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Iterative methods and preconditioning

R. C. Kirby, SIREV (2010):

“We examine condition numbers, preconditioners and iterative methods
for FEM discretization of coercive PDEs in the context of the solvability
result, the Lax-Milgram lemma.

Moreover, useful insight is gained as to the relationship between Hilbert
space and matrix condition numbers, and translating Hilbert space fixed
point iterations into matrix computations provides new ways of motivating
and explaining some classic iteration schemes.”

Krylov subspace methods, fixed point iteration and pre- conditioning ?



Z. Strakoš 3

Condition number, outlying eigenvalues

K. A. Mardal and R. Winther, NLAA (2011):

“The main focus will be on an abstract approach to the construction of
preconditioners for symmetric linear systems in a Hilbert space setting
[ ... ] The discussion of preconditioned Krylov space methods for the
continuous systems will be a starting point for a corresponding discrete
theory.

By using this characterization it can be established that the conjugate
gradient method converges [ ... ] with a rate which can be bounded by the
condition number [ ... ] However, if the operator has a few eigenvalues far
away from the rest of the spectrum, then the estimate is not sharp. In fact,
a few ‘bad eigenvalues’ will have almost no effect on the asymptotic
convergence of the method.”
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Axelsson (1976), quote Jennings (1977)

p. 72: ... it may be inferred that rounding errors ... affects the convergence
rate when large outlying eigenvalues are present.
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Sparsity, mesh independence

O. Axelsson and J. Karátson, Numer. Alg. (2009):

“To preserve sparsity, the arising system is normally solved using an
iterative solution method, commonly a preconditioned conjugate gradient
[PCG] method [ ... ] the rate of convergence depends in general on a
generalized condition number of the preconditioned operator [ ... ]

● if the two operators (original and preconditioner) are equivalent then the
corresponding PCG method provides mesh independent linear
convergence [ ... ]

● if the two operators (original and preconditioner) are
compact-equivalent then the corresponding PCG method provides
mesh independent superlinear convergence.”
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Algebraic iterative computations

● Computational cost of finding sufficiently accurate approximation to the
exact solution of the algebraic problem heavily depends on

❋ the underlying real world problem,
❋ the mathematical model including the concept of solution,
❋ on its discretization.

● Construction and analysis of computational algorithms should respect
that. We should always think in terms of approximations. Exact
solutions can in principle be uncomputable (eigenvalues).

● Evaluation of accuracy and of computational cost in numerical PDEs
must take into account algebraic errors, including rounding errors.
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Outline

1. Functional formulation and preconditioning in PDEs

2. Numerical discretization: consistency, stability, and convergence

3. CG, conditioning, a-priori algebraic error estimates

4. Spectral theory and the moment problem formulation

5. How to measure (a-posteriori) errors?

6. Preconditioning as transformation of the basis

7. Reaching an arbitrary accuracy?

8. Conclusions
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1 Functional analysis setting

Let V be a real infinite dimensional Hilbert space with the inner product

(·, ·)V : V × V → R, the associated norm ‖ · ‖V ,

V # be the dual space of bounded (continuous) linear functionals on V
with the duality pairing

〈·, ·〉 : V # × V → R .

For each f ∈ V # there exists a unique τf ∈ V such that

〈f, v〉 = (τf, v)V for all v ∈ V .

In this way the inner product (·, ·)V determines the Riesz map

τ : V # → V .



Z. Strakoš 9

1 Functional formulation in PDEs

Let a(·, ·) : V × V → R be a bounded and V -elliptic bilinear form. For
a fixed u ∈ V we can see Au ≡ a(u, ·) ∈ V # , i.e. ,

〈Au, v〉 = a(u, v) for all v ∈ V .

This defines the bounded and (α−)coercive operator

A : V → V #, inf
u∈V, ‖u‖V =1

〈Au, u〉 = α > 0, ‖A‖ = C .

Using the Lax-Milgram theorem, the PDE problem is well-posed: For any
b ∈ V # there exist a unique solution x ∈ V of

a(x, v) = 〈b, v〉 for all v ∈ V .

and x depends continuously on the data b ,

‖x‖V ≤
1

α
‖b‖V # .
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1 Operator preconditioning

〈Ax− b, v〉 = 0 for all v ∈ V

gives the (functional) equation in (the data space) V # ,

Ax = b, , A : V → V #, x ∈ V, b ∈ V # .

Using the Riesz map,

(τAx− τb, v)V = 0 for all v ∈ V .

Clearly, application of the Riesz map τ can be interpreted as
transformation of the original problem Ax = b in the data space V #

into the equation in the solution space V ,

τAx = τb, τA : V → V, x ∈ V, τb ∈ V ,

which is commonly (and inaccurately) called preconditioning.
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1 Operator preconditioning references

Arnold, Falk, and Winther (1997, 1997); Steinbach and Wendland (1998);
Mc Lean and Tran (1997); Christiansen and Nédélec (2000, 2000); Powell
and Silvester (2003); Elman, Silvester, and Wathen (2005); Axelsson and
Karátson (2009); Mardal and Winther (2011); Kirby (2011); Zulehner
(2011); Preconditioning Conference 2013, Oxford; ...

Inner product −→ Riesz map −→ Preconditioning −→ Spectral bounds

However, there is a point to consider. What is the appropriate inner
product ? A standard way is to focus on the mesh (model) parameters
independence of the condition number-based convergence bounds.

Operator preconditioning −→ PDEs.

Algebraic preconditioning −→ Matrices.

Preconditioning −→ what does it tell us about discretization?
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2 Galerkin discretization

Consider an N -dimensional discrete solution subspace Vh ⊂ V with the
duality pairing and the inner product as above. Then the restriction to Vh

gives an approximation xh ∈ Vh to x ∈ V ,

a(xh, v) = 〈b, v〉 for all v ∈ Vh .

As above, the bilinear form a (·, ·) : Vh × Vh → R defines the operator
Ah : Vh → V #

h such that

〈Ahxh − b, v〉 = 0 for all v ∈ Vh .

With restricting b to Vh , i.e. 〈bh, v〉 ≡ 〈b, v〉 for all v ∈ Vh , we get the
equation in the discrete data space V #

h ,

Ahxh = bh, xh ∈ Vh, bh ∈ V #
h , Ah : Vh → V #

h .
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2 Consistency, stability and convergence

Let Xh be a representation of the solution x in Vh .

● Consistency error norm ‖AhXh − bh‖V #

h

. The discretization scheme is

consistent if the consistency error norm tends to 0 with h .

● Stability = continuity of the discrete mapping A−1
h : V #

h → Vh . The
discretization scheme is stable if the stability constant ‖A−1

h ‖V #

h
,Vh

is

bounded uniformly in h . Here

‖A−1
h ‖V #

h
,Vh
≤

1

α
.

● The discretization scheme is convergent if the error norm ‖Xh − xh‖Vh

tends to 0 with h .
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2 Fundamental theorem of numerical PDE analysis

Using
‖Xh − xh‖Vh

≤ ‖A−1
h ‖V #

h
,Vh
‖AhXh − bh‖V #

h

,

a discretization scheme which is consistent and stable is convergent.

Instructive (and more general) exposition in Arnold (2012); see also
Arnold, Falk and Winther (2010); ... . From the computational point of
view, one issue is, however, missing. Here it is assumed that xh

satisfies

Ahxh = bh .

In numerical algebra this reminds of a bound for the forward error using
a residual backward error and a conditioning of the problem.

Incorporating algebraic errors?
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3 Krylov manifolds in Hilbert spaces

Using the Riesz map, τA : V → V . We can therefore form for g ∈ V
the Krylov sequence

g, τAg , (τA)2g , . . . in V

and define Krylov subspace methods in the Hilbert space operator setting
(here we will do CG). Our goal is to construct a method for solving the
functional equation

Ax = b, x ∈ V, b ∈ V #

such that with r0 = b−Ax0 ∈ V # the approximations xn to the
solution x , n = 1, 2, . . . belong to the Krylov manifolds in V

xn ∈x0 + Kn(τA, τr0) ≡

x0 + span{τr0, τA(τr0), (τA)2(τr0), . . . , (τA)n−1(τr0)} .
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3 Self-adjoint A wrt the duality pairing

CG in Hilbert spaces : r0 = b−Ax0 ∈ V #, p0 = τr0 ∈ V

For n = 1, 2, . . . , nmax

αn−1 =
〈rn−1, τrn−1〉

〈Apn−1, pn−1〉
=

(τrn−1, τrn−1)V

(τApn−1, pn−1)V

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
〈rn, τrn〉

〈rn−1, τrn−1〉
=

(τrn, τrn)V

(τrn−1, τrn−1)V

pn = τrn + βnpn−1

End

Hayes (1954); ... ; Glowinski (2003); Axelsson and Karatson (2009);
Mardal and Winther (2011); Günnel, Herzog and Sachs (2013)
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3 Galerkin discretization and the matrix CG

Let Φh = (φ
(h)
1 , . . . , φ

(h)
N ) be the basis of Vh , Φ#

h = (φ
(h)#
1 , . . . , φ

(h)#
N )

the canonical basis of its dual V #
h . Using the coordinates in Φh

and in Φ#
h ,

〈f, v〉 → v∗f ,

(u, v)V → v∗Mu, (Mij) = ((φj , φi)V )
i,j=1,...,N

,

τ→ M−1 , the inverse of the Gram matrix of Φh wrt (., .)V

Ah → A, (Aij) = (a(φj , φi))i,j=1,...,N
= (〈Aφj , φi〉)i,j=1,...,N

,

b→ b ,

we get with xn = Φh xn , pn = Φh pn , rn = Φ#
h rn
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3 Preconditioned algebraic CG (Ahxh = bh )

r0 = b−Ax0, solve Mz0 = r0, p0 = z0

For n = 1, . . . , nmax

αn−1 =
z∗n−1rn−1

p∗
n−1Apn−1

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

zn = M−1rn , solve for zn

βn =
z∗nrn

z∗n−1rn−1

pn = zn + βnpn−1

End
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3 Philosophy of a-priori robust bounds

Theorem

κ(M−1A) ≤
C

α
=

‖A‖

infu∈V, ‖u‖V =1〈Au, u〉

“Knowledge of robust estimates not only contributes to the question of
well-posedness, but also to discretization error estimates and the
construction of efficient solvers for the discretized problem. In the
dicretized case, having robust estimates [ ... ] translates to having a [ ... ]
preconditioner for the linear operator [ ... ] with robust estimates on the
condition number. This would immediatelly imply that Krylov subspace
methods like the minimum residual method [ ... ] converge with
convergence rates independent on [ ... ] h .”

Zullehner, SIAM J. Matrix Anal. Appl. (2011)
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3 Liesen, S (2012); Gergelits, S (2013)
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Short recurrences always mean in practical computations lo ss of
(bi-)orthogonality due to rounding errors! Principal cons equences are
not resolved by the common assumption that this phenomenon does

not take place.
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3 Mesh independence and optimality

Hiptmair, CMA (2006):

“Operator preconditioning is a very general recipe [ ... ]. It is simple to
apply, but may not be particularly efficient, because in case of the
[ condition number ] bound of Theorem [ ... ] is too large, the operator
preconditioning offers no hint how to improve the preconditioner. Hence,
operator preconditioner may often achieve [ ... ] the much-vaunted mesh
independence of the preconditioner, but it may not perform satisfactorily
on a given mesh.”
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3 Equivalence of operators and optimality

Faber, Manteuffel and Parter, Adv. in Appl. Math. (1990):

“For a fixed h, using a preconditioning strategy based on an equivalent
operator may not be superior to classical methods [ ... ] Equivalence
alone is not sufficient for a good preconditioning strategy. One must also
choose an equivalent operator for which the bound is small.

There is no flaw in the analysis, only a flaw in the conclusions drawn from
the analysis [ ... ] asymptotic estimates ignore the constant multiplier.
Methods with similar asymptotic work estimates may behave quite
differently in practice.”

Point.
A-priori approach is too rough. A-posteriori approach to algebraic errors
is needed.
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4 Spectral theory in Hilbert spaces

From Fermat, Descartes, Euler (principal axis theorem), Lagrange, ... ,
Cauchy, Jacobi ... Fredholm ... through Stieltjes to Hilbert, Schmidt,
Lebesgue, Hellinger and Toeplitz, Wintner, Stone, von Neumann ...

L. A. Stein, Highlights in the history of spectral theory,
Amer. Math. Monthly (1973)

In connection to Krylov subspace methods (CG), please recall

Kn(τA, τr0) ≡ span{τr0, τA(τr0), (τA)2(τr0), . . . , (τA)n−1(τr0)} ,

and the (Chebyshev-Markov-) Stieltjes moment problem (see Stieltjes
(1894)), the basic (almost unknown) reference is

Y. V. Vorobyev, Method of Moments in Applied Mathematics, (1958,1965)

(see also the approach in Liesen, S, Krylov Subspace Methods, Principles
and Analysis. OUP, (2013).)
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4 Spectral theory and the moment problem

Using the orthogonal projection En onto Kn with respect to the inner
product (·, ·)V , consider the orthogonally restricted operator

τAn : Kn → Kn , τAn ≡ En (τA) En ,

by formulating the following equalities

τAn (τr0) ≡ τA (τr0) ,

(τAn)2 τr0 = τAn (τA (τr0)) ≡ (τA)2 τr0 ,

...

(τAn)n−1 τr0 = τAn ((τA)n−2 τr0) ≡ (τA)n−1 τr0 ,

(τAn)n τr0 = τAn ((τA)n−1 τr0) ≡ En (τA)n τr0 .
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4 Spectral theory and the moment problem

The n-dimensional approximation τAn of τA matches the first
2n moments

((τAn)ℓτr0, τr0)V = ((τA)ℓτr0, τr0)V , ℓ = 0, 1, . . . , 2n− 1 .

Denote symbolically Qn = (q1, . . . , qn) a matrix composed of the
columns q1, . . . , qn forming an orthonormal basis of Kn determined
by the Lanczos process

τAQn = Qn Tn + δn+1 qn+1 eT
n

with q1 = τr0/‖τr0‖V . We get (τAn)ℓ = Qn Tℓ
n Q∗

n, ℓ = 0, 1, . . .
and the matching moments condition

e∗1 Tℓ
n e1 = q∗1(τA)ℓq1, l = 0, 1, . . . , 2n− 1 ,
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4 Matrix CG representation of the first n steps

Tn =













γ1 δ2

δ2
. . .

. . .
. . .

. . .
. . .

. . .
. . . δn

δn γn













is the Jacobi matrix of the orthogonalization coefficients and the CG
method (in Hilbert spaces) is formulated as

Tnyn = ‖τr0‖V e1, xn = x0 + Qnyn , xn ∈ V .
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4 Spectral moment problem

Since τA is bounded and self-adjoint, its spectral decomposition is
written using the Riemann-Stieltjes integral as

τA =

∫ λU

λL

λ dEλ ,

The spectral function Eλ of τA represents a family of orthogonal
projections which is

● non-decreasing, i.e., if µ > ν , then the subspace onto which Eµ
projects contains the subspace into which Eν projects;

● EλL
= 0, EλU

= I ;
● Eλ is right continuous, i.e. lim

λ′→λ+

Eλ′ = Eλ .

The values of λ where Eλ increases by jumps represent the
eigenvalues of τA , with the eigenvectors satisfying

τAz = λz, z ∈ V .
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4 Spectral moment problem

For the (finite) Jacobi matrix Tn we can analogously write

Tn =
n∑

j=1

θ
(n)
ℓ s

(n)
ℓ , λL < θ

(n)
1 < θ

(n)
2 < · · · < θ(n)

n < λU ,

and the operator moment problem turns into

∫ λU

λL

λℓ dω(λ) =
n∑

j=1

{θ
(n)
j }

ℓ ω
(n)
j , ℓ = 0, 1, . . . , 2n− 1 ,

where dω(λ) = q∗1dEλq1 represents the Riemann-Stieltjes distribution
function associated with τA and q1 . The distribution function ω(n)(λ)
approximates ω(λ) in the sense of the n-th Gauss-Christoffel quadrature;
Gauss (1814), Jacobi (1826), Christoffel (1858).
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4 CG ≡ Gauss-Christoffel quadrature

A, w1 = r0/‖r0‖ ←→ ω(λ),

∫

f(λ) dω(λ)

↑ ↑

Tn, e1 ←→ ω(n)(λ),
n∑

i=1

ω
(n)
i f

(

θ
(n)
i

)

ω(n)(λ) −→ ω(λ)

Condition number CG bounds should always be checked against this!
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4 Functional and discretized formulations

Up to now, the spectral moment problem linked directly the functional
infinite dimensional CG formulation for Ax = b with the finite dimensional
matrix representation

Tnyn = ‖τr0‖V e1, xn = x0 + Qnyn , xn ∈ V .

corresponding to the n-th iteration step.

In practice the infinite dimensional problem is first discretized, giving
Ahxh = bh , and CG is then applied to the associated discretized matrix
representation. Stability of the discretization scheme and of the moment
problem representation concerns the relationship

A −→ Ah −→ A{h,n} −→ A{h,n} −→ T{h,n} ,

A −→ Ah −→ A{h} −→ T{h,n} .
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4 Noise revealing in inverse problems

For inverse problems polluted by noise the distribution function ω(λ)
has a special shape.

The level of the noise can be determined simply by monitoring the first
component of the eigenvector of Tn associated with its smallest
eigenvalue for n = 0, 1, 2, .... This can be done at almost no cost.
Almost free lunches do exist.

Hnětynková, Plešinger, and S, The regularizing effect of the Golub-Kahan
iterative bidiagonalization and revealing the noise level, BIT (2009);
Michenková, MS Thesis, (2013).
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4 Noise revealing in inverse problems
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4 Dealing with blurred noisy elephants
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Golub-Kahan bidiagonalization, but to try to escape!
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4 Any GMRES convergence with any spectrum

Theorem

1◦ The spectrum of A is {λ1, . . . , λN} and GMRES(A, b) yields residuals
with the prescribed nonincreasing sequence

‖r0‖ ≥ ‖r1‖ ≥ · · · ≥ ‖rN−1‖ > ‖rN‖ = 0 .

2◦ Matrix A is of the form A = WRCR−1W ∗ and b = Wh where C is
the spectral companion matrix, W is unitary and R a nonsingular upper
triangular matrix such that Rs = h.

Complete parametrization. Set of measure zero?

Greenbaum, Ptak, Arioli and S (1994 - 98), Eirmann and Ernst (2001),
Meurant (2012), Meurant and Tebbens (2012), .....
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4 Claims based only on the spectrum

The bounds Const Fn(sp(A), N) do not intersect the rectangle
(1, 0)− (1, N)− (0, N)− (0, 0) .
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5 How to measure errors?

Becker, Johnson, and Rannacher (1995)

“ Usually, ad hoc stopping criteria are used, e.g. requiring an initial
(algebraic) residual to be reduced by a certain ad hoc factor, but these
criteria have no clear connection to the actual error in the corresponding
approximate solution, which is the quantity of interest. This leaves the user
of iterative solutions methods in a serious dilemma: [ ... ] one has either to
continue the iterations until the discrete solution error is practically “zero”,
which increases the computational cost with possibly no gain in the overall
precision, or take the risk of stopping the iterations prematurely. [ ... ]

A solution to this problem can only be obtained by combining aspects of
the underlying partial differential equations and the corresponding finite
element discretization with aspects of the iterative discrete solution
algorithm. A “pure” numerical linear algebra point of view, for instance
based on the condition number of the stiffness matrix, does not appear to
be able to lead to a balance of discretization and solution errors.”
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5 How to measure ( a-posteriori) errors?

Babuška and Strouboulis (2001)

“In engineering practice it is not sufficient to estimate only the energy
norm of the error because a small value of the global energy norm of the
error does not necessarily imply that the error in the outputs of interest is
also small (e.g. a 5% relative error in the global energy norm does not
imply 5% relative error in the maximum stress in a region of interest). [ ... ]
An essential requirement is that the quantity of interest has to be well
defined; for example, it is meaningless to ask for an estimate of the
maximum error in the derivative, flux, or stress for a problem set in a
polygonal non-convex domain, because the exact value does not exists
(the derivative, flux, or stress in the neighborhood of a corner point is
usually unbounded).”
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5 How to measure ( a-posteriori ) errors?

Giles and Süli (2002)

“In many scientific and engineering applications [ ... ] the objective is
merely a rough, qualitative assessment of the details of the analytical
solution over the computational domain, the quantitative concern being
directed towards a few output functionals, derived quantities of particular
engineering or scientific relevance.”

In addition to discretization errors, algebraic errors can also affect the
accuracy of the computed approximate solution. What is known on the
spatial distribution of the algebraic errors over the computational domain?

Does the algebraic backward error approach resolve the matter?
Unfortunately no.
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5 Local discretisation and global computation

Discrete (piecewise polynomial) FEM approximation xh = Φh xn .

● If xn is known exactly, then xh is approximated over the given domain
as the (exact) linear combination of the local basis functions.

● However, apart from trivial cases, xn that supply the global
information is not known exactly. Then

x− x
(n)
h

︸ ︷︷ ︸

total error

= x− xh
︸ ︷︷ ︸

discretisation error

+ xh − x
(n)
h

︸ ︷︷ ︸

algebraic error

.
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5 Local discretisation
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5 Global norm of the error (Poisson problem)

Theorem (xh denotes the discrete Galerkin solution)

‖∇(x− x
(n)
h )‖2 = ‖∇(x− xh)‖2 + ‖∇(xh − x

(n)
h )‖2

= ‖∇(x− xh)‖2 + ‖x− xn‖
2
A

holds up to a small inaccuracy proportional to machine precision.

What is the distribution of the algebraic error
in the functional space ?
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5 L-shape domain, Papež, Liesen, S (2013)
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5 L-shape domain, Papež, Liesen, S (2013)
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Z. Strakoš 44

5 Adaptive stopping criteria

They should be based on a-posteriori error estimators which are fully
computable and provide information on local distribution of the error
(including the algebraic error) within the domain. Ideally, a-posteriori error
estimators should satisfy the following additional properties:

● reliability (guaranteed upper bound);

● local efficiency;

● asymptotic exactness.

Verfürth (1996); Repin (1997; Ainsworth and Oden (2000); Babuška and
Strouboulis (2001); Bangerth and Rannacher (2003); ... ; Deuflhard
(1994); Bernd, Manteuffel, and McCormick (1996); ... ; Wohlmuth, Hoppe
(1999); ... ; Arioli, Noulard, and Russo (2001); Arioli, Loghin, and Wathen
(2005); Silvester and Simoncini (2011); ... ; Jiranek, S, and Vohralik
(2011); Vohralik and Ern (2013); Arioli, Liesen, Miedlar, and S (2013); ...
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5 Algebraic a-posteriori error evaluation

Various approaches, influenced by relationship to moments and numerical
quadrature (G. H. Golub). Lasting impact of the original paper on CG by
Hestenes and Stiefel (1952).

● Dahlquist, Eisenstat, and Golub (1972); Dahlquist, Golub, and Nash
(1978); ... ; Fischer (1996); Golub and Meurant (1994, 1997, 2010);
Golub and S (1994); ... ; Brezinski (1999); ... ; Calvetti, Morigi, Reichel,
and Sgallari (2000, 2001); ...

● S and Tichý (2002); S and Tichý (2005); Meurant and S (2006); S and
Tichý (2011); Meurant and Tichý (2013); ...

Point. Rounding error analysis is not an option, it is an imperative!
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5 A-posteriori error norms estimates in CG

∫

λ−1 dω(λ) =
n∑

i=1

ω
(n)
i

(

θ
(n)
i

)−1

+ Rn(f)

‖x− x0‖
2
A

‖r0‖2
= n-th Gauss-Ch. quadrature +

‖x− xn‖
2
A

‖r0‖2

r∗0A
−1r0 =

n−1∑

j=0

γj‖rj‖
2 + r∗nA−1rn .

Formulas equivalent assuming exact arithmetic can (and do!) behave very
differently in practical computations.

Hesteness and Stiefel (1952); Golub and S (1994); S and Tichý (2002);
Meurant and S (2006); Golub and Meurant (2010); S and Tichý (2011); ...

Liesen, S, Krylov Subspace Methods. Principles and Analysis (2012)
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6 Preconditioning transforms the basis!

Algebraic preconditioning can be viewed as the finite dimensional CG
with setting M = I (this corresponds in Galerkin discretization of the
finite dimensional CG to taking discretization basis Φ orthonormal wrt
(., .)V ) applied to

Bw = c

with

B = L−1
h AL−∗

h , c = L−1
h b, x = L−∗

h w , Mh = LhL
∗
h .

Observation:
The associated Hilbert space formulation of CG in Vh corresponds to
the transformation of the bases

Φt = Φh L−∗
h , Φ#

t = Φ#
h L∗

h .
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6 Preconditioning transforms the basis!

B ≡ (Bij) =
(

〈Aφ
(t)
j , φ

(t)
i 〉

)

i,j=1,...,N
= (a(φ

(t)
j , φ

(t)
i ))i,j=1,...,N ,

where
φ

(t)
ℓ = Φh (L−∗

h eℓ) , ℓ = 1, . . . , N

and the right hand side
c = Φ#

h L∗
h b .

Please recall, e.g., the hierarchical bases preconditioning
Yserentant (1985, 1986); Axelsson; Vassilevski; ... ; Gockenbach (2006)

Remark. Equivalently, with the orthonormal discretization basis Φt

wrt (., .)V we get M = I and Ah → B .

With the choice (., .)V = (., .)a we get B = I .
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6 Standard argument used in FEM

Sparsity of the resulted matrices is always presented as the main
advantage of FEM discretizations.

Sparsity means locality of information. In order to solve the problem, we
need a global transfer of information. Therefore preconditioning! It is
needed on the computational level in order to take care for the trouble
caused by the (computationally) inconvenient approximation of the
mathematical model when the appropriate globally supported basis
functions are missing (cf. hierarchical bases preconditioning, DD with
coarse space components, multilevel methods, ...).

Preconditioning can be interpreted as an intentional loss o f sparsity
(loss of locality of the supports of the basis functions).

Sparsity is important for efficiency, but perhaps in a different meaning;
see, e.g., Schaeffer, Caflisch, Hauck and Osher (2013), .
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7 Reaching an arbitrary accuracy?
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It seems and it has been proved that an arbitrary prescribed accuracy can
be reached using AFEM in a finite number of steps. Here linear FEM; see
Morin, Nocheto, and Siebert (2002); Stevenson (2007). Something does
not fit −→ maximal attainable accuracy in matrix computations.
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8 Conclusions for analysis (heuristics are fine !)

● Assumptions
(see, e.g., nonnormality and limitations of spectral bounds).

● Interpretations.

● Common views should always be given a critical second thought.

Analysis of finite dimensional algebraic problems can not be done on
the PDE problem level using functional analysis in infinite dimensional
Banach or Hilbert spaces. On the other hand, analysis of the finite
dimensional algebraic problem must “do justice” to the original
(non-algebraic) problem as much as possible.
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8 Conclusions

Patrick J. Roache’s book Validation and Verification in Computational
Science, 1998, p. 387:

“With the often noted tremendous increases in computer speed and
memory, and with the less often acknowledged but equally powerful
increases in algorithmic accuracy and efficiency, a natural question
suggest itself. What are we doing with the new computer power? with
the new GUI and other set-up advances? with the new algorithms?
What should we do? ... Get the right answer.”

This requires to consider modelling, discretisation, analysis, and
computation tightly coupled parts of a single solution process.
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8 Our contributions and work to be done

Modest steps in this direction:

● Operator and algebraic preconditioning is related to the
discrerization basis.

● Krylov subspace methods viewed as the matching moments model
reduction (infinite or finite dimensional setting).

● A-posteriori evaluation of the total error which is based on quantities of
interest and includes the algebraic part. Algebraic a-priori reasoning is
useful, but it addresses different questions.

● Adaptivity and stopping criteria for iterative solvers. Algebraic backward
error theory not sufficient. We need backward error on the functional
equation level.

● Numerical stability analysis of adaptive numerical schemes.
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methods, or there and back again. In preparation.
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Thank you very much for kind patience!
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