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Hackbusch, Computing (1995)

“Adaptivity is a further development. Instead of solving problems with a
discretization of very high dimension, it is more reasonable to obtain the
same solution quality by a lower dimensional but adapted discretization.

Adaptivity has created a new paradigm in mathematical computation. In
traditional numerical mathematics, the fields “discretization” (e.g., FEM),
its “numerical analysis” (e.g., error estimates), and “solution algorithms”
(e.g., solvers for linear systems) are well separated. Adaptive techniques,
however, require a combination of all three. For example, the error
estimation has become a part of the algorithm. The concrete
discretization is now an outgrowth of the algorithm.”
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Becker, Johnson, Rannacher (1995)

“ Usually, ad hoc stopping criteria are used, e.g. requiring an initial
(algebraic) residual to be reduced by a certain ad hoc factor, but these
criteria have no clear connection to the actual error in the corresponding
approximate solution, which is the quantity of interest. This leaves the user
of iterative solutions methods in a serious dilemma: [ ... ] one has either to
continue the iterations until the discrete solution error is practically “zero”,
which increases the computational cost with possibly no gain in the overall
precision, or take the risk of stopping the iterations prematurely. [ ... ]

A solution to this problem can only be obtained by combining aspects of
the underlying partial differential equations and the corresponding finite
element discretization with aspects of the iterative discrete solution
algorithm. A “pure” numerical linear algebra point of view, for instance
based on the condition number of the stiffness matrix, does not appear to
be able to lead to a balance of discretization and solution errors.”
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Adaptive Finite Element Method (AFEM)

After setting the model and its initial discrete approximation, it proceeds
with iterating the AFEM step which consists of

SOLVE −→ ESTIMATE −→ MARK −→ REFINE

Here we will deal with SOLVE and ESTIMATE and discuss several points
associated with coupling mathematical modeling, discretization and
algebraic computation.

We are going to challenge some common views.
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Outline

1. Operator preconditioning

2. CG in Hilbert spaces

3. Galerkin discretization and matrix CG

4. Algebraic convergence and condition numbers

5. Preconditioning as transformation of the basis

6. Spatial distribution of errors

7. Reaching an arbitrary accuracy?

8. Conclusions



Z. Strakoš 6

1 Functional analysis setting

Let V be a real infinite dimensional Hilbert space with the inner product

(·, ·)V : V × V → R, the associated norm ‖ · ‖V ,

V # be the dual space of bounded (continuous) linear functionals on V
with the duality pairing

〈·, ·〉 : V # × V → R .

For each f ∈ V # there exists a unique τf ∈ V such that

〈f, v〉 = (τf, v)V for all v ∈ V .

In this way the inner product (·, ·)V determines the Riesz map

τ : V # → V .
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1 Functional formulation in PDEs

Let a(·, ·) : V × V → R be a bounded and V -elliptic bilinear form. For
a fixed u ∈ V we can see Au ≡ a(u, ·) ∈ V # , i.e. ,

〈Au, v〉 = a(u, v) for all v ∈ V .

This defines the bounded and (α−)coercive operator

A : V → V #, inf
u∈V, ‖u‖V =1

〈Au, u〉 = α > 0, ‖A‖ = C .

Using the Lax-Milgram theorem, the PDE problem is well-posed: For any
b ∈ V # there exist a unique solution x ∈ V of

a(x, v) = 〈b, v〉 for all v ∈ V .

and x depends continuously on the data b ,

‖x‖V ≤
1

α
‖b‖V # .
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1 Operator preconditioning

〈Ax − b, v〉 = 0 for all v ∈ V

gives the (functional) equation in (the data space) V # ,

Ax = b, , A : V → V #, x ∈ V, b ∈ V # .

Using the Riesz map,

(τAx − τb, v)V = 0 for all v ∈ V .

Clearly, application of the Riesz map τ can be interpreted as
transformation of the original problem Ax = b in the data space V #

into the equation in the solution space V ,

τAx = τb, τA : V → V, x ∈ V, τb ∈ V ,

which is commonly (and inaccurately) called preconditioning.
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1 Operator preconditioning references

Arnold, Falk, and Winther (1997, 1997); Steinbach and Wendland (1998);
Mc Lean and Tran (1997); Christiansen and Nédélec (2000, 2000); Powell
and Silvester (2003); Elman, Silvester, and Wathen (2005); Axelsson and
Karátson (2009); Mardal and Winther (2011); Kirby (2011); Zulehner
(2011); Preconditioning Conference 2013, Oxford; ...

Inner product −→ Riesz map −→ Preconditioning −→ Spectral bounds

There is a point to consider. What is the appropriate inner product?
A standard way is to focus on the mesh (and possibly model) parameters
independence of the condition number-based convergence bounds.
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1 Hiptmair, CMA (2006)

“There is a continuous operator equation posed in infinite-dimensional
spaces that underlies the linear system of equations [ ... ] awareness of
this connection is key to devising efficient solution strategies for the linear
systems.

Operator preconditioning is a very general recipe [ ... ]. It is simple to
apply, but may not be particularly efficient, because in case of the
[ condition number ] bound of Theorem [ ... ] is too large, the operator
preconditioning offers no hint how to improve the preconditioner. Hence,
operator preconditioner may often achieve [ ... ] the much-vaunted mesh
independence of the preconditioner, but it may not perform satisfactorily
on a given mesh.”

Mesh independence.
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1 Faber, Manteuffel and Parter (1990)

“For a fixed h, using a preconditioning strategy based on an equivalent
operator may not be superior to classical methods [ ... ] Equivalence
alone is not sufficient for a good preconditioning strategy. One must also
choose an equivalent operator for which the bound is small.

There is no flaw in the analysis, only a flaw in the conclusions drawn from
the analysis [ ... ] asymptotic estimates ignore the constant multiplier.
Methods with similar asymptotic work estimates may behave quite
differently in practice.”

Operator equivalence.
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2 Self-adjoint A wrt the duality pairing, CG

CG in Hilbert spaces : r0 = b −Ax0 ∈ V #, p0 = τr0 ∈ V

For n = 1, 2, . . . , nmax

αn−1 =
〈rn−1, τrn−1〉

〈Apn−1, pn−1〉
=

(τrn−1, τrn−1)V

(τApn−1, pn−1)V

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
〈rn, τrn〉

〈rn−1, τrn−1〉
=

(τrn, τrn)V

(τrn−1, τrn−1)V

pn = τrn + βnpn−1

End
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3 Galerkin discretization

Consider an N -dimensional discrete solution subspace Vh ⊂ V with the
duality pairing and the inner product as above. Then the restriction to Vh

gives an approximation xh ∈ Vh to x ∈ V ,

a(xh, v) = 〈b, v〉 for all v ∈ Vh .

As above, the bilinear form a (·, ·) : Vh × Vh → R defines the operator
Ah : Vh → V #

h such that

〈Ahxh − b, v〉 = 0 for all v ∈ Vh .

With restricting b to Vh , i.e. 〈bh, v〉 ≡ 〈b, v〉 for all v ∈ Vh , we get the
equation in the discrete data space V #

h ,

Ahxh = bh, xh ∈ Vh, bh ∈ V #
h , Ah : Vh → V #

h .
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3 Galerkin discretization and the matrix CG

Let Φh = (φ
(h)
1 , . . . , φ

(h)
N ) be the basis of Vh , Φ#

h = (φ
(h)#
1 , . . . , φ

(h)#
N )

the canonical basis of its dual V #
h . Using the coordinates in Φh

and in Φ#
h ,

〈f, v〉 → v∗f ,

(u, v)V → v∗Mu, (Mij) = ((φj , φi)V )
i,j=1,...,N

,

τ→ M−1 ,

Ah → A, (Aij) = (a(φj , φi))i,j=1,...,N
= (〈Aφj , φi〉)i,j=1,...,N

,

b → b ,

we get with xn = Φh xn , pn = Φh pn , rn = Φ#
h rn



Z. Strakoš 15

3 Preconditioned algebraic CG (Ahxh = bh )

r0 = b − Ax0, solve Mz0 = r0, p0 = z0

For n = 1, . . . , nmax

αn−1 =
z∗n−1rn−1

p∗
n−1Apn−1

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

zn = M−1rn , solve for zn

βn =
z∗nrn

z∗n−1rn−1

pn = zn + βnpn−1

End
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4 CG, outliers and condition numbers

Theorem (1977, ... , 2009, 2010, 2011, 2012, 2013, ... )

Consider the desired accuracy ǫ , κs(A) ≡ λN−s/λ1 . Then

k = s +

⌈
ln(2/ǫ)

2

√

κs(A)

⌉

CG steps will produce the approximate solution xn satisfying

‖x − xn‖A ≤ ǫ ‖x − x0‖A .

Assuming exact arithmetic, this statement is correct. In the context of
CG computations it makes, however, no sense.
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4 Liesen, S (2012); Gergelits, S (2013)
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Short recurrences always mean in practical computations loss of
(bi-)orthogonality due to rounding errors! Principal consequences are
not resolved by the common assumption that this phenomenon does

not take place.
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4 Clusters = fast convergence ?

● in exact arithmetic, CG applied to a matrix with the spectrum consisting
of t tight clusters of eigenvalues does not find, in general, a
reasonably close approximation to the solution within t steps.

● Finite precision arithmetic CG computation can be viewed as exact CG
applied to a larger matrix with the individual original eigenvalues
replaced by tight clusters.

● Finite precision arithmetic CG computation with a matrix having t
isolated well separated eigenvalues may require for reaching a
reasonable approximate solution a significantly larger number of steps
than t .
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4 Analysis of FP CG behaviour

First k steps of finite precision CG (Lanczos) is analyzed as exact CG
(Lanczos) for a different, possibly much larger problem. The central point
is the computed Jacobi matrix.
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4 Delay of convergence due to rounding errors

Rigorous description of the CG behaviour, including FP arithmetic, is
based on the relationship with the problem of moments, orthogonal
polynomials and the Gauss-Christoffel quadrature; see, e.g., Greenbaum
(1989); Meurant and S (2006); S and Tichý (2002); Liesen and S (2013).
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4 Widespread common knowledge

● “[ ... ] useful insight is gained as to the relationship between Hilbert
space and matrix condition numbers and translating Hilbert space fixed
point iterations into matrix computations provides new ways of
motivating and explaining some classic iteration schemes.” Kirby,
SIREV, 2010

● “[ ... ] in the early sweeps the convergence is very rapid but slows down,
this is the sublinear behavior. The convergence then settles down to a
roughly constant linear rate [ ... ] Towards the end new speed may be
picked up again, corresponding to the superlinear behavior. [ ... ]
In practice all phases need not be identifiable, nor need they appear
only once and in this order.” Nevanlinna, 1993, Section 1.8

● “However, if the operator has a few eigenvalues far away from the rest
of the spectrum, then the estimate is not sharp. In fact, a few ‘bad
eigenvalues’ will have almost no effect on the asymptotic convergence
of the method [ ... ]” Mardal and Winther, NLAA, 2011
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4 An example

Consider a fixed point iteration in the Banach space with the bounded
operator B ,

u = B u + f , u(ℓ+1) = B u(ℓ) + f .

Using polynomial acceleration we can do better,

u − u(ℓ) = pℓ(B) (u − u(0)) .

Separating the operator polynomial from the initial error, it seems natural
to minimize the appropriate norm of the operator polynomial

‖pℓ(B)‖ subject to pℓ(0) = 1 .
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4 A drawback of oversimplification

Consider now a numerical (finite dimensional) approximation Bh of the
bounded operator B . Then

p(B) − p(Bh) =
1

2πι

∫

Γ

p(λ) [(λI − B)−1 − (λI − Bh)−1] dλ .

This is considered a sufficient argument why to study algebraic iterations
directly in abstract (infinite dimensional) Banach spaces.

At this level of abstraction, many challenges which one must deal with in
studying finite computational processes at finite dimensional spaces are
simply not visible. Abstract Banach space settings make things seemingly
easier and elegant. The troubles are not seen and questions about the
cost of algebraic computations (and the cost of the whole solution
process) are oversimplified.
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5 Preconditioning transforms the basis!

Algebraic preconditioning can be viewed as the finite dimensional CG
with setting M = I (this corresponds in Galerkin discretization of the
finite dimensional CG to taking discretization basis Φ orthonormal wrt
(., .)V ) applied to

Bw = c

with

B = L−1
h AL−∗

h , c = L−1
h b, x = L−∗

h w , Mh = LhL
∗
h .

Observation:
The associated Hilbert space formulation of CG in Vh corresponds to
the transformation of the bases

Φt = Φh L−∗
h , Φ#

t = Φ#
h L∗

h .
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5 Preconditioning transforms the basis!

B ≡ (Bij) =
(

〈Aφ
(t)
j , φ

(t)
i 〉

)

i,j=1,...,N
= (a(φ

(t)
j , φ

(t)
i ))i,j=1,...,N ,

where
φ

(t)
ℓ = Φh (L−∗

h eℓ) , ℓ = 1, . . . , N

and the right hand side
c = Φ#

h L∗
h b .

Please recall, e.g., the hierarchical bases preconditioning
Yserentant (1985, 1986), Axelsson, Vassilevski, ... , Gockenbach (2006).

Remark. Equivalently, with the orthonormalized discretization basis
Φt wrt (., .)V we get M = I and Ah → B . With the choice
(., .)V = (., .)a we get B = I .
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5 Standard argument used in FEM

Sparsity of the resulted matrices is always presented as the main
advantage of FEM discretizations.

Sparsity means locality of information. In order to solve the problem, we
need a global transfer of information. Therefore preconditioning! It is
needed on the computational level in order to take care for the trouble
caused by the (computationally) inconvenient approximation of the
mathematical model when the appropriate globally supported basis
functions are missing.

Preconditioning can be interpreted as an intentional loss of sparsity
(loss of locality of the supports of the basis functions).

Sparsity is important for efficiency, but perhaps in a different meaning;
see, e.g., Schaeffer, Caflisch, Hauck and Osher (2013), .
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6 Spatial distribution of algebraic errors

Knupp and Salari, 2003:

“There may be incomplete iterative convergence (IICE) or round-off-error
that is polluting the results. If the code uses an iterative solver, then one
must be sure that the iterative stopping criteria is sufficiently tight so that
the numerical and discrete solutions are close to one another. Usually in
order-verification tests, one sets the iterative stopping criterion to just
above the level of machine precision to circumvent this possibility.”

In solving tough problems this can not be afforded.

How to measure the algebraic error ?
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6 Local discretisation and global computation

Discrete (piecewise polynomial) FEM approximation xh = Φh xn .

● If xn is known exactly, then xh is approximated over the given domain
as the (exact) linear combination of the local basis functions.

● However, apart from trivial cases, xn that supply the global
information is not known exactly. Then

x − x
(n)
h

︸ ︷︷ ︸

total error

= x − xh
︸ ︷︷ ︸

discretisation error

+ xh − x
(n)
h

︸ ︷︷ ︸

algebraic error

.
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6 Local discretisation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1



Z. Strakoš 30

6 Global norm of the error (Poisson problem)

Theorem (xh denotes the discrete Galerkin solution)

‖∇(x − x
(n)
h )‖2 = ‖∇(x − xh)‖2 + ‖∇(xh − x

(n)
h )‖2

= ‖∇(x − xh)‖2 + ‖x − xn‖
2
A

holds up to a small inaccuracy proportional to machine precision.

What is the distribution of the algebraic error
in the functional space ?
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6 L-shape domain, Papež, Liesen, S (2013)
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Exact solution x (left) and the discretisation error x − xh (right) in the
Poisson model problem, linear FEM.
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6 L-shape domain, Papež, Liesen, S (2013)
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Algebraic error xh − x
(n)
h (left) and the total error x− x
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h (right). Here

‖∇(x − xh)‖ > 0.1 ‖x− xn‖A .
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6 Adaptive stopping criteria

They should be based on a-posteriori error estimators which are fully
computable and provide information on local distribution of the error
(including the algebraic error) within the domain. Ideally, a-posteriori error
estimators should satisfy the following additional properties:

● reliability (guaranteed upper bound);

● local efficiency;

● asymptotic exactness.

Verfürth (1996); Ainsworth and Oden (2000); Babuška and Strouboulis
(2001); Bangerth and Rannacher (20003); ... ; Bernd, Manteuffel, and
McCormick (1996); ... ; Arioli, Noulard, and Russo (2001); Arioli, Loghin,
and Wathen (2005); Silvester and Simoncini (2011); ... ; Jiranek, S, and
Vohralik (2011); Vohralik and Ern (2013); Arioli, Liesen, Miedlar, and S
(2013); ...
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7 Reaching an arbitrary accuracy?
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It seems and it has been proved that an arbitrary prescribed accuracy can
be reached using AFEM in a finite number of steps. Here linear FEM; see
Morin, Nocheto, and Siebert (2002); Stevenson (2007). Something does
not fit −→ maximal attainable accuracy in matrix computations.
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8 Conclusions

Patrick J. Roache’s book Validation and Verification in Computational
Science, 1998, p. 387:

“With the often noted tremendous increases in computer speed and
memory, and with the less often acknowledged but equally powerful
increases in algorithmic accuracy and efficiency, a natural question
suggest itself. What are we doing with the new computer power? with
the new GUI and other set-up advances? with the new algorithms?
What should we do? ... Get the right answer.”

This requires to consider modelling, discretisation, analysis, and
computation tightly coupled parts of a single solution process.
and to avoid unjust simplifications.
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8 Our contributions and work to be done

Steps in this direction:

● Operator and algebraic preconditioning in relation to the choice of the
discrerization basis.

● Krylov subspace methods viewed as the matching moments model
reduction (infinite or finite dimenstional setting).

● A-posteriori evaluation of the total error which is based on quantities of
interest and includes the algebraic part.

● Adaptivity and stopping criteria for iterative solvers.

● Numerical stability analysis of adaptive numerical schemes.
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Thank you very much for kind patience!
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