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Projections on nested subspaces

A x = b, A ∈ RN×N

An xn = bn

xn approximates the solution x
using the subspace of small dimension.
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Projection processes

xn ∈ x0 + Sn , rn ≡ b−Axn ∈ r0 + ASn ,

where the constraints needed to determine xn are given by

rn ⊥ Cn , C⊥n ⊕ ASn = RN ,

Sn is the search space, Cn is the constraint space.

r0 = r0 |ASn

+ r0 |C⊥
n

≡ r0 |ASn

+ rn , rn ∈ C⊥n ,

the projection should be called orthogonal if Cn = ASn,
and it should be called oblique otherwise.
Illustrations using conjugate gradients and GMRES will be given
in the next few slides.
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Krylov subspace methods

Sn ≡ Kn ≡ Kn(A, r0) ≡ span {r0, Ar0, · · · , An−1r0}.

Krylov subspaces accumulate the dominant information of A with respect
to r0. Unlike in the power method for computing the single dominant
eigenspace, here all the information accumulated along the way is used,

see Parlett (1980), Example 12.1.1.

The idea of projections using Krylov subspaces is in a fundamental way
linked with the problem of moments.
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Conjugate gradients (CG)

‖x− xn‖A = min
u∈x0+Kn(A,r0)

‖x− u‖A

with the formulation via the Lanczos process, w1 = r0/‖r0‖ ,

A Wn = Wn Tn + δn+1wn+1e
T
n , Tn = W T

n (A) A Wn(A) ,

and the CG approximation given by

Tn yn = ‖r0‖e1 , xn = x0 + Wn yn .

In terms of projection processes

Sn = Cn ≡ Kn(A, r0) = R(Wn) , rn = (−1)nwn+1‖rn‖ ⊥ R(Wn) = Cn .



Z. Strakoš 6

Motivation I: CG in finite precision arithmetic
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Motivation I: CG in finite precision arithmetic

A is diagonal positive definite, see S (1991), Greenbaum, S (1992),

λi = λ1 +
i− 1

n− 1
(λn − λ1) γn−i , i = 2, . . . , n− 1,

In the experiment we take λ1 = 0.1 , λn = 100 , n = 24 , γ = 0.55 .

Initial residual has been generated randomly.
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Motivation I: Observations

● Rounding errors can cause large delays.

● They may cause an irregular staircase-like behaviour.

● Local decrease of error says nothing about the total error.

● Stopping criteria must be based on global information.

● It must be justified by rigorous rounding error analysis.

Golub and S (1994),
S and Tichý (2002, 2005),

Comput. Methods Appl. Mech. Engrg. (2003).
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Generalized minimal residuals (GMRES)

‖b−A xn‖ = min
u∈x0+Kn(A,r0)

‖b− A u‖

with the formulation via the Arnoldi process

A Wn = Wn+1 Hn+1,n , Hn+1,n = W T
n+1(A) A Wn(A) ,

and the GMRES approximation given by

yn = arg min
u
‖‖r0‖e1 − Hn+1,n u‖ , xn = x0 + Wn yn .

In terms of projection processes

Sn ≡ Kn(A, r0) = R(Wn) , Cn ≡ AKn(A, r0) = R(AWn) , rn ⊥ Cn .
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Motivation II: MGS GMRES in finite precision
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Motivation II: Observations

● Despite the loss of orthogonality, the modified Gram-Schmidt
implementation is as accurate as the Householder reflections-based
implementation.

● There is no delay due to rounding errors.

● Loss of orthogonality seems inversely proportional to the normwise
backward error.

● Full loss of orthogonality means that the normwise backward error is
proportional to machine precision.
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Outline

1. Gauss-Christoffel quadrature, moments and CG

2. Convergence of CG in the presence of close eigenvalues

3. Gauss-Christoffel quadrature can be sensitive to small perturbations of
the distribution function

4. Sensitivity of Jacobi matrices to spectral data

5. Back to CG in finite precision arithmetic

6. From MGS GMRES to updating of singular values

7. Golub-Kahan bidiagonalization as a fundamental decomposition of data
and core problems in errors-in-variables modeling

8. MGS GMRES is normwise backward stable
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From Gauss-Christoffel quadrature

to conjugate gradients

and back

1. Gauss-Christoffel quadrature, moments and CG
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1 : Matching moments

Consider a non-decreasing distribution function ω(λ), λ ≥ 0 with the
moments

ξk =

∫ ∞

0

λk dω(λ) , k = 0, 1, . . . .

Find the distribution function ω(n)(λ) with n points of increase λ
(n)
i

which matches the first 2n moments for the distribution function ω(λ) ,

∫ ∞

0

λk dω(n)(λ) ≡
n

∑

i=1

ω
(n)
i (λ

(n)
i )k = ξk, k = 0, 1, . . . , 2n− 1 .
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1 : Gauss-Christoffel quadrature

Clearly,

∫ ∞

0

λk dω(λ) =
n

∑

i=1

ω
(n)
i (λ

(n)
i )k , k = 0, 1, . . . , 2n− 1

represents the n-point Gauss-Christoffel quadrature, see

C. F. Gauss, Methodus nova integralium valores per approximationem
inveniendi, (1814)

C. G. J. Jacobi, Uber Gauss’ neue Methode, die Werthe der Integrale
näherungsweise zu finden, (1826)

With no loss of generality we assume ξ0 = 1 .
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1 : Stieltjes recurrence

Let p1(λ) ≡ 1, p2(λ), . . . , pn+1(λ) be the first n + 1 orthonormal

polynomials corresponding to the distribution function ω(λ) .

Then, writing Pn(λ) = (p1(λ), . . . , pn(λ))T ,

λPn(λ) = Tn Pn(λ) + δn+1 pn+1(λ) en

represents the Stieltjes recurrence, with the Jacobi matrix

Tn ≡















γ1 δ2

δ2 γ2
. . .

. . .
. . . δn

δn γn















, δl > 0 .
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1 : Algebraic connection - Lanczos

Algebraically, Tn represents the result of the Lanczos process applied to
Tn with the starting vector e1 . Therefore p1(λ) ≡ 1, p2(λ), . . . , pn(λ)
are orthonormal with respect to the innerproduct

(ps, pt) ≡
n

∑

i=1

|(z(n)
i , e1)|2 ps(θ

(n)
i ) pt(θ

(n)
i ) ,

where z
(n)
i is the orthonormal eigenvector of Tn corresponding to the

eigenvalue θ
(n)
i , and pn+1(λ) has the roots θ

(n)
i , i = 1, . . . , n .

Consequently,

ωn
i = |(z(n)

i , e1)|2 , λ
(n)
i = θ

(n)
i ,

Golub and Welsh (1969), . . . . . . , Meurant and S (2006).
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1 : Vector moment problem in CG

Given Ax = b with an SPD A ∈ RN×N , r0 = b−Ax0, w1 = r0/‖r0‖ .
Assume, for simplicity of notation, dim(Kn(A, r0)) = n . Find a linear
SPD operator An on Kn(A, r0) such that

An w1 = A w1 ,

An (A w1) ≡ A2
n w1 = A2w1 ,

...

An (An−2w1) ≡ An−1
n w1 = An−1w1 ,

An (An−1w1) ≡ An
n w1 = Qn (Anw1) ,

where Qn projects onto Kn orthogonally to Cn ≡ Kn .

Vorobyev (1958 R., 1965 E.), Brezinski (1997), Liesen and S (200?)
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1 : Scalar and vector moment problems

With the spectral decomposition of A and An we get the scalar
formulation for matching the 2n scalar moments given above.

Vorobyev (1958 R.), Chapter III,

with references to Lanczos (1950, 1952), Hestenes and Stiefel (1952),
Ljusternik (1956 R., Solution of problems in linear algebra by the method
of continued fractions),

see also Stiefel (1958), Rutishauser (1954, 1959), . . .
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1 : CG ≡ matrix formulation of the Gauss Q

Ax = b , x0 −→
∫ ξ

ζ

f(λ) dω(λ)

↑ ↑

Tn yn = ‖r0‖ e1 ←→
n

∑

i=1

ω
(n)
i f

(

θ
(n)
i

)

xn = x0 + Wn yn

ω(n)(λ) −→ ω(λ)
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1 : Interplay between analysis and algebra

The benefits are not always used in the conjugate gradients literature,
nor in the computational orthogonal polynomials and Gauss-Christoffel
quadrature literature. For the direction from analysis to algebra, it offers an
additional insight into CG. For the other direction, the algebraic formulation
simplifies some old, and opens some new, questions on quadrature.

Numerical stability analysis of the Lanczos recurrences and of the
conjugate gradient method due to

Paige, Parlett, Scott, Simon, Greenbaum, Grcar, Meurant, S, Notay,
Druskin, Knizhnermann, Zemke, Wülling

and others is not used in the literature on computation of the
Gauss-Christoffel quadrature at all.
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Outline

1. Gauss-Christoffel quadrature, moments and CG

2. Convergence of CG in the presence of close eigenvalues

3. Gauss-Christoffel quadrature can be sensitive to small perturbations of
the distribution function

4. Sensitivity of Jacobi matrices to spectral data

5. Back to CG in finite precision arithmetic

6. From MGS GMRES to updating of singular values

7. Golub-Kahan bidiagonalization as a fundamental decomposition of data
and core problems in errors-in-variables modeling

8. MGS GMRES is normwise backward stable
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Exact arithmetic !
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2 : A particular larger problem

Â ∈ R
2N×2N diagonal SPD, ŵ1 ∈ R

2N , obtained by replacing each
eigenvalue of A by a pair of very close eigenvalues of Â sharing the
weight of the original eigenvalue. In terms of the distribution functions,
ω̂(λ) has doubled points of increase but it is very close to ω(λ).

Â, ŵ1 −→ T̂n −→ T̂2N = Ŵ T
2N ÂŴ2N

T̂2N has all its eigenvalues close to those of A.

However, T̂n can be for n ≤ N very different from Tn.
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2 : Lanczos results for A,w1 and Â, ŵ1 :
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2 : CG results for A,w1 and Â, ŵ1 :
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2 : Ritz values in the presence of close eig-s

In the presence of very close eigenvalues, a Ritz value in the exact
Lanczos or CG method initially converges to the cluster as fast as if the
cluster were replaced by a single eigenvalue with the combined weight.

Within a few further steps it converges very fast to one of the eigenvalues,
with another Ritz value converging simultaneously to approximate the rest
of the cluster. In the presence of more than two eigenvalues in a cluster,
the story repeats until all eigenvalues in a cluster are approximated by
individual Ritz values.

The ’additional’ Ritz values in the clusters are, however missing in the
other part of the spectrum, and the convergence of CG is delayed, in
comparison to the single eigenvalues case, by the number of steps
needed to provide the ’missing’ Ritz values.
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2 : Published explanations

The fact that the presence of close eigenvalues affects the convergence of
Ritz values and therefore the rate of convergence of the conjugate
gradient method is well known; see the beautiful explanation given by

van der Sluis and van der Vorst (1986, 1987).

It is closely related to the convergence of the Rayleigh quotient in the
power method and to the so-called ‘misconvergence phenomenon’ in the
Lanczos method, see

O’Leary, Stewart and Vandergraft (1979),
Parlett, Simon and Stringer (1982).
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2 : Caution

Kratzer, Parter and Steuerwalt, Block splittings for the conjugate gradient
method, Computers and Fluids 11, (1983), pp. 255-279. The statement
on p. 261, second paragraph, in our notation says:

The convergence of CG for A, w1 and Â, ŵ1 ought to be similar;
at least ‖x̂− x̂N‖Â should be small.

Similar statements can be found in several later papers and some books.
The arguments are based on relating the CG minimizing polynomial to the
minimal polynomial of A. For some distribution of eigenvalues of A ,
however, its minimal polynomial (normalized to one at zero) can have
extremely large gradients and therefore it can be very large at points even
very close to its roots (here at the eigenvalues of Â ) .
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Outline

1. Gauss-Christoffel quadrature, moments and CG

2. Convergence of CG in the presence of close eigenvalues

3. Gauss-Christoffel quadrature can be sensitive to small perturbations of
the distribution function

4. Sensitivity of Jacobi matrices to spectral data

5. Back to CG in finite precision arithmetic

6. From MGS GMRES to updating of singular values

7. Golub-Kahan bidiagonalization as a fundamental decomposition of data
and core problems in errors-in-variables modeling

8. MGS GMRES is normwise backward stable
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3 : CG and Gauss-Ch. quadrature errors

At any iteration step n , CG represents the matrix formulation of the
n-point Gauss quadrature of the R-S integral determined by A and r0 ,

∫ ξ

ζ

f(λ) dω(λ) =
n

∑

i=1

ω
(n)
i f(θ

(n)
i ) + Rn(f) .

For f(λ) ≡ λ−1 the formula takes the form

‖x− x0‖2A
‖r0‖2

= n-th Gauss quadrature +
‖x− xn‖2A
‖r0‖2

.

This was a base for the CG error estimation in
[DaGoNa-78, GoFi-93, GoMe-94, GoSt-94, GoMe-97, . . . ] .
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3 : Sensitivity of the Gauss-Ch. Quadrature
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3 : Simplified problem
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3 : Theorem - O’Leary, S, Tichý (2007)

Consider distribution functions ω(x) and ω̃(x) on [a, b] . Let
pn(x) = (x− x1) . . . (x− xn) and p̃n(x) = (x− x̃1) . . . (x− x̃n) be the
nth orthogonal polynomials corresponding to ω and ω̃ respectively,
with p̂s(x) = (x− ξ1) . . . (x− ξs) their least common multiple.
If f ′′ is continuous on [a, b] , then the difference ∆n

ω,ω̃ between the
approximation In

ω to Iω and the approximation In
ω̃ to Iω̃ , obtained

from the k-point Gauss-Christoffel quadrature, is bounded as

|∆n
ω,ω̃| ≤

∣

∣

∣

∣

∣

∫ b

a

p̂s(x)f [ξ1, . . . , ξs, x] dω(x) −
∫ b

a

p̂s(x)f [ξ1, . . . , ξs, x] dω̃(x)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ b

a

f(x) dω(x) −
∫ b

a

f(x) dω̃(x)

∣

∣

∣

∣

∣

.
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3 : Modified moments do not help
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3 : Summary

1. Gauss-Christoffel quadrature for a small number of quadrature nodes
can be highly sensitive to small changes in the distribution function.
In particular, the difference between the corresponding quadrature
approximations (using the same number of quadrature nodes) can be
many orders of magnitude larger than the difference between the
integrals being approximated.

2. This sensitivity in Gauss-Christoffel quadrature can be observed
for discontinuous, continuous, and even analytic distribution functions,
and for analytic integrands uncorrelated with changes in the
distribution functions and with no singularity close to the interval of
integration.
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Outline

1. Gauss-Christoffel quadrature, moments and CG

2. Convergence of CG in the presence of close eigenvalues

3. Gauss-Christoffel quadrature can be sensitive to small perturbations of
the distribution function

4. Sensitivity of Jacobi matrices to spectral data

5. Back to CG in finite precision arithmetic

6. From MGS GMRES to updating of singular values

7. Golub-Kahan bidiagonalization as a fundamental decomposition of data
and core problems in errors-in-variables modeling

8. MGS GMRES is normwise backward stable
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4 : Sensitivity of the Lanczos recurrences

A ∈ R
N×N diagonal SPD,

A, w1 −→ Tn −→ TN = W T
N A WN

A + E, w1 + e −→ T̃n −→ T̃N = W̃ T
N (A + E) W̃N

T̃N has all its eigenvalues close to that of A.

Is T̃n for sufficiently small perturbations of A, w1 close to Tn?



Z. Strakoš 39

4 : Literature on the subject

Gelfand and Levitan (1951), Burridge (1980),
Natterer (1989),
Xu (1993), Druskin, Borcea and Knizhnermann (2005),

Carpraux, Godunov and Kuznetsov (1996), Kuznetsov (1997),
Paige and van Dooren (1999);

Here, however, sensitivity of Krylov subspaces has to be investigated
as a part of the problem!
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4 : Different view

Computation of the inverse eigenvalue problem - reconstruction of TN

from the nodes and weights:

Stieltjes (1884),

de Boor and Golub (1978), Gautschi (1982, 1983, 2004, 2005),
Gragg and Harrod (1984),
Boley and Golub (1987), Reichel (1991), H. J. Fischer (1998),

Rutishauser (1957, 1963, 1990), Fernando and Parlett (1994), Parlett
(1995), Parlett and Dhillon (97),

Laurie (99, 01);
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4 : Accurate recovery of recursion coefficients

Laurie (99): A constructive proof of the following statement:

Given the weights and the N − 1 positive differences between the
consecutive nodes, the main diagonal entries of the corresponding Jacobi
matrix (shifted by the smallest node) and the off-diagonal entries can be
computed in 9

2N2 + O(N) arithmetic operations, all of which can involve
only addition, multiplication and division of positive numbers.

Consequently, in finite precision arithmetic they can be computed to a
relative accuracy no worse than 9

2N2ε + O(Nε) , where ε denotes
machine precision.
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4 : Sensitivity result

Laurie (99, 01): This result also bounds the conditioning of the problem:

If the weights and the N − 1 positive differences between the
consecutive nodes are perturbed, with the size of the relative
perturbations of the individual entries bounded by some small ǫ ,
then such a perturbation cannot cause a relative change of larger than
9
2N2ǫ + O(Nǫ) in the individual entries of the shifted main diagonal or
off-diagonal of the Jacobi matrix.

The resulting algorithm combines ideas from earlier works from
approximation theory, orthogonal polynomials, and numerical linear
algebra.
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Outline

1. Gauss-Christoffel quadrature, moments and CG

2. Convergence of CG in the presence of close eigenvalues

3. Gauss-Christoffel quadrature can be sensitive to small perturbations of
the distribution function

4. Sensitivity of Jacobi matrices to spectral data

5. Back to CG in finite precision arithmetic

6. From MGS GMRES to updating of singular values

7. Golub-Kahan bidiagonalization as a fundamental decomposition of data
and core problems in errors-in-variables modeling

8. MGS GMRES is normwise backward stable
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5 : CG in finite precision arithmetic
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5 : Back to finite precision CG

Mathematical model of finite precision Lanczos and CG computations,
see

Paige (1971–80), Greenbaum (1989),
S (1991), Greenbaum and S (1992),
(also Parlett (1990)),

Recent review and update in Meurant and S (2006).
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Numerical stability of MGS GMRES

and core problems

in errors-in-variables modeling
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Outline
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6 : Generalized minimal residuals (GMRES)

‖b−A xn‖ = min
u∈ x0+Kn(A,r0)

‖b−A u‖

= min
y
‖‖r0‖ w1 −A Wn y‖ .

Observation (exact arithmetic): ‖b−A xn‖ small −→
w1 must be well approximated by the columns of A Wn .

In order to describe the relationship quantitatively while suppressing the
influence of ‖b‖, ‖A‖ and ‖xn‖ , it seems convenient to relate

‖b− A xn‖
‖b‖+ ‖A‖‖xn‖

with κ

([

w1,
1

‖A‖ A Wn

])

.
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6 : Updating the smallest singular value

Paige, S (2002, SISC)

1√
2
≤ ‖b− A xn‖
‖b‖+ ‖A‖‖xn‖

κ

([

w1,
1

‖A‖ A Wn

])

≤
√

2

1− δ2
n

,

where

δn =
σmin

([

w1,
1

‖A‖ A Wn

])

σmin

([

1
‖A‖ A Wn

]) .

When does the smallest singular value not change (or change a little)
while updating a column?
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6 : Solution - TLS fundamentals

Paige, S (2002, Numerische Math. I) gave the solution within the context
of the orthogonally invariant linear approximation problem:

Ã nonzero N by M matrix, b̃ nonzero N -vector,

Ã x̃ ≈ b̃, (ÃT b̃ 6= 0 for simplicity),

where ≈ means using data corrections of the prescribed type in order to
get the nearest compatible system. When errors are contained in both Ã

and b̃ ,

(Ã + Ẽ) x̃ = b̃ + r̃ , min ‖[r̃, Ẽ]‖F ,

which represents the total least squares problem (TLS).
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Outline

1. Gauss-Christoffel quadrature, moments and CG
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8. MGS GMRES is normwise backward stable
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7 : Sufficient condition for TLS solution

Theorem

If σmin (Ã) > σmin ([b̃ , Ã]) , then the unique TLS solution is given by

[b̃ , Ã] = Ũ Σ̃ Ṽ T =
k+1
∑

i=1

ũi σ̃i ṽT
i , ṽk+1 =

[

ν

w

]

,

x̃ = − 1

ν
w , [r̃ , Ẽ] = − ũk+1 σ̃k+1 ṽT

k+1 .

Golub and Reinsch (1970), Golub (1973), van der Sluis (1975),
Golub and Van Loan (1980), Golub, Hoffman and Stewart (1987).
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7 : Remaining difficulty

The condition σmin (Ã) > σmin ([b̃ , Ã]) is sufficient, but not necessary.
If

σmin (Ã) = σmin ([b̃ , Ã]) ,

then there might be a solution, or it can happen that the TLS formulation
does not have a solution.

Van Huffel, Vandewalle (1991) completed the TLS theory in an ingenious
but complicated way by introducing the concept of a nongeneric solution,
which eliminates some (not all!) unwanted directions in the columnspace
of Ã (nonpredictive colinearities) uncorrelated with the vector b̃ .

The TLS theory has been revisited in
Paige and S (2002, NM I + II), Paige and S (2006).
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7 : Core problem theorem

Let B be a nonzero N by M real matrix and b a nonzero real
N−vector, BT b 6= 0 . Then there exists a decomposition

P T
[

b BQ
]

=

[

b1 B11 0

0 0 B22

]

,

where P−1 = P T , Q−1 = QT , b1 = β1e1 and B11 is a lower bidiagonal
matrix with nonzero bidiagonal elements.

Such a decomposition is given by the Golub-Kahan bidiagonalization of
the matrix [b, B] . Its properties are:
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7 : Core problem theorem - continuation

S1. The matrix B11 has full column rank and its singular values are
simple. Consequently, any zero singular values or repeats that B has
must appear in B22.

S2. The matrix B11 has minimal dimensions, and B22 has maximal
dimensions, over all orthogonal transformations giving the block
structure above, without any additional assumptions on the structure
of B11 and b1.

S3. All components of b1 = β1e1 in the left singular vector subspaces of
B11, i.e., the first elements of all left singular vectors of B11, are
nonzero.

B11 x1 ≈ b1 represents the core approximation problem. The core
problem contains all necessary and sufficient information for solving the
approximation problem with the original data, its TLS solution always
exists and it is unique, x = Q [x1, 0]

T .
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7 : A surprising path

Numerical stability analysis of MGS GMRES led to questions on

nonexistence of the Total Least Squares solution and the LS - TLS
relationship, which resulted in the core problem formulation, Paige and S
(2006), with an alternative proof based on the properties of Jacobi
matrices and the relationship between the Lanczos tridiagonalization and
the Golub - Kahan bidiagonalization in Hnětynková and S (2007).

Further developments: Björck (2005a, 2005b), Van Huffel and Sima
(2005), Sima (2006), Van Huffel, Hnětynková, Plešinger, Sima and S
(200?), Chang, Paige and Titley-Peloquin (2006), ...
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7 : A comment on history

Golub and Kahan would clearly have presented the core problem
decomposition, together with its properties, SVD-based and {Jacobi
matrices, the Lanczos tridiagonalization and the Golub and Kahan
bidiagonalization}-based proof, had the use for it been put to them in
1965. The same is undoubtedly true for Paige and Saunders in 1982.

It is worth reading the founding papers.
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Outline

1. Gauss-Christoffel quadrature, moments and CG

2. Convergence of CG in the presence of close eigenvalues

3. Gauss-Christoffel quadrature can be sensitive to small perturbations of
the distribution function

4. Sensitivity of Jacobi matrices to spectral data

5. Back to CG in finite precision arithmetic

6. From MGS GMRES to updating of singular values

7. Golub-Kahan bidiagonalization as a fundamental decomposition of data
and core problems in errors-in-variables modeling

8. MGS GMRES is normwise backward stable
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8 : Numerical stability of GMRES

Björck (1967), Karlson (1991), Björck and Paige (1992),

Drkošová, Greenbaum, Rozložník and S (1995), Arioli and Fassino
(1996), Rozložník (1997), Greenbaum, Rozložník and S (1997),

Paige and S (2002, NM I + II, SISC), Giraud and Langou (2002), Langou
(2003), Giraud, Graton and Langou (2007),

Paige, Rozložník, and S (2006):

MGS GMRES is normwise backward stable
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Conclusions

● It is good to look for interdisciplinary links and for different lines of
thought. Such as looking at the conjugate gradient method as the
Gauss-Christoffel quadrature, and vice versa!

● Rounding error analysis of iterative methods is not a (perhaps useful but
obscure) discipline for a few academics. It has an impact not restricted
to development of methods and algorithms. Through its wide
methodology and questions it can lead to understanding of general
mathematical phenomena independent of any numerical issues.
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Thank you!
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