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1 Introduction

In 1873 Chebyshev formulated the following problem. Let f(u) be an unknown function which is
nonnegative in the interval (a, b). Given the values of the integrals

∫ b

a

f(u)du,

∫ b

a

uf(u)du, . . . ,

∫ b

a

uk−1f(u)du, (1)

it is required to determine the tight upper and lower bounds for the integral

∫ x

a

f(u)du, (2)

for any value of x in the interval (a, b). Chebyshev motivated his problem by investigation of limit
theorems in probability theory, with some related work done even earlier by Heine. It was com-
pletely resolved by Markov; for more detailed comments and description of the related developments
see Shohat and Tamarkin (1943), Akhiezer (1965) and Gautschi (1981). Here we will not describe the
well known role of moments in approximation and determination of the characteristic and distribu-
tion functions of the random variable in probability theory. We point out, however, that an analogous
approach is used in solving systems of linear algebraic equations using the matching moments model
reduction described below.

Chebyshev noticed a possible mechanical interpretation of his problem, but he did not investigate it.
The mechanical interpretation was investigated by Stieltjes, who gave a complete solution to the following
problem. Given a sequence of numbers ξk, k = 0, 1, . . . , a non-decreasing distribution function ω(λ) is
sought such that the Riemann-Stieltjes integrals satisfy

∫ ∞

0

λkdω(λ) = ξk, k = 0, 1, . . . , (3)

where
∫ ∞

0

λkdω(λ) (4)

represents the k-th (generalized) moment of the distribution of positive mass on the half line λ ≥ 0.
Stieltjes based his investigation on continued fractions; for the instructive summary we refer to Appendix 2
in Gantmacher and Krein (2002). It is worth to point out, however, that continued fractions played an
important role also in the work of Chebyshev and Markov.

The Stieltjes moment problem is also deeply related to the earlier work of Gauss and Jacobi, and to
the later work of Christoffel, on the Gauss(-Christoffel) quadrature. Let the distribution function ω(λ),
λ ≥ 0 be given. It is required to determine a nondecreasing function ω(n)(λ) with n points of increase

0 < θ
(n)
1 < . . . < θ

(n)
n and the positive weights ω

(n)
1 , . . . , ω

(n)
n ,

∑n
ℓ=1 ω

(n)
ℓ = 1 such that the first 2n

moments are matched,

∫ ∞

0

λkdω(λ) =

∫ ∞

0

λkdω(n)(λ) =

n
∑

ℓ=1

ω
(n)
ℓ {θ

(n)
ℓ }k, k = 0, 1, . . . , 2n − 1 . (5)
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Since (7) holds for every monomial λk, k = 0, 1, . . . , 2n− 1, it must also hold for any linear combination
of the given monomials, i.e. for any polynomial p(λ) of degree at most 2n − 1. The value of the integral

∫ ∞

0

p(λ) dω(λ) (6)

is given by the weighted sum of the polynomial values at n nodes θ
(n)
ℓ , ℓ = 1, . . . , n,

∫ ∞

0

p(λ) dω(λ) =

n
∑

ℓ=1

ω
(n)
ℓ p(θ

(n)
ℓ ) . (7)

Consequently, (7) represents the n-point Gauss-Christoffel quadrature, see, e.g., Gautschi (1981), which
is intimately related to orthogonal polynomials and Jacobi matrices. For the recent surveys of the re-
lated algebraic relationships described in the polynomial as well as in the matrix language we refer
to Strakoš (2008), Meurant and Strakoš (2006) and Strakoš and Tichý (2002). The underlying theory of
orthogonal polynomials has extremely wide and deep connections; for the computational aspects we refer
to Gautschi (2004). It should be pointed out that the fundamental concept of moments and its use in
various applications was pursued by Golub throughout his professional life, which is nicely documented
in Golub (2007).

Our historical introduction leads to two main observations which will further be illustrated in our
exposition:

1. The idea of matching moments, present in many developments in computational statistics, plays an
important role also in numerical linear algebra.

2. The idea of matching moments is in a fundamental way linked with the key concept of orthogonality.

Mathematically, orthogonal projections often helps to extract efficiently the required information from
the data. Computationally, orthogonality is crucial in maintaining the influence of rounding errors at the
minimal possible level.

Computational behaviour of methods and algorithms is of great importance in numerical linear alge-
bra, and it might be beneficial to consider this to a to larger extent also in computational statistics.

2 Linear approximation problems

In numerical linear algebra, a linear approximation problem is in its general form represented by

Ax ≈ b, A is a nonzero N by M matrix, b is a nonzero vector of length N , (8)

where N can be greater than, equal to, or smaller than M . We consider, for simplicity of our exposition,
A, x and b real, and b nonorthogonal to the range of A, i.e. AT b 6= 0. The last assumption has a natural
interpretation. If AT b = 0, then it is meaningless to look for an approximation of b in the form of the
linear combination of the columns of A.

Construction of methods and algorithms as well as terminology and notation reflects in computa-
tional statistics the focus on applications with statistical interpretation of data. In linear models, the
book Rao and Toutenburg (1999) can be used as a starting point when proceeding towards more general
numerical linear algebra settings. Starting from the computational statistics perspective, one should
consider that numerical linear algebra deals with approximation problems which arise from many areas,
including numerical solution of partial differential equations, numerical optimization, control theory and
signal processing, image processing, information retrieval etc. Methods and algorithms in numerical lin-
ear algebra are generally applicable to linear approximation problems arising from such different areas.
The methodological approach, the level of abstraction as well as notation must reflect this generality. As
a positive consequence, this enables an easy transfer of knowledge developed while solving problems in
one area to applications in a different area.

Clearly, the viewpoint of computational statistics with a specific application context in mind is in-
evitably different from the more abstract and more general viewpoint of numerical linear algebra. This
difference makes the interactions between the fields difficult but also exciting. Despite the method-
ological differences, the interactions can be very useful for both fields. As an example we refer to the
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paper Stewart (1987) on collinearity and linear regression published in Statistical Science, and to the com-
ments of Marquardt, Belsley, Thisted, Hadi and Velleman, as well as the rejoinder of Stewart, published
in the same issue of that journal following the original paper.

The author of this contribution works in numerical linear algebra, and is hardly able to formulate the
points from the perspective of computational statistics. Therefore this contribution is written from the
point of view of numerical linear algebra, and it follows the notation typical in that field. Nevertheless,
it aims to indicate through several examples the close relationship between corresponding problems and
methods in computational statistics and numerical linear algebra, and it attempts to contribute in this
way to development of mutual understanding.

In our contribution we will distinguish three main classes of problems.

2.1 Systems of linear algebraic equations

In the first class the matrix A is square and numerically nonsingular, and the unknown vector x can
be found for the given b by solving the system of linear algebraic equations

Ax = b, A is a nonsingular N by N matrix . (9)

Such systems arise, e.g., from discretization of continuous problems, as in numerical solution of partial
differential equations. The data A and b do not represent the original problem accurately due to errors
in modeling and discretization. The goal is to approximate efficiently the exact solution of (9) to the
sufficient accuracy, so that the computational error does not contribute significantly to the total error in
solving the original continuous problem, see, e.g., Strakoš and Liesen (2005).

2.2 Ordinary least squares problems

In the second class we consider the generally error free rectangular N by M matrix A and the right
hand side (the observation vector) significantly affected by errors. Then the unknown vector x is sought
as the solution of the ordinary least square problem (OLS)

Ax = b + r, min ‖r‖ . (10)

Here b is orthogonally decomposed
b = b|R(A) + b|N (AT )

into parts b|R(A) in the range of A and b|N (AT ) in the nullspace of AT , and the unknown vector x is
obtained as the unique minimum norm solution of the following problem

Ax = b|R(A), x ∈ R(AT ), r = −b|N (AT ) . (11)

In other words, b is orthogonally projected onto the subspace generated by the columns of A, and the
errors in b are assumed to be orthogonal to that subspace.

This corresponds in computational statistics to standard linear regression, see, e.g., the description
given in Rao and Toutenburg (1999), Chapter 3, in particular Sections 3.1 - 3.3.

2.3 Total least squares problems

In the third class the significant errors can be contained both in the general rectangular matrix A
representing the model as well as in the observation vector b. Then the unknown solution vector x is
sought such that

(A + E)x = b + r, min ‖[r, E]‖F , (12)

where ‖·‖F means the Frobenius norm of the given matrix, see Rao and Toutenburg (1999), Section 3.12.
This problem goes by many names, including errors-in-variables modeling in systems theory, orthogonal
regression in computational statistics, and total least squares (TLS) in numerical linear algebra. Ba-
sic analysis of the problem was given in the seminal paper Golub and Van Loan (1980). Theory and
computational algorithms were then extended to the so-called nongeneric case in the fundamental book
Van Huffel and Vandewalle (1991), which covered also statistical properties of TLS. It is also worth to
mention proceedings of the workshops on errors-in-variables modeling organized by Van Huffel in Leu-
ven with the goal of bringing together statisticians and numerical analysts, see Van Huffel (1997) and
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Van Huffel and Lemmerling (2002). The TLS theory has recently been further revised in a series of pa-
pers Paige and Strakoš (2006), Paige and Strakoš (2002a), Paige and Strakoš (2002b), with references to
many relevant previous publications.

Though the TLS problem (12) seemingly appears to be a natural and benign generalization of the OLS
problem (10), this generalization represents in fact a tremendous complication. Unlike (10), the solution
of the TLS problem (12) may not exist, and the mathematical theory and also numerical computation
becomes very intriguing, see Paige and Strakoš (2006). Some ideas are recalled below.

2.4 Regularization

In some applications the linear approximation problem (8) arises from discretization of the so-called
ill-posed problems, where the solution of the original problem does not depend continuously on data.
Models represented by Fredholm integral equations of the first kind with a non-degenerate kernel function
give typical examples, with applications in image processing, signal processing etc. The related linear
algebraic problem is practically rank deficient. Moreover, it cannot be efficiently replaced by a rank-
reduced model without a substantial loss of information encoded in the data. Even worse, the data suffer
from some inherent noise. Therefore, if the problem is ill-posed, then in any of the classes mentioned
above it is meaningless to compute the exact solution. Instead, some form of stabilization technique,
called regularization, must be applied.

Here we do not deal explicitly with ill-posed problems. Description of regularization techniques is
out of the scope of our contribution. The point is, however, important, and several algorithms men-
tioned below, such as the truncated singular value decomposition, the conjugate gradient method, and
the iterative Golub-Kahan bidiagonalization, exhibit regularization properties. For a basic reading on
regularization and on solving discrete ill-posed problems we refer to Hansen (1998). Statistical concepts
used in regularization are described in Sima (2006).

3 Matching moments model reduction

We first describe an algebraic formulation of the matching moments model reduction. The subsequent
sections will then show how the concepts introduced in this section are present in several methods for
solving linear approximation problems.

Consider the system of linear algebraic equations (9) and assume, in addition, A symmetric positive
definite (SPD). Let x0 be the initial approximation to the solution x (without additional information it is
advisable to take x0 = 0), r0 = b−Ax0 be the initial residual, v1 = r0/‖r0‖. Let {λi, ui}, i = 1, . . . , N be
the eigenvalues and the corresponding orthonormal eigenvectors of A, where we assume, for the simplicity
of notation, λ1 < λ2 < . . . < λN (from A SPD we have 0 < λ1). Let U ≡ (u1, . . . , uN ) be the orthonormal
matrix with the eigenvectors ui as its columns. Then, using the spectral decomposition of A,

vT
1 Av1 = vT

1 U diag (λj) UT v1 =

N
∑

j=1

|(v1, uj)|
2 λj . (13)

This inspires the following construction. Let ω(λ) be the distribution function with the (finite) points
of increase λj equal to the eigenvalues of A, and the weights ωj given by the size of the squared com-
ponents of v1 in the corresponding invariant subspaces, ωj = |(v1, uj)|

2, see Hestenes and Stiefel (1952),
Strakoš and Tichý (2002). Then, using (13), the moments of the distribution function ω(λ) can be ex-
pressed in the matrix form as

∫ ∞

0

λkdω(λ) =

N
∑

j=1

ωj{λj}
k = vT

1 Akv1, k = 0, 1, . . . (14)

Now consider the conjugate gradient method for solving (10), x0 and r0, see Hestenes and Stiefel (1952).
The method constructs the sequence of approximations xn to the solution x such that

xn ∈ x0 + Kn(A, r0), Kn(A, r0) ≡ span {r0, Ar0, . . . , A
n−1r0} , (15)

i.e. xn − x0 belongs to the n-th Krylov subspace of A with respect to r0 generated by the vectors
r0, . . . , A

n−1r0. The approximation xn is determined from the (Galerkin) orthogonality condition

A(x − xn) ⊥ Kn(A, r0) . (16)
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Using the orthonormal basis Vn = (v1, . . . , vn) of the Krylov subspace Kn(A, r0) generated by the
Lanczos algorithm applied to A with v1, see Lanczos (1952), the conjugate gradient method is given by

xn = x0 + Vnyn, Tnyn = ‖r0‖e1, n = 1, 2, . . . , (17)

where Tn represents the Jacobi matrix of the recurrence coefficients for the orthonormal Lanczos vectors
v1, v2, . . . , vn, or, equivalently, the Jacobi matrix of the recurrence coefficients for the first n orthonor-
mal polynomials corresponding to the inner product defined by the Riemann-Stieltjes integral with the
distribution function ω(λ). Here the orthogonality of polynomials translates to the orthogonality of the
Lanczos vectors and vice versa.

It is well known that the nodes and the weights of the n-th Gauss-Christoffel quadrature are given by

the eigenvalues θ
(n)
ℓ and the squared first components of the corresponding orthonormal eigenvectors of Tn

respectively. Then, using the spectral decomposition of Tn analogously to the spectral decomposition of A
in (14), we get for the term on the right hand side of (7)

n
∑

ℓ=1

ω
(n)
ℓ {θ

(n)
ℓ }k = eT

1 T k
ne1, k = 0, 1, . . . . (18)

Summarizing, the n-point Gauss-Christoffel quadrature (7) for the given ω(λ) can be written in the
matrix form as

vT
1 Akv1 = eT

1 T k
ne1, k = 0, 1, . . . , 2n − 1 , (19)

and the first n steps of the conjugate gradient method can be seen as the model reduction from Ax = b
to Tnyn = ‖r0‖e1 such that the first 2n moments (19) are matched. For details we refer to the survey
paper Meurant and Strakoš (2006) and in particular to Strakoš (2008), where the relationship between the
matching moments model reduction and Krylov subspace methods is extended to more general matrices
and methods.

Krylov subspace methods can be used for solving all linear approximation problems from Section 2,
including discrete ill-posed problems. They represent one of the main iterative tools of modern numerical
linear algebra. Here we have demonstrated that they are intimately linked with the problem of moments.
Whenever the approximation problem contains a significant dominance which can be captured mathemat-
ically by matching a number of moments which is small with respect to the size of the problem, Krylov
subspace methods may represent computationally efficient tools for approximating the solution.

In the remaining two sections we will throughout examples demonstrate relationship of Krylov sub-
space methods to some methods in computational statistics, and, in particular, their fundamental role in
theoretical analysis and numerical solution of the OLS problem (10) and the TLS problem (12).

4 Linear regression and ordinary least squares

From the computational statistics perspective, linear regression is described, e.g., in Chapter 3 of the
book Rao and Toutenburg (1999). From the numerical linear algebra perspective, the standard mono-
graph Björck (1996) describes the basic theory of the least squares problem as well as the methods for
its solution, including their algorithmic realizations and analysis of their numerical behavior.

Here we will not review a variety of methods. Our goal is to point out that in computational
statistics and numerical linear algebra there exist mathematically equivalent approaches for solving es-
sentially the same problems. The statistical approach is typically motivated by exploitation and in-
terpretation of statistical relationships between different variables. In finite precision computations,
algorithmic implementations of mathematical concepts should also take into account possible numer-
ical instabilities. One of the main goals in numerical linear algebra is to identify methods and algo-
rithms which are numerically stable. Briefly, this means that the computational error due to roundoff
in finite precision arithmetic computations is (in some rigourously defined meaning) under control, see,
e.g., Higham (2002), Strakoš and Liesen (2005). In this way, numerical linear algebra can perhaps in
some cases provide computationally interesting methods or implementations for solving problems in com-
putational statistics.

Properties of the solution (11) of the OLS problem (10) can conveniently be analyzed using the
singular value decomposition (SVD) of the system matrix,

A = SΣWT =
r

∑

ℓ=1

sℓσℓw
T
ℓ , S ≡ (s1, . . . , sN ), W ≡ (w1, . . . , wM ) . (20)
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Here r represents the rank of A, σ1 ≥ σ2 ≥ . . . ≥ σr > 0 are the singular values, sℓ and wℓ are the
corresponding left and right singular vectors, Σ is the N by M rectangular diagonal matrix with the
left principal block equal to D ≡ diag (σ1, . . . , σr), and S and W are orthogonal matrices. The SVD
decomposition means that any matrix can be orthogonally diagonalized, where the resulting diagonal
consists of the positive singular values in descending order, complemented by zeros. The minimum norm
solution (11) of (10) is then given by

x =

r
∑

ℓ=1

sT
ℓ b

σℓ

wℓ . (21)

It might be convenient to approximate the solution (21) by considering the principal components corre-
sponding to the several largest singular values,

xPCR
k =

k
∑

ℓ=1

sT
ℓ b

σℓ

wℓ, k ≪ r . (22)

This gives in the statistical language the principal component approximation (PCA or PCR), in the
numerical linear algebra language the truncated SVD approximation (TSVD). Here it should be empha-
sized that it does matter how the solution (22) is computed in finite precision arithmetic. Many modern
software tools, including SAS and SPSS, contain PCR implementations based on efficient and numeri-
cally stable algorithms. On the other hand, some methods which can be found in the literature can be
inefficient or numerically unstable. For the discussion of the NIPALS method for computing principal
components, e.g., we refer to Eldén (2004).

In numerical linear algebra, the SVD is computed in two steps.

• First, A is orthogonally bidiagonalized,

A = PBQT , (23)

where P and Q are orthogonal matrices and B is a lower bidiagonal matrix (i.e., B has only the
main diagonal and the first lower diagonal nonzero). Here the lower bidiagonal form is chosen for
later convenience. The SVD decomposition works with the upper bidiagonal form analogously.

• Second, the SVD of B is computed using the implicit QR algorithm.

The procedure was proposed in a remarkable paper Golub and Kahan (1965). Important refinements of
the SVD decomposition of the bidiagonal matrix B were proposed later by various authors, see, e.g., the
basic textbook Watkins, (2002), in particular Chapter 4 and Section 5.9.

Golub and Kahan (1965) suggested two approaches for computing the bidiagonalization (23). The
direct approach is based on Householder reflections. The iterative approach is well-suited for large
problems. Starting from a normalized vector p1, ‖p1‖ = 1, it computes two sequences of orthonormal
vectors p1, p2, . . . , pk+1 and q1, . . . , qk such that, in the matrix form,

AT Pk = QkBT
k , AQk = Pk+1Bk+ , (24)

where the matrices Pk+1 ≡ (p1, . . . , pk+1) and Qk ≡ (q1, . . . , qk) have orthonormal columns,

Bk =













α1

β2
. . .

. . .
. . .

βk αk













, Bk+ =



















α1

β2
. . .

. . .
. . .

. . . αk

βk+1



















,

and αℓ, βℓ represent the normalization coefficients, αℓ ≥ 0, βℓ ≥ 0, ℓ = 1, . . . , with all other entries of Bk

and Bk+ equal to zero. The iterative form (24) is called the Golub-Kahan iterative bidiagonalization (in
many references it is also called the Lanczos bidiagonalization).

In Paige and Saunders (1982a) the Golub and Kahan iterative bidiagonalization was used for an
approximation of the solution (21) in the following way. Let p1 ≡ b/‖b‖. Then q1, . . . , qk represent an
orthonormal basis of the Krylov subspace

Kk(AT A,AT b) ≡ span {AT b, (AT A)AT b, . . . , (AT A)k−1AT b} .
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Considering an approximation xk to the solution of (11) in this subspace, xk ∈ Kn(AT A,AT b), we get
xk ∈ R(AT ). Using the orthonormal basis q1, . . . , qk of Kk(AT A,AT b) we can write xk = Qkyk, and the
OLS problem (10) can be approximated by

AQkyk = b + r̂k, min ‖r̂k‖ . (25)

Using (24), this gives Pk+1(Bk+yk − ‖b‖e1) ≡ Pk+1rk = r̂k, ‖rk‖ = ‖r̂k‖. Consequently, (25) can be
equivalently written in the form

Bk+yk = ‖b‖e1 + rk, min ‖rk‖, xk = Qkyk . (26)

This represent the mathematical formulation of the LSQR method, with the detailed theory and imple-
mentation given in Paige and Saunders (1982a) and Paige and Saunders (1982b). Please note that the
presence of Krylov subspaces remind us again about moments, which are indeed implicitly present in the
algebraic formulation. The implementation given in Paige and Saunders (1982b) focuses on efficiency in
storage and number of arithmetic operations, and it considers numerical stability. As above, the role of
orthogonality is fundamental.

The description given here may at first sight not resemble any method in computational statistics.
However, as stated already in Paige and Saunders (1982b), and as thoroughly explained with relationship
to wider context in Eldén (2004), LSQR is mathematically equivalent to the partial least squares method
of Wold (1975), Wold et al. (1984), see also Rao and Toutenburg (1999), Section 3.10.4. It should be em-
phasized that LSQR and PLS are not computationally equivalent. It might be useful to compare various
implementations described in literature with the numerically well understood and efficient implementa-
tions of LSQR.

We finish this section with giving reference to the recent work of Arioli and Gratton (2008) which
gives statistical interpretation of the energy norm in solving the OLS problem via the Krylov subspace
methods related to LSQR.

5 Orthogonal regression and total least squares

As we have seen above, the Golub-Kahan iterative bidiagonalization is very useful in solving large scale
OLS problems. We will conclude our short essay by illustrating the fact that the Golub-Kahan iterative
bidiagonalization represents one of the trully fundamental building blocks in analysis and solution of the
general linear approximation problem (8). Let (8) be orthogonally invariant, i.e., for any orthogonal P
and Q let

PT AQ (QT x) ≈ PT b (27)

be equivalent to (8). Since the transformation by orthogonal matrices does not change the unitarily
invariant norms, (10)-(12) are orthogonally invariant.

Consider now P and Q given by the (full) Golub-Kahan iterative bidiagonalization of A with p1 =
b/‖b‖. If at any step the normalization coefficient βk+1 or αk+1 become zero, the Golub-Kahan bidi-
agonalization is simply restarted with a new starting vector orthogonal to the corresponding vectors
computed previously. Such continuation was proposed in Golub and Kahan (1965). The significance of
the occurrence βk+1 = 0 or αk+1 = 0 was not examined there. The approach of the authors was natural,
because their goal was to compute the (full) singular value decomposition of A and therefore they focused
on full bidiagonalization. In solving the approximation problems (27), the situation βk+1 = 0 for some
k + 1 < N or αk+1 = 0 for some k + 1 < M has, however, fundamental consequences.

Suppose βk+1 = 0 or αk+1 = 0 occur for the first time, i.e., let all previously computed normalization
coefficients be greater than zero. Then (27) can be written as

[

B11 0
0 B22

] [

y1

y2

]

≈

[

b1

0

]

, (28)

where B11 has all elements on its main diagonal and on its first lower diagonal positive, and b1 = ‖b‖e1.
This means that only the problem

B11y1 ≈ b1 (29)

needs to be solved, with B11 being equal to Bk or Bk+ respectively. With y2 = 0 a solution of B22y2 ≈ 0,
the solution of the original linear approximation problem (8) is given by

x = Q

[

y1

0

]

. (30)
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As shown in Paige and Strakoš (2006), see also Hnětynková and Strakoš (2007), the matrix B11 in (28)
obtained from the partial Golub-Kahan iterative bidigonalization has minimal dimensions, and the ma-
trix B22 has maximal dimensions, over all orthogonal transformations (27) giving the block structure (28),
without any additional assumptions on the structure of B11 and b1. The partial Golub-Kahan iterative
bidiagonalization described above therefore represents a fundamental decomposition of data for any or-
thogonally invariant linear approximation problem (8). It determines the core problem (29) within (8)
which contains all necessary and sufficient information for solving the original problem.

Without giving details, any left principal part of the matrix B11 in (28) can be seen as a result of the
matching moments model reduction. Please note that the idea of matching moments links essentially all
parts of our contribution.

The core problem theory developed in Paige and Strakoš (2006) revised, based on the earlier publi-
cations Paige and Strakoš (2002a) and Paige and Strakoš (2002b), both the theory and computations of
the total least squares problem (12). It is relevant to all forms of the linear approximation problems men-
tioned above, and also to regularization techniques for solving ill-posed problems using the Golub-Kahan
iterative bidiagonalization. Theory and some algorithmic ideas can be found in Paige and Strakoš (2006)
and Hnětynková and Strakoš (2007). Important implementation issues and extensions to approximation
problems with multiple right hand sides still need to be worked out, see also Sima (2006), Plešinger (2008).

Since the TLS problem and the linear orthogonal regression are equivalent, see the instructive descrip-
tion in Van Huffel and Vandewalle (1991), the core problem approach can also be found to be relevant
in statistical computations.

6 Concluding remarks

Numerical linear algebra and computational statistics have much in common. Numerical linear alge-
bra offers some generally applicable tools such as the singular value decomposition, numerically stable
algorithms for computing orthogonal projections, and various direct and iterative methods, which can
be applied also to problems in computational statistics. We have demonstrated through the example of
linear approximation problems that the relationship between numerical linear algebra and computational
statistics goes much deeper. They share some common roots, which has influenced developments in both
fields. In order to demonstrate that, we have briefly recalled the role of moments in modern iterative
methods of numerical linear algebra. Though computational statistics and numerical linear algebra have
different goals and use different mathematical languages, their common roots lead to analogies among
the results in both fields and also in recent practice. We have recalled several examples and pointed out
some recent references.

Orthogonality is mentioned many times throughout this contribution. It plays a fundamental role in
the description of many problems, in their analysis and understanding, as well as in interpretation of the
relationship between individual variables. But it also plays a fundamental role in computations. Enforcing
orthogonality prevents in many cases loss of information due to roundoff (as in computing projections onto
Krylov subspaces, which is relevant, e.g., to both LSQR and PLS). Mathematical properties of results
of finite precision computations depend to a large extent on preserving orthogonality, or on the way the
orthogonality is lost, and the related issues should be thoroughly investigated. Concluding, orthogonality
is not merely a theoretical mathematical concept, it is also a fundamental computational concept.

Though historical developments and the current general trends have resulted in narrow specializations
and sometimes even fragmentation of sciences, we believe that the future progress of disciplines which are
related depends largely on a mutual transfer of knowledge. Interactions between numerical linear algebra
and computational statistics, which despite their differences try to exploit knowledge from their related
results, can bring an enormous benefit to both fields of mathematics.
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