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Abstract. Diffraction of light on a periodic media represents an important problem with numer-
ous physical and engineering applications. The Rigorous Coupled Wave Analysis (RCWA) method
assumes a specific form of gratings which enables a straightforward separation of space variables.
Using Fourier expansions, the solutions of the resulting systems of ordinary differential equations
for the Fourier amplitudes can after truncation be written in a form of matrix functions, with an
elegant formulation of the linear algebraic problem for integrating constants. In our text we present
derivation of the RCWA method, we formulate open questions which still need to be addressed and
discuss perspectives of efficient solution of the related highly structured linear algebraic problems.
A detailed understanding of the RCWA method for the two-dimensional grating is in our opinion
necessary for development of successful generalization of the method to practical problems.
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1. Introduction. There are many methods for numerical modeling of the
diffraction of electromagnetic waves on periodic gratings. Among those, a specific role
is played by the so called Rigorous Coupled Wave Analysis (RCWA) method, which
in its most basic two-dimensional form assumes very simple rectangular gratings. The
history of the RCWA and related methods is given, together with the description of
fundamentals of the differential theory of gratings and several generalizations that can
be applied to solving practical problems, in the standard monograph of the field [9],
see also the corresponding parts and references in [8, 6, 7, 2].

The simple rectangular form of a grating allows in RCWA an easy separation of
space variables, and, using Fourier expansions for the space periodic part of the solu-
tion, a transformation of the problem described by the partial differential equations
into the system of ordinary differential equations (ODE) for the Fourier amplitudes.
In order to solve the problem numerically, the infinite dimensional continuous problem
must be discretized. In RCWA this entails the truncation of the Fourier expansions
followed by a derivation of the finite dimensional representation of the problem. The
solution of the resulting ODEs can be written in the form of elementary matrix func-
tions with an elegant matrix formulation of the linear algebraic problems for the
integrating constants.

Obviously, one must ask whether the solution of the discretized problem approx-
imates to a sufficient accuracy (in an appropriate sense) the solution of the original
problem, which requires mathematical justification by rigorous analysis. A step in
this direction was done by Li [6, 7], who proved convergence results for a particu-
lar truncation of the multiplied Fourier expansions, which leads to the so called fast
Fourier methods1 for their good performance in practical computations. What is even
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more important, Li proved that the discretizations that led to slow numerical com-
putations are incorrect and the related discretization errors are responsible for the
poor performance of the whole method observed in practice. This gives an illustrative
example of a mathematical theory which does not only justifies the intuitively derived
results, but which also shows that intuition can in an unfortunate case mislead in the
derivation of methods and algorithms in scientific computing. Without proper math-
ematical proofs to justify the choice of discretizations, wrong intuitive arguments can
lead to algorithmic variations which are inefficient and inaccurate, wasting time and
effort. Although the RCWA method has been used in practical computations for more
than a decade, its mathematical justification has not yet been fully completed.

In our text, we present a derivation of the RCWA method for a simple two-
dimensional rectangular grating. The simplicity of the grating model allows to see
more clearly the interconnections between the physical model with its assumptions,
separation of variables, discretization, formulation of the algebraic problem and, fi-
nally, possible approaches for its efficient numerical solution. This is, in our opinion,
necessary for identification the issues which have to be resolved in order to develop
further efficient generalizations of the RCWA method, with some directions given,
e.g., in [9, 2]. The RCWA approach is rich in mathematical problems from many
disciplines, including numerical linear algebra, and building an efficient RCWA-based
solver for practical problems will require a well-balanced solution of all of them.

The paper has a simple structure. After application of the basic theory of planar
electromagnetic waves to our model problem in Section 2, we give in the subsequent
structured Section 3 a step by step derivation of the RCWA method. Section 4
reviews the remaining open problems. The paper is concluded by discussing possible
approaches for efficient solution of the linear algebraic problems resulting from the
RCWA discretization.

2. Planar electromagnetic waves. We will start with Maxwell’s equations
of electrodynamics for a material with no free charges, see, e.g., [13, Section 21-2,
(21-19)-(21-22)],

div D̂ = 0 , div B̂ = 0 ,

curl Ê = − ∂B̂

∂t
, curl Ĥ =

∂D̂

∂t
+ Ĵ , (2.1)

where D̂, Ê, B̂, Ĥ are the vectors of the displacement field, electric field, induction
field and magnetic field, respectively, and Ĵ represents the free current. Through-
out the paper we will consider linear isotropic materials for which the constitutive
equations

D̂ = ε Ê , B̂ = µ Ĥ (2.2)

hold. Moreover, the material will be considered magnetically homogeneous with µ =
µ0, where µ0 is the magnetic permeability in a vacuum. The electric permittivity
ε will in general be considered space dependent, ε = ε0εr, where ε0 is the electric
permittivity in a vacuum, (ε0µ0)

−1 = c2, c is the speed of light in a vacuum. Under

between the Fast Fourier Transform and the fast Fourier methods, the latter term being for mathe-
matically oriented community rather confusing, we will avoid the appellation “fast Fourier methods”
altogether.
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these assumptions, (2.1) takes the form, see [13, Exercise 21-7, p. 362],

div Ê = − Ê · grad ε

ε
, div Ĥ = 0 ,

curl Ê = −µ
∂Ĥ

∂t
, curl Ĥ = ε

∂Ê

∂t
+ σ Ê , (2.3)

where σ Ê ≡ Ĵ accounts for the electric current caused by the electric field in the
conductive material with the conductivity σ in accordance with Ohm’s law. Using
(2.3) with standard smoothness assumptions,

∆ Ê = ε µ
∂2Ê

∂t2
+ σµ

∂Ê

∂t
+ grad

(
Ê · grad ε

ε

)
, (2.4)

∆ Ĥ = ε µ
∂2Ĥ

∂t2
+ σµ

∂Ĥ

∂t
− grad ε ⊗ ∂Ê

∂t
− gradσ ⊗ Ê . (2.5)

Remark 2.1. Except for the relationship between the space dependent vectors of
electric and magnetic fields in Subsection 2.3, we will consider in the rest of Section 2
nonconductive materials, i.e. σ = 0. Then the index of refraction of the materials
is real (and positive), which simplifies the exposition. For conductive materials the
derivation is analogous. The resulting individual equations for the electric and mag-
netic fields for lossless nonconductive materials, as they will be used in the description
of the RCWA method to follow, are formally identical to the materials with losses
due to their nonzero conductivity. The only difference is that in the latter case the
index of refraction is complex, with positive real and nonnegative imaginary parts.

In a homogeneous material with losses, the real part of the index of refraction
is used for the parametric description of propagating waves similarly as in material
with no losses. A nonzero imaginary part describes the damping of the propagating
field due to losses. Other differences are unimportant in the context of this text. For
an instructive description of the theory of electromagnetic waves, including the plane
waves in conductive media and the use of a complex index of refraction, we refer to
the basic textbook [13], in particular to Section 24.3.

2.1. Time-harmonic fields. We will consider only time-harmonic fields, where
any field vector V̂(x, y, z, t) will be represented by its associated space dependent
complex vector V(x, y, z) such that

V̂(x, y, z, t) = Re[V(x, y, z) exp(−iω t)] , (2.6)

[13], see also [9, cf. Section I.2.1]. Here ω = 2πf , fλ = v, therefore ω = 2πvλ−1, where
λ is the wavelength, f the frequency of light, and v is the speed of light corresponding
to the electric permittivity and the magnetic permeability. If the electric permittivity
and the magnetic permeability are constant and σ = 0, (2.4)-(2.5) reduce to the wave
equations for the electric and magnetic field in linear lossless isotropic homogeneous
media, which gives

v =
1√
εµ

=
1√
εrµr

1√
ε0µ0

=
c

n
, n =

√
εrµr , c =

1√
ε0µ0

(2.7)

where n is the index of refraction of the given material.
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Here we only consider what is called linear optics, where the time-harmonic setting
is relevant and there are no time-frequency conversions, so that the different wave-
lengths may be treated independently of each other. In such a setting, (2.4)-(2.5) for
the space dependent vector fields take the form (recall σ = 0)

∆E = − ε µω2 E + grad

(
E · grad ε

ε

)
, (2.8)

∆H = − ε µω2 H − 1

ε
grad ε ⊗ curlH . (2.9)

2.2. Planar waves, TE and TM polarization. We will consider a plane-
wave solution to Maxwell’s equations. For a plane wave whose wave-front is moving
in direction D the vectors E, H and D form a right-handed orthogonal system, where
E and H form a plane (wavefront) perpendicular to the direction of D. This paper
considers planar diffraction on rectangular grating in the x − z plane depicted in
Figure 2.1, where the incident plane wave is moving in the direction D perpendicular
to the third Cartesian coordinate y, with the angle θ between D and the vertical
direction z.

Fig. 2.1. Rectangular grating.

The grating is uniformly extended from −∞ to +∞ in the y coordinate, see [8].
We will consider three subdomains: the superstrate z < 0, the grating region 0 ≤
z ≤ d, and the substrate z > d. The equations (2.8)-(2.9) will be solved on each
domain separately, with subsequent matching of the solutions for z = 0 and z =
d in order to determine the integrating constants. Both materials which form the
superstrate, the grating region and the substrate are considered linear, isotropic, and
homogeneous. Consequently, due to the geometry of the grating it is clear that the
electric permittivity, which is constant in the superstrate and in the substrate, is in
the grating region function of x but not of z, ε ≡ ε(x). This is for the RCWA method
essential. It is furthermore assumed that ε(x) is a sufficiently smooth function of x.
The relevance of this assumption for physical models with the idealized surfaces of
discontinuity (here the vertical boundaries in the grating region in Figure 2.1) will
be discussed later. Since the geometric structure of the grating is independent of
the y coordinate, electric and magnetic field depend only on the variables x and z,
E ≡ E(x, z), H ≡ H(x, z). As before, the magnetic permeability µ = µ0 is constant.
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In order to describe the general case, it is sufficient to analyze two special po-
larizations, when the vectors E and respectively H are perpendicular to the plane of
incidence x-z, i.e., when the vectors E and respectively H are parallel to the direction
of the third Cartesian coordinate y.

For the Transverse Electric (TE) polarization, E = (0, Ey, 0) is parallel to the
y axis and H stays in the x-z plane. For such E and ε ≡ ε(x) the inner product
(E · grad ε) vanishes. We underscore the point that here the geometry of the grating
plays a crucial role. The equation (2.8) for E then reduces (in the superstrate, the
grating region and in the substrate) to the wave equation for the single nonzero
component Ey,

∆Ey = − ε µω2 Ey . (2.10)

For the Transverse Magnetic (TM) polarization, H = (0,Hy, 0) is parallel to the
y axis and E stays in the x-z plane. Then

curlH =

(
−∂Hy

∂z
, 0 ,

∂Hy

∂x

)
,

grad ε ⊗ curlH =

(
∂ε

∂y

∂Hy

∂x
, −∂ε

∂z

∂Hy

∂z
− ∂ε

∂x

∂Hy

∂x
,
∂ε

∂y

∂Hy

∂z

)

= −
(

0 ,
∂ε

∂x

∂Hy

∂x
, 0

)
= − (0, grad ε · gradHy , 0) ,

and (2.9) takes the form

div

(
1

ε
gradHy

)
= − µω2Hy , (2.11)

see [9, equation (I.22)]. In our notation (recall ε ≡ ε(x))

∆Hy − 1

ε(x)

dε(x)

dx

∂Hy

∂x
= − ε(x)µω2Hy . (2.12)

2.3. Summary. Considering µr = 1, µ = µ0 (this assumption is used throughout
the text), ε = ε0εr, c = (ε0µ0)

−1/2, ω = 2πf , fλ = c, define

k2
0 ≡ ε0 µ0 ω2 =

ω2

c2
=

(
2πf

c

)2

=

(
2π

λ

)2

. (2.13)

The electric field in the TE polarization is then described by the equation

∆Ey = − k2
0 εr(x)Ey , Ex = Ez = 0 , (2.14)

with the magnetic field

H = − i

µ0 ω
curlE ,

giving

(Hx, 0,Hz) =
i

µ0 ω

(
∂Ey

∂z
, 0 ,−∂Ey

∂x

)
. (2.15)
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The magnetic field in the TM polarization is described by the equation

∆Hy − 1

εr(x)

dεr(x)

dx

∂Hy

∂x
= − k2

0 εr(x)Hy , Hx = Hz = 0 , (2.16)

with the electric field, see (2.3)

E =
1

− i ε0εr(x)ω + σ(x)
curlH ,

giving

(Ex, 0, Ez) =
1

− i ε0εr(x)ω + σ(x)

(
−∂Hy

∂z
, 0 ,

∂Hy

∂x

)
. (2.17)

The given description is valid in the superstrate, in the grating region and in the
substrate. In the following we will use equations (2.14)-(2.15) for the description of
the electric and magnetic fields in the TE polarization, and equations (2.16)-(2.17) for
the description of the magnetic and electric fields in the TM polarization. Although
the short derivation recalled here assumes for simplicity a real index of refraction (cf.
Remark 2.1), in the rest of the text the index of refraction of the substrate is generally
complex, i.e., it takes into account the nonzero value of σ.

3. The RCWA method for a rectangular grating. We will consider the
rectangular grating in the x−z plane described above, see Figure 2.1, with its extension
from −∞ to +∞ in the y coordinate, where nI and nII denote the index of refraction
of the superstrate and substrate materials, respectively. Throughout the text we
assume, consistently with the applications that motivate our work, that there are no
losses in the superstrate, i.e., nI is real. The substrate can be conductive, and nII is
generally complex with positive real and nonnegative imaginary parts.

The incident electric field is in the TE polarization normal to the plane of inci-
dence, i.e., it is given by its y-component

E inc
y = ei k0 nI (x sin θ + z cos θ) , (3.1)

where x sin θ + z cos θ determines the phase along the direction D of the incident
wavevector kI,

kI = nI
ω

c
(sin θ, 0 , cos θ) , (3.2)

with the wavenumber

kI = ‖kI‖ = nI
ω

c
= nI

2π

λ
,

see [9, relation (I.16)]. Please note that with (2.6) this gives the time-harmonic field

Ê inc
y = Re[ei {k0 nI (x sin θ + z cos θ)−ω t}] , (3.3)

which corresponds to the wave propagating in the direction of increasing x and z, i.e.
down and to the right. Similarly, in the TM polarization the incident magnetic field
is normal to the plane of incidence,

H inc
y = ei k0 nI (x sin θ + z cos θ) . (3.4)

The RCWA method will first be described assuming TE polarization, and then applied
to TM polarization.
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3.1. Planar diffraction: TE polarization. For completeness we will briefly
derive some basics of the differential theory of gratings. A correspondence to the
standard literature will be given by referencing the formulas and page numbers in [9].
An extensive survey of the literature can be found in [9, 6, 7].

Since the grating surface is periodic with period p and infinite, translation in the
x coordinate from x to x + p multiplies the incident wave (3.1) by the phase factor
ei kI p sin θ, as depicted in Figure 3.1.

Fig. 3.1. Phase determining the periodicity.

In linear optics, the transformation of the incident field into the total field is linear,
therefore the total field Ey(x, z) satisfies

Ey (x + p, z) = ei kI p sin θ Ey (x, z) , (3.5)

which must hold in the superstrate, grating and in the substrate, see [9, relation (I.27)].
Consequently the function F (x, z) ≡ e−i kI x sin θEy(x, z) is periodic in x with period p,

F (x + p, z) = e−i kI (x+p) sin θ Ey (x + p, z) = e−i kI x sin θ Ey (x, z) = F (x, z) .

This periodicity is used for separation of the space variables using the following Fourier
expansion

F (x, z) =
+∞∑

s=−∞
fs(z) ei s 2π

p
x, i.e., Ey (x, z) =

+∞∑

s=−∞
fs (z) ei kxs x , (3.6)

where fs(z) are the Fourier coefficients independent of x,

kxs ≡ kI sin θ + s
2π

p
= k0

(
nI sin θ + s

λ

p

)
, s = 0, 1,−1, . . . , (3.7)

see [9, relations (I.3), p. 3, and (I.29”), p. 22]. With nI real, kI and kxs are also real.
The relations in (3.7) are called the Floquet conditions. Since the wavenumber of the
reflected field is preserved,

k2
I = k2

xs + k2
I,zs , (3.8)

(3.7) determines the discrete diffraction angles for which

sin θs =
kxs

kI
= sin θ + s

λ

nI p
, (3.9)

see Figure 3.2 and [9, relation (I.5)].
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Fig. 3.2. Angles between the diffraction orders.

Relations (3.7), (3.9) represent the diffraction law for the grating. It replaces
the common Snell’s law for specular surfaces which simply states that the tangential
component kx is preserved. Here kxs can take different values (3.7) for different
integers s.

It remains to determine the Fourier coefficients fs(z) in (3.6).

3.2. Solution in the superstrate and in the substrate – TE polarization.

In the homogenous superstrate and substrate εr is constant, and (2.14) takes the form
of the Helmholtz equation

∆Ey = −k2
ℓ Ey, Ex = Ez = 0, ℓ = I, II . (3.10)

Therefore for z < 0 (superstrate) and z > d (substrate) introducing the Fourier
expansion (3.6) into (3.10) gives the infinite set of uncoupled ordinary differential
equations for the unknown coefficients fs(z),

[
d2

dz2
+ k2

ℓ,zs

]
f (ℓ)

s (z) = 0, ℓ = I, II, s = 0, 1,−1, . . . , (3.11)

where k2
ℓ,zs = k2

ℓ − k2
xs, see (3.8). A general solution can be written as

f (ℓ)
s (z) = A(ℓ)

s e−i kℓ,zs z + B(ℓ)
s ei kℓ,zs z , (3.12)

where A
(ℓ)
s , B

(ℓ)
s are integrating constants. The physically meaningful solution is

bounded when the waves propagate away from the grating, which means that the
unbounded part of (3.12) is nonphysical and must be excluded.

Since the superstrate is lossless, the refraction index nI is real, and therefore

kI,zs =
√

k2
I − k2

xs (3.13)

is real and positive if kI > kxs, and zero or purely imaginary with positive imaginary

part if kI ≤ kxs, kI = k0nI. With kI,zs real and positive the term A
(ℓ)
s e−ikℓ,zs z

corresponds to the wave propagating in the direction of decreasing z, i.e. going up,

while the term B
(ℓ)
s eikℓ,zs z to the wave propagating in the direction of increasing z,

i.e. going down. If kI,zs is zero or purely imaginary then there is no wave propagating
in the z direction, the corresponding modes are evanescent and they will not be further
considered.

Keeping a single incident wave (with s = 0) and considering no incidence from
the substrate, the solution of (3.10) in the superstrate (z < 0) can finally be written

in the form (Rs ≡ A
(I)
s )

E I
y = ei kI (x sin θ+z cos θ) +

+∞∑

s=−∞
Rs ei kxs x− i kI,zs z . (3.14)
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Since kxs is real and kII corresponding to the substrate has a positive real and a
nonnegative imaginary parts,

k2
II,zs = k2

II − k2
xs

must also have a nonnegative imaginary part, with the real part positive or nega-
tive (the evanescent modes are not considered). Its square root is taken in the first
quadrant, with the positive real and nonnegative imaginary parts. Then the resulting
solution of (3.10) represented by the wave propagating in the substrate (z > d) in the

direction of increasing z, i.e. travelling down, is given by (T̂s ≡ B
(II)
s )

E II
y =

+∞∑

s=−∞
T̂s ei kxs x + i kII,zs z (3.15)

cf. [9, (I.35) respectively (I.38), p. 24]. Please note that E II
y is bounded when z →

+∞, which complies with the physical requirement. The fact that E I
y is bounded

when z → −∞ follows trivially since kI,zs is real or purely imaginary (with no wave
propagating in the latter case).

Since the imaginary part of kII,zs is nonnegative, the real part of ei kII,zs z can be
for z = d rather small, which can cause difficulties in numerical calculations. Therefore
it might be convenient to consider the following scaling

E II
y =

+∞∑

s=−∞
Ts ei kxs x + i kII,zs (z−d) (3.16)

where

T̂s = Ts e−i kII,zs d . (3.17)

As a consequence, Ts can be expected to be much smaller in magnitude than T̂s.
It could also be noticed that the scaling is equivalent to moving the origin in the z
direction by d. In the following derivation we will continue with the scaled expan-
sion (3.16), and we will comment on the effect of non-scaling on the derived algebraic
system later.

The integrating constants Rs and Ts have to be determined from the boundary
conditions on the top (z = 0) and the bottom (z = d) of the grating region.

Remark 3.1. It should be noted that we use a different orientation of the z
coordinate than the y coordinate in [9].

3.3. Infinite set of differential equations for the grating region – TE

polarization. In the grating region, εr(x) represents a periodic (sufficiently smooth)
function with respect to x with period p. It can therefore be expressed by its Fourier
series

εr (x) =

+∞∑

h=−∞
ǫh ei h 2π

p
x . (3.18)

Later (for the TM polarization) it will be convenient to consider also the subsequent
Fourier expansions

1

εr(x)
=

+∞∑

h=−∞
ah ei h 2π

p
x . (3.19)
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Since the geometry of the grating is symmetric with respect to x, the equality εr(x) =
εr(−x) gives

ǫh = ǫ−h and ah = a−h, h = 1, 2, . . . (3.20)

With the Fourier expansion (3.6), (3.18) leads again to separation of the x and z
variables and to a reduction of the problem to sets of ordinary differential equations
for the Fourier amplitudes fs(z), s = 0, 1,−1, . . . , which, unlike (3.11), are coupled.
The separation of variables is the key issue in the RCWA method. When the analytic
solution of the truncated system of ODEs is expressed in a form of matrix functions,
the boundary conditions formulated for z = 0 and z = d give the linear algebraic
systems for the integrating constants.

Inserting the Fourier expansions (3.6) and (3.18) into (2.14) then gives, cf. [9,
(II.2), p. 38],

[
d2

dx2
+

d2

dz2

] +∞∑

s=−∞
fs (z) ei kxs x = −k2

0

+∞∑

h=−∞
ǫh ei h 2π

p
x

+∞∑

s=−∞
fs (z) ei kxs x .

Substituting for kxs in the exponentials, straightforward manipulations give (we leave
a discussion of some important details to Section 3.6)

+∞∑

j=−∞

{[
d2

dz2
− k2

xj

]
fj (z)

}
ei j 2π

p
x = −k2

0

+∞∑

j=−∞

{
+∞∑

s=−∞
ǫj−s fs (z)

}
ei j 2π

p
x .

(3.21)
Equating for the index j leaves the result

d2fj (z)

dz2
= k2

xj fj (z) − k2
0

+∞∑

s=−∞
ǫj−s fs (z) . (3.22)

Note that for any homogenous medium in which only ǫ0 is nonzero (and εr(x) is
constant), (3.22) decouples into the set of independent equations (3.11).

It is common to use the scaling w = zk0. Using the new scaled variable w, (3.22)
takes the form

d2fj (w)

dw2
=

k2
xj

k2
0

fj (w) −
+∞∑

s=−∞
ǫj−s fs (w), j = 0, 1,−1, 2,−2, . . . . (3.23)

We underscore the fact that under standard assumptions on the convergence of
the Fourier expansions above, (3.23) represents one particular form, out of many
mathematically equivalent forms, of writing the infinite set of differential equations
for the Fourier amplitudes fj (w), j = 0, 1,−1, 2,−2, . . . . After truncation, such
mathematically equivalent forms can produce truncated finite dimensional problems
which have different approximation errors and convergence properties. The next two
subsections represent the method of truncation used in the standard RCWA method.
Open questions related to the truncation of the Fourier expansions and the infinite
system of differential equations given above will be discussed later in Section 4.
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3.4. Truncation – TE polarization. For numerical computations, it is neces-
sary to truncate the infinite Fourier expansions. From this point forward, we will
consider that the computed fields are described with sufficient accuracy by their
2N + 1 Fourier components. The choice of N depends on the problem; the corre-
sponding truncation error should be in balance with the accuracy of subsequent nu-
merical computations, in particular with the accuracy of solving the system of ODEs
(approximation of matrix functions) and the accuracy of solving the final system of
linear algebraic equations for integrating constants described below.

In the superstrate and in the substrate, see (3.14) and (3.16),

E I
y = ei kI(x sin θ + z cos θ) +

N∑

s=−N

Rs ei kxs x− i kI,zs z

= ei kI z cos θ ei kI x sin θ +

N∑

s=−N

{
Rs e−i kI, zs z

}
ei kxs x

≡
N∑

s=−N

u
(s)
I,y (z) ei kxs x , (3.24)

E II
y =

N∑

s=−N

Ts ei kxs x + i kII,zs (z−d) =

N∑

s=−N

{
Ts ei kII,zs (z−d)

}
ei kxs x

≡
N∑

s=−N

u
(s)
II,y (z) ei kxs x . (3.25)

We use here for simplicity the same notation for E I
y and E II

y as in (3.15) and (3.16),
i.e., we omit in (3.24) and (3.25) the index N corresponding to the truncation order
of the Fourier modes. Denoting

rTE =





R−N

...
R0

...
RN




∈ C

2N+1 , tTE =





T−N

...
T0

...
TN




∈ C

2N+1 , (3.26)

YI = diag (kI,zs/k0) ∈ C
(2N+1)×(2N+1) , (3.27)

YII = diag (kII,zs/k0) ∈ C
(2N+1)×(2N+1) , (3.28)

the parts in the truncated Fourier expansions (3.24) and (3.25) dependent on the z
variable can be written, using the vector notation, as

uI
y =





u
(−N)
I,y
...

u
(0)
I,y
...

u
(N)
I,y





=





R−N e−i kI,z(−N) z

...
R0 e−i kIz0 z

...
RN e−i kI,zN z




+





0
...

ei kI z cos θ

...
0




,
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uII
y =





u
(−N)
II,y
...

u
(N)
II,y



 =




T−N ei kII,z(−N) (z−d)

...
TN ei kII,zN (z−d)



 ,

where kx0 = kI sin θ, kI,z0 = kI cos θ, see (3.7) and (3.13). With the scaling w = zk0,
and using matrix exponentials,

uI
y = e−i YI w rTE + ei YI w e0 , (3.29)

uII
y = ei YII (w−dk0) tTE , (3.30)

where the last term in (3.29), e0 = [0, . . . , 0, 1, 0, . . . , 0]T , corresponds to the incident
plane wave given above (with the single nonzero spectral mode).

Similarly to (3.24)-(3.25) we consider in the grating region the truncated expan-
sion, see (3.6),

E G
y =

N∑

s=−N

fs (w) ei kxs x, uG
y (w) ≡




f−N (w)

...
fN (w)



 . (3.31)

The 2N +1 differential equations for the parts of the Fourier expansion dependent on
z in (3.23), j = −N, . . . , N , can be written in the matrix form

d2uG
y

dw2
= −C uG

y , C = Υ − Y 2
G ∈ C

(2N+1)×(2N+1) , (3.32)

where

YG = diag (kxs / k0)

= diag (nI sin θ + N
λ

p
, . . . , nI sin θ, . . . , nI sin θ − N

λ

p
) , (3.33)

(Υ)js = ǫj−s, j, s = −N, . . . , 0, . . . , N . (3.34)

Here Υ represents a Toeplitz matrix with the entries determined by the Fourier expan-
sion of the relative permittivity in the grating region. Since for the simple geometry
of the grating (3.20) holds, Υ and, consequently, also C are complex symmetric. A
general solution of (3.32) is then given in the matrix form by

uG
y = ei

√
C w g+

TE + e−i
√

C w ĝ−TE , (3.35)

where g+
TE and ĝ−TE represent the corresponding vectors of the integrating constants.

Assume, for a moment, that
√

C is a single complex number with a positive real
and a nonzero imaginary parts. Then the first term in (3.35) corresponds to the
downward and the second part to the upward wave in the grating region (0 ≤ w ≤
dk0). The fact that the signal can only be damped, not amplified, which means that
the energy of the signal can not grow in the direction of its propagation, requires in
both cases the positive imaginary part of the square root, cf. [13, Section 24.3, relations
(24.37), (24.38), (24.51) and (24.55)]. It should be realized, however, that only if the
real part of the square root is positive, then with our choice in (2.6) the first part
in (3.35) corresponds to the downward and the second part to the upward wave in
the grating region. With the positive imaginary part of

√
C the wave corresponding
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to ei
√

C w g+
TE is then damped with increasing w, while the wave corresponding to

e−i
√

C w ĝ−TE is damped with decreasing w, which is in agreement with the waves
propagating downwards and upwards respectively.

If, however, the real part of the square root
√

C is negative, then with our choice
in (2.6) the second part in (3.35) corresponds to the downward and the first part to
the upward wave in the grating region. Then the requirement of non-amplification of
the signal (which is frequently in the engineering literature identified with stability)
implies that the imaginary part of

√
C must be negative.

It should be noted that the non-amplification of the signal requires the real and
imaginary parts of

√
C to have the same sign. If C is in the upper half plane, then

the principal square root of C lies in the first quadrant, and the solution of the
discretized problem (3.35) has a straightforward physical interpretation. If, however,
C is in the lower half part of the complex plane, i.e. it has a negative imaginary part,
then the real and imaginary parts of the square root

√
C can not have the same sign

no matter which branch of the complex square root is considered. In such case the
physical meaning of the discretized solution is unclear, since the signal is in one of
the directions of its propagation inevitably amplified.

In the RCWA method, C is a matrix, and the considerations above apply to every
individual eigenvalue of C, cf. [5, Section 6.2], [4]. Indeed, denoting by C = UJU−1

the Jordan canonical form of C, (3.35) in fact means

uG
y = U ei

√
J w U−1 g+

TE + U e−i
√

J w U−1 g−TE . (3.36)

If all eigenvalues of C lie in the upper half plane, then the principal value of the
complex square root will be in the first quadrant for all eigenvalues, and it make
sense to state that the square root in (3.35) corresponds to the branch with the
positive imaginary part.

Here we assume that C indeed has all its eigenvalues in the upper half plane.
Whether such an assumption restricts the applicability of the RCWA method is yet
to be found, see the discussion below, and we pose it as an open problem.

Remark 3.2. Discussions of the choice of a branch of the complex square root
in the literature on RCWA known to us lacks completeness. In particular, the conse-
quences of the fact that non-amplification of the signal in the direction of propagation
links together the signs of both real and imaginary parts of the eigenvalues in (3.36),
with its consequences for

√
C, are not clearly explained. Sometimes the signs of the

real parts of the eigenvalues of
√

C, are ignored, and the positive imaginary parts of
the eigenvalues of

√
C are identified with damping, independently of the direction

in which the signal propagates. Such an approach is not correct. For example, the

negative real part of the eigenvalue of
√

C corresponds in ei
√

C w g+
TE to the wave

propagating in the direction of decreasing w, and therefore the positive imaginary
part of the eigenvalue of

√
C means in such case an amplification, not damping, of

the signal in the direction of propagation. Similarly, the negative real part of of the

eigenvalue of
√

C corresponds in e−i
√

C w ĝ−TE to the wave going in the direction of
increasing w, and the positive imaginary part of the eigenvalue of

√
C means in such

case an amplification, not damping, of the signal in the direction of propagation.

Positive imaginary parts of the eigenvalues of
√

C can cause numerical difficulties
(cf. Section 3.2). We will therefore use, as above, the following scaling

uG
y = ei

√
C w g+

TE + e−i
√

C (w−dk0) g−TE , (3.37)
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where, comparing with (3.35),

ĝ−TE = ei
√

C dk0 g−TE . (3.38)

In the following derivation we will continue with the scaled expansion (3.37), and we
will comment on the effect of non-scaling to the derived algebraic system later.

Summarizing, (3.29), (3.30) and (3.37) describe the w (or z) – dependent 2N + 1
Fourier coefficients of the truncated Fourier expansion (in the variable x) of the electric
field Ey in the superstrate, substrate and in the grating region respectively.

3.5. Matching on the boundaries and formulation of the algebraic prob-

lem – TE polarization. In order to determine the integrating constants, which
represent the vectors rTE, tTE, g+

TE and g−TE, each of length 2N +1, we have two sets of
2N + 1 equations for matching the electric field at z = 0 and z = d (top and bottom
of the grating region). Two missing sets of 2N + 1 equations can be obtained from
matching the tangential components Hx of the magnetic field, see [9, pp. 39-40],
given by (see (2.15))

Hx =
i

µ0ω

∂Ey

∂z
= i

(
ε0

µ0

)1/2
∂Ey

∂w
. (3.39)

Unlike in some other methods for computing of diffraction of light on gratings, the
RCWA method deals with the grating region mathematically as a single region with
the electric permittivity dependent on x. Consequently, there are no other boundary
conditions to consider.

Using the truncated Fourier expansions for Ey, see (3.24), (3.25) and (3.31), and
differentiating the Fourier coefficients (3.29), (3.30) and (3.37) gives

∂uI
y

∂w
= − iYI e−i YI w rTE + iYI ei YIw e0 , (3.40)

∂uII
y

∂w
= iYII ei YII (w−dk0) tTE , (3.41)

∂uG
y

∂w
= i

√
C ei

√
Cw g+

TE − i
√

C e−i
√

C(w−dk0) g−TE . (3.42)

Finally, writing the boundary matching conditions

−E I
y(x, 0) + E G

y (x, 0) = 0 , −H I
x(x, 0) + H G

x (x, 0) = 0

at z = 0, and

+E G
y (x, d) − E II

y (x, d) = 0 , +H G
x (x, d) − H II

x (x, d) = 0

at z = d into one matrix equations for the unknown integrating constants rTE, g+
TE,

g−TE, tTE gives the large 4(2N + 1) × 4(2N + 1) linear algebraic system (where the
second and the fourth block equations have been multiplied by −i)





−I I ei
√

Cdk0 0

YI

√
C −

√
Cei

√
Cdk0 0

0 ei
√

Cdk0 I −I

0
√

Cei
√

Cdk0 −
√

C −YII









rTE

g+
TE

g−TE

tTE



 =





e0

nI cos θ e0

0
0



 (3.43)
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denoted in the further text as

ATE ξTE = bTE . (3.44)

It should be noted that in most practical measurements one does not actually need
the full solution ξTE. Typically, only the zeroth order mode of rTE, which can be
expressed as

r0,TE = (eT
0 , 0) ξTE = eT

0 rTE (3.45)

is required.
If we use the unscaled blocks of unknowns ĝ−TE and t̂TE, see (3.17) and (3.38), the

matrix of the linear algebraic system (3.43) will have the last two columns multiplied
by the corresponding factors, which will increase its condition number and make it
less suitable for numerical calculations.

3.6. Subtleties of the discretization. It will be beneficial in the long run to
delay further derivation for a moment, and recall the individual steps of the derivation
leading to the system of the linear algebraic equations (3.43) above. Using Maxwell’s
equations and assuming a planar time-harmonic wave, we have derived the second
order equation

∆Ey = −k2
0 εr(x)Ey (3.46)

for the electric field component Ey. Then we have considered Fourier expansions

Ey (x, z) =

∞∑

s=−∞
fs(z) ei (kI sin θ+s 2π

p )x , εr (x) =

∞∑

h=−∞
ǫh ei h 2π

p
x , (3.47)

where the second reflects the dependence of εr on x in the grating region. Since
εr is space invariant in the superstrate and in the substrate, substitution for Ey

into (3.46) yields decoupled second order differential equations for the unknown coef-
ficients fs, s = 0,−1, 1, . . . , see (3.11). Writing down the solution for a finite subset
f−N , . . . , f0, . . . , fN , which means truncation of the first expansion in (3.47), gives
finally the truncated approximation E I

y and E II
y to the solution in the superstrate

and in the substrate respectively, see (3.24)-(3.30).
In the grating region the situation is more complicated due to the fact that εr(x) is

not space invariant there, and εr Ey represents the product of two Fourier series (3.47),

e−i kI x sin θ εr Ey =

+∞∑

h=−∞
ǫh ei h 2π

p
x

+∞∑

s=−∞
fs(z) ei s 2π

p
x

=
+∞∑

j=−∞

{
+∞∑

s=−∞
ǫj−s fs(z)

}
ei j 2π

p
x

= lim
N→∞

N∑

j=−N

(
lim

M→∞

M∑

s=−M

ǫj−s fs(z)

)
ei j 2π

p
x , (3.48)

where the last line represents the precise formulation. Considering the particular
simultaneous truncation with a fixed M = N , we get the truncated approximation
E G

y to the solution in the grating region. Matching E I
y, E G

y and E II
y , H I

x, H G
x and

H II
x on the boundaries gives the algebraic system (3.43) for the integrating constants.
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The last line of the identity (3.48) represents one of the crucial points of the
whole derivation. The two functions εr(x) and e−ikI x sin θEy(x, z) are periodic in
the x direction with the period p; these are expanded into Fourier series and then
multiplied. Their multiple is expressed as a Fourier series and then approximated by
the simultaneous truncation

e−i kI x sin θ εr(x)Ey(x, z) = lim
N→∞

N∑

j=−N

ψ
(N)
1,j (z) ei j 2π

p
x , (3.49)

where

ψ
(N)
1,j (x) =

N∑

s=−N

ǫj−s fs(z) (3.50)

is also a truncated approximation to the true Fourier amplitude

ψ1,j (z) =
+∞∑

s=−∞
ǫj−s fs(z) , (3.51)

known in the literature as Laurent’s rule [3, p. 240], [6, 7], [9, Chapter IV], though the
principle can be linked to the summation rule by Cauchy, see [3, p. 227]. Here every-
thing relies upon convergence of the limit of the simultaneously truncated expansion
in (3.49).

In general, when the multiplied functions are piecewise-smooth bounded peri-
odic functions which have no concurrent discontinuities, which is satisfied in (3.49)
using our assumption that εr(x) and Ey(x, z) are sufficiently smooth, the series con-
verges [6, Theorem 1, p. 1872], [7, Theorem 4.3. p. 122]. Then the infinite set of
differential equations (3.23) is truncated into the set of 2N + 1 differential equations
for 2N + 1 unknown functions, see (3.32), and the solution uG

y is expressed in the
matrix form by (3.37). In other words, the ODE problem (3.23) for infinite number
of unknown functions fj(w) is approximated using the truncated Laurent’s rule by
the set of 2N + 1 ordinary differential equations for uG

y (w) = [f−N (w), . . . , fN (w)]T .
The whole solution process is justified by the convergence of the limit on the right
hand side of (3.49) to the function on the left hand side of that identity. Without
convergence and equality in (3.49), the truncation would lead to an incorrect result,
since the solution of the truncated problem would in general not converge for N → ∞
to the solution of the original problem. Here the convergence is meant point-wise, not
in a norm which ignores sets of measure zero, see [7, Section 4.4.2].

The considerations above may seem obvious, but it is useful to include them here.
Though the matter is explained in some mathematically oriented papers [6, 7], and
also, though using less rigorous arguments in a more practically focused book [9,
Chapter IV], the consequences have not seemed fully realized by the community of
practitioners. In particular, if we have two piecewise-smooth bounded periodic func-
tions which have concurrent jump discontinuities, then the truncated Laurent’s rule
can not be applied, see [6, Theorem 2, p. 1872], [7, Theorem 4.4, pp. 122-123]. If,
however, the product of the two functions is continuous at the points of their concur-
rent discontinuities, then, under some nonsingularity assumptions, it can be expressed
as a Fourier expansion using the truncated inverse multiplication rule [6, Theorem 3,
p. 1872, relation (22)], [7, Theorem 4.5, p. 123, relation (4.32) and the examples in
Section 4.4.4]. In the derivation of (2.8)-(2.9) we have assumed smooth functions and
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therefore the discussion of discontinuities may seem irrelevant. In physics, however,
one has to deal with modelling of the so called idealized surfaces of discontinuity,
see [13, Chapter 9]. In order to get a good match of the computed results with phys-
ical reality, it is therefore necessary to use truncation rules which in the limit remain
valid in the presence of discontinuities.

It should be emphasized that the truncated inverse multiplication rule, which will
be applied in the following section, cannot be viewed as a mechanical rule derived
simply by the truncation on both sides of the rearranged identities using Laurent’s
rule followed by the inversion of the matrix of truncated coefficients, as inaccurately
interpreted in [9, Section IV.2.1, p. 82, relation (IV.10) and its derivation given there].
Though such derivation may give the correct result, it is neither complete nor math-
ematically correct. It does not prove the convergence of the resulting approximation
of the Fourier expansion, see [7, proof of Theorem 4.5, Appendix A, pp. 136-137] .

The common subtle mistake, which has led to incorrectly discretized formulations

used in practice, is caused by overlooking the following fact. Let JΓK(N)
denotes the

Toeplitz matrix

JΓK(N)
js = γj−s, j, s = −N, . . . , 0, . . . , N (3.52)

generated by the Fourier coefficients of some given function Γ,

Γ (x) =

+∞∑

s=−∞
γs ei s 2π

p
x .

Assume that Γ−1 has no singularities and its Fourier expansion is given by

Γ−1 (x) =

+∞∑

s=−∞
δs ei s 2π

p
x ,

with the corresponding Toeplitz matrix defined analogously to (3.52),

q
Γ−1

y(N)

js
= δj−s, j, s = −N, . . . , 0, . . . , N . (3.53)

Then, in general,

(
JΓK(N)

)−1

6=
q
Γ−1

y(N)
. (3.54)

There are various mathematically well justified identities and formulas containing
infinite matrices which can be useful here, see [7, Theorems 4.1 and 4.2, Section
3.3]. Classical treatment of the spectral theory of infinite matrices related to the
mathematical foundations of the matrix formulation of quantum mechanics can be
found, together with extensive comments on historical developments and literature
in [14]. For a comprehensive introduction to infinite Toeplitz matrices, with very
valuable comments on existing literature, see [1, Chapter 1].

Without mathematically rigorous justification, identities valid for infinite matri-
ces cannot be (in general) “truncated” and then voluntarily manipulated in further
derivations with the ambiguous argument that the obtained results hold “in the limit”.
The papers by Li [6, 7] are invaluable in demonstration of possible consequences of not
taking into account the fact that numerical approximations do not solve the original
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problem [6, p. 1876], [7, Summary, p. 133]. A rigorous clarification of the relationship
between the solution of the original problem and its numerically computed approxi-
mation is an imperative, not an option which may be left aside.

We end this section with rewriting (3.32) using the notation analogous to (3.52),

d2uG
y

dw2
= −

[
JεrK(N) − Y 2

G

]
uG

y , JεrK(N) ≡ Υ . (3.55)

3.7. TM polarization. Here we will briefly summarize the derivation of the
linear algebraic system analogous to (3.43) for the TM polarization with pointing
out subtle differences between both cases. Since the TE and TM polarization is
treated separately, we can use without any confusion, where appropriate, similar
notations for the magnetic field in the TM polarization as for the electric field in the
TE polarization.

In the superstrate and in the substrate the electric permittivity is space invariant.
Therefore the equation (2.16) for the magnetic field Hy in the superstrate and in the
substrate is in the TM polarization fully analogous to the equation (2.14) for the
electric field in the TE polarization. With the incident magnetic field H inc

y given

by (3.4) and the Fourier expansion for Hy(x, z) analogous to (3.6), the solution H I
y

in the superstrate and H II
y in the substrate is given by the right hand sides of the

identities (3.14) and (3.16). After truncation (similarly to (3.24) and (3.25) we omit
the index N)

H I
y =

N∑

s=−N

u
(s)
I,y (z) ei kxs x , (3.56)

H II
y =

N∑

s=−N

u
(s)
II,y(z) ei kxs x , (3.57)

where

uI
y = [u

(−N)
I,y , . . . , u

(N)
I,y ]T = e−i YIw rTM + eiYIw e0 , (3.58)

uII
y = [u

(−N)
II,y , . . . , u

(N)
II,y ]T = ei YII (w−dk0) tTM , (3.59)

YI and YII are given by (3.27) and (3.28) respectively, and

rTM = [R−N , . . . , R0, . . . , RN ]T ∈ C
2N+1 , (3.60)

tTM = [T−N , . . . , T0, . . . , TN ]T ∈ C
2N+1 , (3.61)

which is, in general, different from rTE and tTE given by (3.26). We use in (3.59) the
same scaling as in (3.16).

In order to derive the truncated approximate solution in the grating, we rewrite
the equation (2.16) for Hy(x, z) in the form

∂2Hy

∂z2
= −εr(x)

{
∂

∂x

[
1

εr(x)

∂Hy

∂x

]
+ k2

0 Hy

}
. (3.62)

Now we need to substitute for Hy and ∂Hy/∂x the Fourier expansions

Hy (x, z) =

+∞∑

s=−∞
fs(z) ei (kI sin θ + s 2π

p
) x , (3.63)

∂Hy

∂x
(x, z) = i

+∞∑

s=−∞
kxs fs(z) ei (kI sin θ + s 2π

p
) x , (3.64)
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and for εr(x) and εr(x) the expansions (3.18) and (3.19) respectively. We observe
that, in the idealized sense, see [13], 1/εr(x) and ∂Hy/∂x are piecewise continuous
with concurrent discontinuities. However, since their product is proportional to Ez,
see (2.17), it is continuous. From [6, Theorem 3, p. 1872], [7, Theorem 4.5, p. 123] (the
nonsingularity assumptions in the statements of the theorems from [6, 7] are satisfied
from the physics of the problem), under our smoothness assumptions, as well as in the
idealized sense, the product can be written using the truncated inverse multiplication
rule

e−i kI x sin θ 1

εr(x)

∂Hy

∂x
= lim

N→∞

+N∑

h=−N

ψ
(N)
2,h (z) ei h 2π

p
x , (3.65)

where

ψ
(N)
2,h (z) = i

N∑

s=−N

(
JεrK(N)

)−1

hs
kxs fs(z) . (3.66)

Consequently,

1

εr(x)

∂Hy

∂x
= lim

N→∞

+N∑

h=−N

ψ
(N)
2,h (z) ei kx,h x , (3.67)

which gives

e−i kI x sin θ ∂

∂x

[
1

εr(x)

∂Hy

∂x

]
= i lim

N→∞

N∑

h=−N

ψ
(N)
2,h (z) kxh ei h 2π

p
x . (3.68)

The product of (the idealized discontinuous) εr(x) with the rest of the right hand
side of (3.62) is again continuous, because the left hand side of (3.62) is continuous
in x. It therefore can be handled by the truncated inverse multiplication rule. Here,

however, the true Fourier amplitudes for the function ∂
∂x

[
1

εr(x)
∂Hy

∂x

]
are not available

and we replace them by their truncated inverse multiplication rule approximations

iψ
(N)
2,h (z) kxh from (3.68), which depend on the truncation limit N ,

e−i kI x sin θ ∂2Hy

∂z2
= − lim

N→∞

N∑

ν=−N

ψ
(N)
3,ν (z) ei ν 2π

p
x , (3.69)

where

ψ
(N)
3,ν (z) =

N∑

h=−N

(s
1

εr

{(N)
)−1

νh

(iψ
(N)
2,h (z) kxh + k2

0 fh(z)) . (3.70)

Substituting for Hy the expansion (3.63) and for ψ
(N)
2,h the expansion (3.66), we obtain

after truncation

∂2fj(z)

∂z2
=

N∑

h=−N

(s
1

εr

{(N)
)−1

jh

{
N∑

s=−N

[(
JεrK(N)

)−1

hs
kxs kxh

]
fs(z) − k2

0 fh(z)

}
,

j = −N, . . . , 0, . . . , N . (3.71)
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With the scaling w = zk0 and the matrix-vector notation for the truncated expansion

H G
y =

N∑

s=−N

fs(w) ei kxs x ≡
N∑

s=−N

u
(s)
G,y(w) ei kxs x, (3.72)

uG
y (w) = [u

(−N)
G,y (w), . . . , u

(N)
G,y (w)]T ≡ [f−N (w), . . . , fN (w)]T , (3.73)

the 2N + 1 differential equations in (3.71), j = −N, . . . , 0, . . . , N , can be written as

d2uG
y

dw2
= −QuG

y (3.74)

where

Q ≡
(s

1

εr

{(N)
)−1 [

I − YG

(
JεrK(N)

)−1

YG

]
≡ Z−1 [ I − YG Υ−1 YG ] , (3.75)

(Υ)−1 =
(
JεrK(N)

)−1

represent the inverse of the Toeplitz matrix (3.34), and

Z−1 =

(s
1

εr

{(N)
)−1

(3.76)

represents the inverse of the Toeplitz matrix with the entries determined by the Fourier
expansion of the inverse of the relative permittivity in the grating region, see (3.19).
Analogously to Υ, the matrix Z is complex symmetric. It should be noted that the
inverse of a Toeplitz matrix is generally not Toeplitz. A solution to (3.75) may be
given in matrix form by

uG
y = ei

√
Q w g+

TM + e−i
√

Q (w−dk0) g−TM , (3.77)

where we use in the second term the same scaling as in (3.37). The square root function
corresponds to the branch with the positive imaginary part. If all eigenvalues of Q are
in the upper half plane, then the signal is not amplified in the direction of propagation,
see the discussion in Subsection 3.4. In some experiments we have, however, observed
some eigenvalues of Q also in the third quadrant, which can be considered as an
artificial loss of passivity due to the discretization. A full analysis of that observation
is yet to be done.

We also need to find the tangential component of the electric field Ex.Using (2.17),

Ex = − 1

−i ε0εr(x)ω + σ(x)

∂Hy

∂z
= −i

(
µ0

ε0

)1/2
1

εr(x) + iσ(x)/(ε0ω)

∂Hy

∂w
.

(3.78)
Since µr = 1, in the superstrate and in the substrate, apart from the thin transition re-
gions, see [13, Chapter 9], εr + iσ/(ε0ω) = n2

I /µr = n2
I and εr + iσ/(ε0ω) = n2

II/µr =
n2

II respectively. Then we can immediately write the truncated approximation for Ex

using (3.56) and (3.57),

E I
x = −i

(
µ0

ε0

)1/2
1

n2
I

N∑

s=−N

∂u
(s)
I,y

∂w
ei kxs x , (3.79)

E II
x = −i

(
1

ε0

)1/2
1

n2
II

N∑

s=−N

∂u
(s)
II,y

∂w
ei kxs x , (3.80)
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where the derivatives ∂uI
y/∂w, ∂uII

y /∂w are given by (3.40) respectively (3.41).
In the grating region the derivation requires more care. Since (the idealized)

∂Hy/∂w is continuous, substituting the Fourier expansions (3.19) and (3.63) gives

e−i kI x sin θ 1

εr(x)

∂Hy

∂w
=

+∞∑

h=−∞
arh ei h 2π

p
x

+∞∑

s=−∞

∂fs(w)

∂w
ei s 2π

p
x

= lim
N→∞

N∑

ν=−N

ψ
(N)
4,ν (w) ei ν 2π

p
x , (3.81)

where

ψ
(N)
4,ν =

N∑

s=−N

ar(ν−s)
∂fs(w)

∂w
. (3.82)

Consequently, after truncation

uG
y =

s
1

εr

{(N) {
i
√

Q ei
√

Qw g+
TM − i

√
Q e−i

√
Q(w−dk0) g−TM

}
, (3.83)

E G
x = −i

(
µ0

ε0

)1/2 N∑

s=−N

u
(s)
G,y ei kxs x . (3.84)

Finally, writing (similarly as in the TE polarization above) the boundary matching
conditions

−H I
y(x, 0) + H G

y (x, 0) = 0 , −E I
x(x, 0) + E G

x (x, 0) = 0

at z = 0, and

+H G
y (x, d) − H II

y (x, d) = 0 , +E G
x (x, d) − E II

x (x, d) = 0

at z = d into one matrix equations for the unknown integrating constants rTM, g+
TM,

g−TM, tTM gives the 4(2N + 1) × 4(2N + 1) linear algebraic system similar to (3.43),

which, recalling
r

1
εr

z(N)

≡ Z, can be written as (with the second and the fourth

equation multiplied by −i)




−I I ei
√

Qdk0 0
1

n2
I

YI Z
√

Q −Z
√

Q ei
√

Qdk0 0

0 ei
√

Qdk0 I −I

0 Z
√

Qei
√

Qdk0 −Z
√

Q − 1
n2

II
YII









rTM

g+
TM

g−TM

tTM



 =





e0
cos θ
nI

e0

0
0



 (3.85)

denoted in the further text as

ATM ξTM = bTM . (3.86)

As in the TE polarization, in practical measurements one typically needs only the
zeroth order mode of rTM,

r0,TM = (eT
0 , 0) ξTM = eT

0 rTM . (3.87)

If we use the unscaled blocks of unknowns

t̂TM = e−i YII dk0 tTM , ĝ−TM = ei
√

Q dk0 g−TM , (3.88)

the last two columns of the matrix of the linear algebraic system (3.85) must be scaled
accordingly.
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3.8. Numerical illustrations. In this section we present some of the results
obtained with the RCWA method. Our aim is to illustrate using a representative
example the numerical behavior of the method and not necessarily to strive to present
an overview of the efficiency of the method. Nevertheless, the importance of issue
of efficiency of the numerical computations will be apparent and will motivate the
following sections which will close the paper.

100 200 300 400 500 600 700 800 900
0

1

2

3

4

5

6

7

Wavelength (nm)

O
pt

ic
al

 In
di

ce
s

Index of Refraction and Extinction for Silicon

 

 
IoR
IoE
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Fig. 3.5. Eigenvalues of the matrices C and Q.

In our experiment, we apply RCWA to a problem computing the zeroth order re-
flection coefficient from a rectangular grating, such as the one depicted in Figure 2.1.
This experiment has its basis in the semiconductor industry, wherein optical instru-
ments measure the reflection coefficients from periodic structures on silicon wafers,
and through an inverse problem, determine the geometry of the measured feature.

In this simple example, the substrate is silicon and the superstrate is air. The
material for the substrate is chosen not merely because of its importance in the semi-
conductor industry, but also because the material exhibits a number of interesting
properties. First, it has a very high index of refraction relative to most materials; for
example, at a wavelength of 500 nm the index of refraction is over 4. Compare this to
the index of refraction of glass, which is approximately 1.5. Second, at wavelengths
in the ultraviolet region (below 280 nm) the index of extinction (the imaginary part
of the complex index of refraction) dominates, with the material behaving more like a
conductor than a dielectric. To illustrate the behavior of the electromagnetic fields for
these two different regimes, we compute a solution to Maxwell’s equation via RCWA
at two wavelengths, 250 and 500 nm. For these wavelengths, the complex indices of
refraction for silicon have been determined experimentally, with nII = 1.580 + 3.632 i

and nII = 4.2975 + 0.07297 i at wavelengths of 250 and 500 nm, respectively. For
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Fig. 3.6. Contour plots of the electric and magnetic fields.

reference, a plot of the indices of refraction and extinction for silicon as a function of
wavelength is depicted in Figure 3.3

The values of the parameters used to describe the rectangular grating are as
follows: the period p = 400, space fraction q = pt/p = 125/400, and the height
d = 300. All geometrical distances are in nm. As it happens, these values are
also representative of the measurement targets one might find in the semiconductor
industry. The incidence angle is for all experiments in this paper θ = 70 degrees.

Figure 3.4 compares the convergence of the zeroth order reflection coefficient
R0 for the TE and TM modes of both wavelengths as a function of the number of
Fourier modes used to compute the fields. The approximation error is computed
as the modulus of the difference between the zeroth order reflection coefficient and
that which is computed for 100 Fourier modes. Note that the convergence is faster
for the TE than the TM modes for both wavelengths, that the convergence of the
TE method is faster for silicon in its dielectric regime ( λ = 500 nm) than in its
more metallic regime (λ = 250 nm), and that the convergence of the TM method is
more monotonic for silicon in its dielectric regime than in its more metallic regime.
Finally, note that the solution converges quickly to the relative accuracy of about
10−3 − 10−4 for relatively few Fourier modes. This property is of particular interest
in the semiconductor industry, due to the importance of the speed of the solution.
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Any greater accuracy of the solution is superfluous due to the measurement precision
of its instruments.

Figure 3.5 plots the complex eigenvalues of the system matrices and for both
wavelengths. We note that as expected the eigenvalues are in the upper half plane.
It has been observed, however, that for cases with materials with large index of
extinction, some of the eigenvalues of Q can drift into the third quadrant of the
complex plane, which causes difficulties in physical interpretation of the computed
solution described above. Interestingly, we have not yet encountered a situation in
which the eigenvalues of C fall outside the upper half-plane, or when any eigenvalue
of Q falls within the fourth quadrant.

Finally, we plot in Figure 3.6 a contour map of the transverse electric and magnetic
fields for the wavelengths λ = 250 nm and λ = 500 nm. The fields are computed with
the field expansion truncated to 10 Fourier modes. Let us point out a few features
in these plots. First, note that the fields hardly penetrate the silicon structure at
the wavelength λ = 250 nm, which demonstrates the property of finite skin-depth
for conductive materials [13]. Second, note that at wavelength λ = 500 nm, the
magnitude of the magnetic field in the dielectric region is much higher than that of
the surrounding air. This is a consequence of the high index of refraction of silicon at
this wavelength. Third, note that the contour lines in the TE mode are smooth across
the material boundaries (shown in light grey), while for the TM mode the contour
lines are almost discontinuous. This is due to the continuity properties of the TE
and TM fields across material boundaries, with the TE field being smooth and the
TM field being almost discontinuous. Finally, note the wavy nature of the contour
line for the TM field at coordinate position x ≈ 150 and z ≈ 50 for the wavelength
λ = 500 nm. This is an artifact of the Fourier decomposition. This feature gradually
disappears as the number of Fourier modes kept in the field expansion grows larger.

4. Open problems in the analysis of the RCWA method. As is stated in
[6], the process of discretization in RCWA presented here can lead to some nontrivial
ambiguities. Some of the approaches found in the literature are not well-justified
mathematically, and have the potential of yielding incorrect results without proper
analysis. While we have dealt with many of these issues here, a number of issues
remain open, which we list below.

One issue is that of the smoothness of the permittivity function within the grating
region. As mentioned, we have presumed for the sake of the derivation that it is
smooth; however, in the literature it is given an idealized mathematical description
as discontinuous at the interface between two distinct materials. The discontinuity
idealization has been treated in the physics literature by referring to the integral
form of Maxwell’s equation and taking appropriate limits, cf. [13, Chapter 9]. Other
means might be through the periodic convolution of the permittivity function with a
distribution which in an appropriate limit becomes the Dirac delta function. A more
detailed treatment of the discontinuity of the fields and permittivities is left, however,
as an open problem.

The reduction of the problem from a countably infinite set of ordinary differential
equation to a finite set yields the problem of how to formally multiply the two series
and take their truncations. Hardy [3, Chapter X] provides a set of formal rules, and
discusses their convergence properties. The applicability of these rules to RCWA
remains an open problem.

Another issue that is not addressed is the issue of the possible additional trunca-
tions. In standard RCWA, if the fields are truncated to order N (consisting of 2N+1
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components), Fourier modes up to order 2N (consisting of 4N+1 components) are used
in the matrices Υ and Z. As is pointed out in [11, Appendix A], this inconsistency
between the number of components for the fields and for the permittivity function
is a consequence of the representation of the truncated problem. It is clear, for ex-
ample, that fewer modes for the permittivity could be used, reducing the matrices Υ
and Z to banded matrices. Taking a cue from signal processing literature, it might
be advantageous for reasons of convergence or conditioning to multiply the Fourier
components of the permittivity function by a suitable windowing function. Again,
such approaches and their analysis remain open.

We have not addressed here the systematic treatment of loss of passivity that
one can observe in the solution of the truncated problem, e.g., the loss of passivity
associated with the eigenvalues of the matrices C and Q that lie in the third quadrant.
The standard approach in RCWA enforces a type of passivity with the eigenvalues
of

√
C and

√
Q lying in the upper half-plane. While this ensures that the matrix

exponentials in (3.42) and (3.83) remain bounded as w becomes large, it has the con-
sequence of mixing waves with different propagation directions, as those eigenmodes
associated with third quadrant eigenvalues of C and Q have a different propagation
direction than those associated with first and second quadrant eigenvalues of C and
Q. While this seems to produce an acceptable solution of the numerical problem, a
complete analysis of this issue and its physical interpretation is yet to be done.

5. Perspectives of algebraic computations within RCWA. The paper
presents, within our abilities, a mathematically justified derivation of the RCWA
discretized approximation to the problem of light diffraction on a simple rectangular
grating. Without a mathematically correct derivation of the truncated approxima-
tion there is a possibility that the discretized problem may not be formed correctly.
From the practical point of view, the message is that although the discretization can
be motivated intuitively or empirically, its justification requires mathematical rigor.
Indeed, it has been observed in practice that an intuitive derivation can fail. There-
fore a step-by-step detailed mathematical examination of methods used in practical
computations is useful.

The solution of Maxwell’s equation by the RCWA method on a simple rectangular
grating given here forms the basis for computing the solution for more complicated
shapes. To extend RCWA to these shapes, it is necessary to approximate the original
shape by a set of vertical regions, or slabs, within which the permittivity is constant
as a function of height. For example, a trapezoid is approximated by a shape in the
form of a ziggurat. This approximation requires the solution of boundary conditions
at the interface of each slab, which results in a system matrix akin to (3.43) or (3.85),
i.e., block tridiagonal with the number of diagonal blocks proportional to the number
of slabs, see, e.g. [2]. Typically, a trade-off must be made in the approximation of the
shape by slabs. A good geometrical approximation of the shape of the grating may
be obtained with many slabs of small height. On the other hand, using such a large
number of slabs makes the computation of integrating constants more demanding.

The dominance of RCWA in the field of scatterometry has been attributed to two
factors. First, RCWA has been shown to be remarkably robust: it is able to reliably
compute the reflection coefficients for the wide range of wavelengths, for arbitrary
shapes and incidence angles. Second, it is able to compute the reflection coefficients
to a relative accuracy of about 10−4 in a reasonably short time. This is crucial as the
industrial application is that of an inverse problem, whereby the reflection coefficients
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as functions of the wavelengths (called the reflection spectra) computed for a parame-
terized structure are matched to the measured information. The time allotted for the
solution of the inverse problem is determined by the hardware, typically between 2
and 10 seconds. In one instantiation of the problem, the matching is performed by an
on-line optimization algorithm, which not only takes many steps to converge, but also
requires as an input to the algorithm not only the measured and computed reflection
spectra but also its Jacobian, i.e., the derivative of the computed reflection spectra
as a function of the parameter vector. The Jacobian is typically approximated using
finite differences. Since the number of optimization parameters is usually between
5 and 10, the number of wavelengths used in the reflection spectra computation is
approximately 100, and the number of steps for convergence is between 10 and 20,
the solution of the inverse problems requires on the order of 10,000 individual re-
flection coefficient computations to be performed. Even when one accounts for the
parallelizability of the problem, the need for computational efficiency is clear.

From this setting a number of interesting problems in numerical linear algebra
arise:

• One problem is computing the solution of the linear system from which the
Fourier components of the fields are computed. Two general approaches can
be taken. One is the solution a linear system consisting of the block tridiag-
onal matrix as is written in this paper, another uses a method of scattering
matrix propagation [9, Section III.6]. Typically, the latter method is used in
industry and is equivalent to a sequential block elimination algorithm.

• Another problem is the issue of efficiently computing the function of matrices,
such as the matrix exponential or square root, which is necessary to fill the
blocks in the system matrix. Since the matrix functions are computed over
the domain of highly structured matrices, there is a possibility of computing
these matrix functions more efficiently than for an arbitrary dense matrix.

• Another issue is that of providing an a priori estimate for the number of slabs
and/or number of Fourier modes required to achieve a given accuracy. This
remains an open problem. Also, the issue of the convergence of the eigenvalues
of the matrices C and Q, (3.32) and (3.75) respectively, as a function of the
number of Fourier modes is also not well understood.

• Another issue that arises is related to the computation of solutions for gratings
with highly conductive materials. In such as case the matrices Υ and Z,
(3.34) and (3.76) respectively, can be ill-conditioned with respect to inversion.
Recently this phenomenon was studied and attributed to spurious eigenvalues
with small magnitudes, see [10]. A suitable regularization method has yet to
be devised.

• The most pressing problem facing the industrial use of RCWA is the speed
of the solution for three dimensional (doubly periodic) structures. In these
structures an arbitrary two dimensional shape is tiled on the x-y plane, and
requires a two dimensional Fourier decomposition of the permittivity and the
fields. In such a case, the system matrices become much larger, as the dimen-
sionality of the field vectors scale as the product of the number of retained
Fourier components in x and y. Thus, techniques for improving the speed
of the solution for the two dimensional (singly periodic) problems become
essential for three dimensional problems.

We close with the note that approximation of the solution of the linear systems
ATE ξTE = bTE, ATM ξTM = bTM has in RCWA a very particular meaning. We need to
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approximate only one element of the solution vector, namely, that one which is asso-
ciated with the zeroth diffraction order. This indicates that there may be a number of
suitable fast iterative methods to find that element with sufficient accuracy. Recent
results [12] indicate that this quantity can be computed to a given level of accuracy
considerably faster by a moment-matching method than by explicitly computing the
solution of the linear system.
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