elements
T1, . . . , Tm and the neighboring ones such that the conformity of the mesh is
preserved. In the experiments we consider the refinement by Newest-Vertex-
Bisection [29] implemented as in [17, Section 5.2].

For the first illustration we consider the peak model problem (32) and we use
the mesh T13 given at the 13th AFEM iteration consisting of 1486 nodes. The
tightly approximated squared energy norm of the discretization error (computed
using the elementwise 16-node Gauss quadrature that is exact for polynomials
up to degree 8; see, e.g., [13]) is equal to

‖∇(u− u∗h)‖2 = 9.5258e-6 . (37)

The discretization error u − u∗h visualized as a piecewise affine function (using
the MATLAB trisurf command) is shown in the upper right part of Figure 16.

The linear algebraic system Ax = b is of order 1436, which is equal to the
number of the inner nodes in T13; the condition number is κ(A) = 1936.8
(evaluated using the MATLAB cond function). Analogously to the 1D case,
we apply the CG method with x0 = 0 to Ax = b. We stop at the iteration
step k = 67 when the squared energy norm of the algebraic error ‖x∗ − xk‖2A
drops below one percent of the squared energy norm of the discretization error,
i.e.

‖x∗ − xk‖2A < 0.01 ‖∇(u− u∗h)‖2 , (38)

where x∗ denotes the approximation to the solution x given by the MATLAB
backslash operator. The criterion (38) is used here for a maximal rigor of our
experimental illustrations. In practice a suitable approximation of x is not
available, ‖x− xk‖A is estimated in various ways and incorporating algebraic
error estimates into a posteriori error analysis with using it for construction of
algebraic stopping criteria requires substantial further investigation; see, e.g.,
[4, Section 4.1], [28, Section 5.3], [39, 40, 24, 3, 6, 5]. We denote by u(k)h the
piecewise affine approximation corresponding to the CG approximation xk. The
squared energy norms of the algebraic error and the total error are equal to

‖x∗ − xk‖2A = 7.7295e-8 ,

‖∇(u− u(k)h )‖2 = 9.6018e-6 . (39)

Please recall the corresponding energy norm of the discretization error (37) and
see the equality (18). The norm of the total error ‖∇(u − u(k)h )‖2 is (tightly)
approximated using elementwise the 16-node Gauss quadrature rule. As we can
see in the bottom parts of Figure 16, the algebraic error u∗h − u

(k)
h substantially
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Figure 16: Peak model problem (32) solved using an adaptively refined mesh with 1486 nodes.
Upper left: the solution u (33). Upper right: the discretization error u − u∗h; vertical axis is
scaled by 10−5. Bottom left: the algebraic error u∗h − u

(k)
h ; vertical axis is scaled by 10−5.

Bottom right: the total error u − u(k)h ; vertical axis is scaled by 10−4. The functions are
visualized as piecewise affine functions using the MATLAB trisurf command.

affects the shape of the total error u − u(k)h in the part of the domain Ω where
the solution u is (nearly) constant (with small gradients) as well as in the part
where u has large gradients.

For the second illustration we consider the L-shape model problem (34) and
we use the mesh T13 given at the 13th AFEM iteration consisting of 3376 nodes.
The quantities analogous to those presented above in (37) and (39) are

‖∇(u− u∗h)‖2 = 2.4512e-4 ,
‖x∗ − xk‖2A = 2.3873e-6 , (40)

‖∇(u− u(k)h )‖2 = 2.4751e-4 .

Here the system Ax = b is of order 3210, and the condition number is κ(A) =
1230.3 (evaluated using the MATLAB cond function). The stopping crite-
rion (38) is satisfied at the iteration step k = 107. The piecewise affine vi-
sualization of the discretization error u − u∗h is given in the upper right part
of Figure 17. As we can see in the bottom parts of Figure 17, the algebraic
error u∗h − u

(k)
h substantially affects the shape of the total error u− u(k)h in most

of the domain Ω.
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Figure 17: L-shape model problem (34) solved using an adaptively refined mesh with 3376
nodes. Upper left: the solution u (35). Upper right: the discretization error u− u∗h; vertical
axis is scaled by 10−4. Bottom left: the algebraic error u∗h − u

(k)
h ; vertical axis is scaled

by 10−4. Bottom right: the total error u−u(k)h ; vertical axis is scaled by 10−4. The functions
are visualized as piecewise affine functions using the MATLAB trisurf command.

6. Concluding remarks

The demonstrated difference between the spatial distributions of the alge-
braic and the discretization error across the domain (here obtained for the CG
method) underlines the importance of constructing reliable stopping criteria for
iterative algebraic solvers. In particular, in addition to evaluating parts of the
error of different origin (discretization, inaccurate algebraic computations) in
appropriate norms, such criteria should take into account spatial distribution of
the total error in the function space. References to the work in this direction
can be found in the recent survey [4]; see also, e.g., [24, Section 6] and [16]. One
should also recall the goal-oriented adaptivity approach of Rannacher, Becker
and their collaborators in the context of duality-based error control, which al-
lows balancing discretization and iteration error in the problem-related areas
of interest; see, e.g., the survey papers [33, 18] and the references given there.
We believe that further developments focusing on the spatial distribution of the
algebraic and total errors will be reported in the near future.
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