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The Lanczos and conjugate gradient algorithms were introduced more than
five decades ago as tools for numerical computation of dominant eigenvalues
of symmetric matrices and for solving linear algebraic systems with symmetric
positive definite matrices, respectively. Because of their fundamental relation-
ship with the theory of orthogonal polynomials and Gauss quadrature of the
Riemann–Stieltjes integral, the Lanczos and conjugate gradient algorithms
represent very interesting general mathematical objects, with highly nonlin-
ear properties which can be conveniently translated from algebraic language
into the language of mathematical analysis, and vice versa. The algorithms
are also very interesting numerically, since their numerical behaviour can be
explained by an elegant mathematical theory, and the interplay between anal-
ysis and algebra is useful there too.

Motivated by this view, the present contribution wishes to pay a tribute to
those who have made an understanding of the Lanczos and conjugate gradi-
ent algorithms possible through their pioneering work, and to review recent
solutions of several open problems that have also contributed to knowledge
of the subject.
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1. Introduction

The Lanczos algorithm is one of the most frequently used tools for com-
puting a few dominant eigenvalues (and eventually eigenvectors) of a large
sparse symmetric n by n matrix A. More specifically, if for instance the
extreme eigenvalues of A are well separated, the Lanczos algorithm obtains
good approximations to these eigenvalues in only a few iterations. Moreover,
the matrix A need not be explicitly available. The Lanczos algorithm only
needs a procedure performing the matrix-vector product Av for a given vec-
tor v. Hence, it can even be used in some applications for which the matrix
cannot be stored as long as one is able to produce the result of the operation
matrix times a given vector. Another interesting property is that when one
just needs the eigenvalues, the Lanczos algorithm only requires a very small
storage of a few vectors (besides storing the matrix where applicable), since
a new basis vector is computed using only the two previous ones.

The Lanczos algorithm constructs a basis of Krylov subspaces which are
defined for a square matrix A of order n and a vector v by

Kk(v,A) = span{v,Av, . . . , Ak−1v}, k = 1, 2, . . . .

Since the natural basis v,Av, . . . , Ak−1v is badly conditioned, the algorithm
constructs an orthonormal basis of Kk(v,A). The vectors in the natural
basis can even become numerically dependent (within the accuracy of the
floating point calculations) for a small value of k. In fact, computing succes-
sively Akv for a given vector v is, with a proper normalization, the basis of
the power method. Unlike the power method, which focuses at the kth step
only on the local information present in Ak−1v, and aims to converge to the
eigenvector corresponding to the eigenvalue of largest modulus, the Lanc-
zos algorithm exploits simultaneously all vector information accumulated
in previous steps. Building an orthonormal basis of Kk(v,A) can therefore
be seen as an effective numerical tool for extracting information from the
sequence v,Av, . . . , Ak−1v while preventing any possible loss which could be
caused by effects of existing dominance.
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The orthonormal basis vectors vj , j = 1, . . . , k are constructed recursively
one at a time and can be considered columns of a matrix Vk = (v1, . . . , vk).
The method also constructs at iteration k an unreduced symmetric tridiago-
nal k by k matrix Tk (which is obtained from Tk−1 by adding one row and one
column) having positive subdiagonal entries, whose eigenvalues are approxi-
mations to the eigenvalues of A: see, for instance, Lanczos (1950), Wilkinson
(1965) and Parlett (1980). Moreover, in exact arithmetic AVm = VmTm for
some m ≤ n, n being the dimension of the problem. It means that the
columns of Vm span an invariant subspace of the operator represented by
A, and the eigenvalues of Tm are also eigenvalues of A.

All these properties are quite nice. However, it has been known since the
introduction of the method by Cornelius Lanczos (1950) that, when used in
finite precision arithmetic, this algorithm does not fulfil its theoretical prop-
erties. In particular, the computed basis vectors lose their orthogonality as
the iteration number k increases. Moreover, as a consequence of the loss
of orthogonality, in finite precision computations multiple approximations
of the original eigenvalues appear within the set of computed approximate
eigenvalues if we do a sufficiently large number of iterations. This phe-
nomenon leads to a delay in the computation of some other eigenvalues.
Sometimes it is also difficult to determine whether some computed approx-
imations are additional copies caused by rounding error effects and the loss
of orthogonality, or genuine close eigenvalues.

The finite precision behaviour of the Lanczos algorithm was analysed in
great depth by Chris Paige in his pioneering PhD thesis, Paige (1971); see
also Paige (1972, 1976, 1980). With no exaggeration, Paige’s work was
revolutionary. He showed that the effects of rounding errors in the Lanczos
algorithm can be described by a rigorous and elegant mathematical theory.
In the spirit of Wilkinson, the theory built by Paige reveals the mechanics of
the finite precision Lanczos algorithm behaviour. It starts with bounds on
the elementary round-off errors at each iteration, and ends up with elegant
mathematical theorems which link convergence of the computed eigenvalue
approximations to the loss of orthogonality. Following Paige, the theory was
further developed and applied by Parlett and Scott (1979), Scott (1979),
Parlett (1980) and Simon (1982, 1984a, 1984b). A forward error analysis
was attempted by Grcar (1981).

Another fundamental step forward, similar in significance to that of Paige,
was made by Anne Greenbaum (1989). On the foundations laid by Paige
she developed a backward-like analysis of the Lanczos algorithm (and also
of the closely related conjugate gradient algorithm). Her ideas, combined
with thoughts of several other authors, stimulated further developments:
see, e.g., Druskin and Knizhnerman (1991), Strakoš (1991), Greenbaum
and Strakoš (1992), Strakoš and Greenbaum (1992), Knizhnerman (1995a)
and Druskin, Greenbaum and Knizhnerman (1998). Recently, new analysis
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of the open problems formulated in the literature has led to work by Zemke
(2003), Wülling (2005, 2006) and Meurant (2006).

The Lanczos algorithm has been implemented and applied in two ways.
In the first way it is applied without any additional measures designed to
limit round-off. The number of iterations is not limited by strict rules and
the ‘good’ eigenvalue approximations are identified by some convergence
tests. In particular, this was advocated by Cullum and Willoughby (1985).
The second way limits the unwanted effects of rounding errors by some form
of reorthogonalization, of varied sophistication. Proposals in this direction
were made by Parlett and Scott (1979), Grcar (1981), Simon (1982) and
Parlett (1992). Here the theory developed by Paige almost immediately led
to successful software implementations. The way the Lanczos algorithm is
used in a particular application depends on a particular goal.

After a period of intensive discussions, particularly concentrated at the
Institute of Numerical Analysis at UCLA (see Hestenes and Todd (1991)
and Golub and O’Leary (1989)), the conjugate gradient (CG) algorithm,
independently introduced by Magnus Hestenes and Eduard Stiefel, was
thoroughly described in their seminal paper, Hestenes and Stiefel (1952).
Intended for solving symmetric positive definite linear systems, it is closely
linked to the Lanczos algorithm. Lanczos used his algorithm to solve linear
systems in Lanczos (1952) but it was already clear in Lanczos (1950) that
it can be used for that purpose. In fact, even though it was not introduced
in this way, one can obtain the Hestenes–Stiefel CG from the Lanczos algo-
rithm by doing an LU factorization (with L lower triangular and U upper
triangular) of the positive definite matrix Tk given by the Lanczos coeffi-
cients (by introducing some intermediate variables). In exact arithmetic
the CG residual vectors are proportional to the Lanczos vectors. In finite
precision, the residual vectors lose their orthogonality just as the Lanczos
vectors do.

The Lanczos algorithm, respectively CG, builds up (in exact arithmetic)
orthogonal bases of Krylov subspaces Kk(v,A), k = 1, 2, . . . . and the basis
vectors can be expressed in terms of polynomials in the matrix A applied
to the initial vector v. Using the spectral decomposition of the symmet-
ric (respectively the symmetric positive definite) matrix A, it is easy to
see that the corresponding polynomials are orthogonal with respect to a
Riemann–Stieltjes integral. Its piecewise constant distribution function is
defined by the points of increase equal to the eigenvalues of A and by the
sizes of the discontinuities equal to the squared components of v in the cor-
responding invariant subspaces. In this way, the Lanczos algorithm and CG
are intimately related to orthogonal polynomials: see Hestenes and Stiefel
(1952) and Fischer (1996). This fact has been emphasized for decades in the
work of Gene Golub, who substantially contributed to the whole field by his
deep understanding of the interconnections between different mathematical



Finite precision Lanczos and CG 475

areas and by sharing his ideas with many collaborators: see, e.g., Gautschi
(2002). The Lanczos algorithm can be viewed as a matrix formulation of
the discretized Stieltjes procedure (see, e.g., Gautschi (1982)), and its roots
can therefore be linked to the works of Stieltjes (1884), Christoffel (1877)
and Darboux (1878). Such interconnections are fundamental to the under-
standing of the Lanczos algorithm and CG behaviour in both exact and
finite precision arithmetic. In particular, in exact arithmetic the A-norm of
the CG error can be written using the Gauss quadrature formula, and this
clearly shows that the convergence rate depends, in a rather complicated
way, on how well the eigenvalues of A are approximated by the eigenvalues
of Tk. This also indicates possible differences in the effect of eigenvalues
from different parts of the spectrum of A on the convergence behaviour. In
finite precision arithmetic the Gauss quadrature formula is also verified, up
to small terms involving the machine precision. However, the appearance
of multiple approximations of the original eigenvalues leads to a delay in
CG convergence.

The concept of delay is essential to analysis of the CG finite precision be-
haviour. In short, delay of convergence in a CG finite precision computation
is determined by the rank-deficiencies of the computed Krylov subspaces.
This understanding emerged from the work of Greenbaum (Greenbaum
1989, Greenbaum and Strakoš 1992) and Notay (1993), and it was strongly
advocated by Paige and Strakoš (1999). Analysis and discussion of the
Gauss quadrature relationship in finite precision arithmetic can be found in
Golub and Strakoš (1994), Strakoš and Tichý (2002) and Meurant (2006).

A finite precision computation does not give the approximate solution
with an arbitrarily small error. The error is not reduced below some level,
called the maximal attainable accuracy. This is not so important for the
Lanczos algorithm, as Paige (1971) shows, but it can become important
in solving highly ill-conditioned linear systems and, in particular, in some
inner iterations within nonlinear optimization algorithms. Maximal attain-
able accuracy of CG has been studied for a long time. The early results
(see, e.g., Wozniakowski (1978, 1980) and Bollen (1984), with a thorough
survey given in Chapter 17 of Higham (2002)) were, however, not appli-
cable to practical implementations. These were analysed more recently by
Greenbaum (1997a, 1994), Sleijpen, van der Vorst and Fokkema (1994),
Sleijpen, van der Vorst and Modersitzki (2001), Björck, Elfving and Strakoš
(1998) and Gutknecht and Strakoš (2000). It turns out that a deteriora-
tion of the maximal attainable accuracy can be caused at a very early stage
of the computation and that CG is unable to correct such a situation in
later iterations.

The authors have previously published some surveys of the Lanczos and
CG algorithms in exact and finite precision arithmetic as parts of more
widely based publications: see Meurant (1999b), Strakoš (1998) and Strakoš
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and Liesen (2005). Following these works, this paper first recalls in Sec-
tions 2 and 3 the basic facts on the Lanczos and CG algorithms in exact
arithmetic. Then we turn to our main goal – to review the main results on
the behaviour of the Lanczos and CG algorithms in finite precision arith-
metic, and to present some recent developments related in particular to the
appearance of multiple computed approximations of simple original eigen-
values. Section 4 is devoted to the Lanczos algorithm and Section 5 to CG.

For simplicity of exposition we adopt in this paper several restrictions.
We will consider real symmetric resp. symmetric positive definite problems.
Restriction to real problems is not substantial; we use it for convenience of
notation. We will not consider nonsymmetric problems, since this extension
would necessarily bring into consideration fundamental issues not present in
the symmetric case, some of them still not fully understood. This would, in
our opinion, distract from the focus of this paper. In particular, for CG we
will assume that the symmetric positive definite matrix A is not close to be-
ing singular. Solving near-singular problems (as in singular problems) needs
specific approaches. Their presentation and the analysis of their behaviour
in finite precision arithmetic is beyond the scope of this paper. We will
consider problems with single right-hand sides only. In particular, we will
not include the block Lanczos algorithm since that would require significant
additional space. Although we understand that preconditioning represents
an unavoidable and fundamental part of practical computations, we con-
centrate here on analysis of basic unpreconditioned algorithms. Most of
the results can be extended to preconditioned algorithms: see Strakoš and
Tichý (2005) and Meurant (2006).

Unless we need to relate the exact arithmetic quantities to the corre-
sponding results of finite precision computations, we do not use any specific
notation for the latter; the meaning will be clear from the context. When
helpful, we will emphasize the distinction by using the word ‘ideally’ to refer
to a result using exact arithmetic, and ‘computationally’ or ‘numerically’ to
refer to a result of a finite precision computation.

2. The Lanczos algorithm

This section briefly describes the Lanczos algorithm in exact arithmetic and
presents bounds for the convergence of the eigenvalue approximations. For
an extensive and thorough description we refer to Parlett (1980).

Strictly speaking, we should not use the term ‘convergence’ since (with a
proper initial vector) the algorithm ideally finds all distinct eigenvalues of
A in less than (or equal to) n iterations. Similarly, the term ‘convergence
of CG’ used throughout the paper must be understood differently from the
classical asymptotic approach: see, e.g., Hackbusch (1994, p. 270), Becker-
mann and Kuijlaars (2002) and Kuijlaars (2006). Here we must analyse
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the behaviour from the start since there is no transient phase which can
be skipped, just as there is no asymptotic phase which eventually describes
convergence.

2.1. Basic properties of the Lanczos algorithm

Let A be a real n by n nonsingular symmetric matrix and v be a given
n-dimensional vector of Euclidean norm 1. The kth Krylov subspace is
defined by

Kk(v,A) = span{v,Av, . . . , Ak−1v}.
Ideally, as long as k is less than or equal to the order of the minimal
polynomial of v with respect to A (see Chapter VII, §1 and §2 in Gant-
macher (1959)), the subspace Kk(v,A) is of dimension k and the vectors
Ajv, j = 0, . . . , k− 1 are linearly independent. Clearly, for any v the degree
of the minimal polynomial of v with respect to A is always less than or equal
to the degree of the minimal polynomial of A; there always exists a vector
v such that the latter is reached.

Our goal is to construct an orthonormal basis of the Krylov subspace.
Although historically things did not proceed in this way, let us consider
what is now called the Arnoldi algorithm (Arnoldi 1951). This is a variant
of the Gram–Schmidt orthogonalization process applied to the Krylov basis
without assuming A to be symmetric. Starting from v1 = v, the algorithm
for computing the (j + 1)st vector of the basis using the previous ones is

hi,j = (Avj , vi), i = 1, . . . , j,

v̂j = Avj −
j∑
i=1

hi,jv
i,

hj+1,j = ‖v̂j‖, if hj+1,j = 0 then stop,

vj+1 =
v̂j

hj+1,j
.

It is easy to verify that the vectors vj span the Krylov subspace and that
they are orthonormal. Collecting the basis vectors up to iteration k in an
n by k matrix Vk, the relations defining the vector vk+1 can be written in a
matrix form as

AVk = VkHk + hk+1,kv
k+1(ek)T ,

where Hk is an unreduced upper Hessenberg matrix with elements hi,j ,
which means that its elements are nonzero in the upper triangle and on the
first subdiagonal, and zero below this. The vector ek is the kth column of the
k by k identity matrix (throughout this paper, ej denotes the jth column
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of an identity matrix of the size determined by the context). From the
orthogonality of the basis vectors,

V T
k AVk = Hk.

If we suppose that the matrix A is symmetric, then because of the last
relation, Hk is also symmetric, and therefore tridiagonal. Consequently v̂k

and hence vk+1 can be computed using only the two previous vectors vk and
vk−1, and this gives the elegant Lanczos algorithm. Starting from a vector
v1 = v, ‖v‖ = 1, v0 = 0, η1 = 0, the iterations are:

for k = 1, 2, . . .

αk = (Avk, vk) = (vk)TAvk,

v̂k+1 = Avk − αkv
k − ηkv

k−1,

ηk+1 = ‖v̂k+1‖, if ηk+1 = 0 then stop,

vk+1 =
v̂k+1

ηk+1
.

We point out that the orthogonalization of the newly computed Avk against
the previously computed vectors in the Arnoldi algorithm and in the Lanc-
zos algorithm described above corresponds to the classical version of the
Gram–Schmidt orthogonalization. Here the individual orthogonalization
coefficients are computed independently of each other. If a mathematically
equivalent modified Gram–Schmidt orthogonalization is used, then the or-
thogonalization coefficients are computed and the orthogonalization is per-
formed recursively, which in the case of the Lanczos algorithm gives the
following implementation. Starting from v1 = v, ‖v‖ = 1, v0 = 0, η1 = 0:

for k = 1, 2, . . .

uk = Avk − ηkv
k−1,

αk = (uk, vk),

v̂k+1 = uk − αkv
k, (2.1)

ηk+1 = ‖v̂k+1‖, if ηk+1 = 0 then stop,

vk+1 =
v̂k+1

ηk+1
.

Clearly, this version can be implemented by storing two vectors instead of
three. Although mathematically equivalent to the previous version, the last
one advocated by Paige (1976, 1980) and Lewis (1977) can, because of the
relationship between classical and modified Gram–Schmidt orthogonaliza-
tion, be expected to be slightly numerically superior.
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In matrix notation the Lanczos algorithm can be expressed as follows:

AVk = VkTk + ηk+1v
k+1(ek)T ,

where

Tk =




α1 η2

η2 α2 η3

. . . . . . . . .
ηk−1 αk−1 ηk

ηk αk




is an unreduced symmetric tridiagonal matrix with positive subdiagonal
entries storing coefficients of the Lanczos recurrence.

We note that since ‖vk‖ = 1, αk is a so-called Rayleigh quotient. This
implies that

λmin(A) ≤ αk ≤ λmax(A).

We denote the eigenvalues of A (which are real) by

λmin(A) = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax(A),

and the corresponding orthonormal eigenvectors q1, . . . , qn, Q ≡ (q1, . . . , qn).
If ηj �= 0 for j = 2, . . . , n, then AVn = VnTn (v̂n+1 must be orthogonal to

a set of n orthonormal vectors in a space of dimension n and must therefore
vanish). Otherwise there exists an m + 1 < n for which ηm+1 = 0, AVm =
VmTm, and we have found an invariant subspace of A, the eigenvalues of
Tm being a subset of the eigenvalues of A. When the Lanczos algorithm
does not stop before m = n, the eigenvalues of A are simple since A is
similar to the unreduced symmetric tridiagonal matrix Tn. On the other
hand, if A has some multiple eigenvalues, then ηm+1 = 0 for some m+ 1 <
n. Ideally, the Lanczos algorithm cannot detect the multiplicity of the
individual eigenvalues. In exact arithmetic an eigenvalue of A is found as
an eigenvalue of Tm only once.

Let

θ
(k)
1 < θ

(k)
2 < · · · < θ

(k)
k

be the eigenvalues of Tk with the corresponding normalized eigenvectors
zj(k) ≡ (ζ(k)

1,j , . . . , ζ
(k)
k,j )

T , j = 1, . . . , k, Zk ≡ (z1
(k), . . . , z

k
(k)). Since the Lanczos

algorithm can be considered as a Rayleigh–Ritz procedure, the eigenvalues
θ
(k)
j are called Ritz values and the associated vectors xj(k) = Vkz

j
(k) are known

as the Ritz vectors. They are the approximations to the eigenvectors of A
given by the algorithm. The residual associated with an eigenpair (θ(k)

j , xj(k))
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obtained from Tk is

rj(k) = Axj(k) − θ
(k)
j xj(k) = (AVk − VkTk)z

j
(k)

= ηk+1(ek)T z
j
(k) v

k+1

= ηk+1ζ
(k)
k,j v

k+1.

Therefore
‖rj(k)‖ = ηk+1|ζ(k)

k,j |.
We see that for a given k all residual vectors are proportional to vk+1. When
the product of the coefficient ηk+1 with the absolute value of the bottom
element of zj(k) is small, we have a small residual norm. Moreover, using
the spectral decomposition of A and the fact that (in exact arithmetic!)
‖xj(k)‖ = 1,

min
i

|λi − θ
(k)
j | ≤ ‖rj(k)‖ = ηk+1|ζ(k)

k,j |.

Consequently a small residual norm ‖rj(k)‖ means convergence of θ(k)
j to

some eigenvalue of A.

2.2. Relationship to orthogonal polynomials

By using the three-term recurrence, the Lanczos basis vectors v2, v3, . . . can
be expressed in terms of polynomials in the matrix A acting on the initial
vector v1. From (2.1) we see that

vk+1 = pk+1(A)v1, k = 0, 1, . . . , (2.2)

where the polynomials pk satisfy the three-term recurrence (with p0 ≡ 0)

p1(λ) = 1; ηk+1pk+1(λ) = (λ−αk)pk(λ)−ηkpk−1(λ), k = 1, 2, . . . . (2.3)

Let χ1,k(λ) (or, where appropriate, simply χk(λ)) be the characteristic poly-
nomial of Tk (determinant of Tk−λI), so that χ0(λ) = 1, χ1(λ) = (α1 −λ),
χk(λ) = (αk − λ)χk−1(λ) − η2

kχk−2(λ); then for the degree k polynomial

pk+1(λ) = (−1)k
χ1,k(λ)

η2 · · · ηk+1
.

Using the orthogonality of the vectors v1, v2, . . . and the spectral decompo-
sition of A, the normalized Lanczos polynomials p1(λ)=1, p2(λ), p3(λ), . . .
are orthonormal polynomials with respect to a scalar product defined by
the Riemann–Stieltjes integral

(p, q) =
∫ λn

λ1

p(λ)q(λ) dω(λ) =
n∑
l=1

ωl p(λl)q(λl), (2.4)
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where the distribution function ω is a non-decreasing piecewise constant
function with at most n points of increase λ1, . . . , λn. For simplicity of
exposition, suppose that

λ1 < λ2 < · · · < λn,

i.e., all eigenvalues of A are distinct. Then

ω(λ) =




0 if λ < λ1,∑i
l=1 ωl if λi ≤ λ < λi+1,∑n
l=1 ωl = 1 if λn ≤ λ,

where ωl = |(v1, ql)|2 is the squared component of the starting vector v1 in
the direction of the lth invariant subspace of A.

Writing Pk(λ) = (p1(λ), . . . , pk(λ))T , the recurrence for the orthonormal
polynomials can be written in the matrix form

λPk(λ) = TkPk(λ) + ηk+1pk+1(λ)ek.

Since pk+1 is proportional to the characteristic polynomial of Tk, its roots
are the eigenvalues of Tk, that is, the Ritz values θ(k)

j , j = 1, . . . , k.
Since χ1,k(λ) is (apart from multiplication by (−1)k) a monic polynomial

orthogonal with respect to the inner product defined by (2.4) to any poly-
nomial of degree k − 1 or less, it must resolve the following minimization
problem:

(−1)kχ1,k(λ) = arg min
ψ∈Mk

∫ λn

λ1

ψ2(λ) dω(λ), k = 1, 2, . . . , n,

where Mk denotes the set of all monic polynomials of degree less than or
equal to k.

Consider the unreduced symmetric tridiagonal matrix Tk defined above.
It stores the coefficients of the first k steps of the Lanczos algorithm ap-
plied to A with an initial vector v1. The same Tk can be seen as a result
of the Lanczos algorithm applied to Tk with the (k-dimensional) initial vec-
tor e1. Consequently the polynomials p1 = 1, p2, . . . , pk+1 form a set of
orthonormal polynomials with respect to a scalar product defined by the
Riemann–Stieltjes integral

(p, q)k =
∫ λn

λ1

p(λ)q(λ) dω(k)(λ) =
k∑
l=1

ω
(k)
l p(θ(k)

l )q(θ(k)
l ), (2.5)

where the distribution function ω(k) is a non-decreasing piecewise constant
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function with k points of increase θ(k)
1 , . . . , θ

(k)
k ,

ω(k)(λ) =




0 if λ < θ
(k)
1 ,∑i

l=1 ω
(k)
l if θ

(k)
i ≤ λ < θ

(k)
i+1,∑k

l=1 ω
(k)
l = 1 if θ

(k)
k ≤ λ,

and ω
(k)
l = |(zl(k), e1)|2. We see that the first components of the normal-

ized eigenvectors of Tk determine the weights in the Riemann–Stieltjes inte-
gral (2.5). Here pk+1 represents the (k + 1)st orthogonal polynomial in the
sequence defined by (2.4), and, at the same time, the final polynomial with
roots θ(k)

1 , . . . , θ
(k)
k in the same sequence of orthonormal polynomials defined

by (2.5). This fact has the following fundamental consequence, formulated
as a theorem.

Theorem 2.1. Using the previous notation, (2.5) represents the kth Gauss
quadrature approximation to the Riemann–Stieltjes integral (2.4).

Proof. Consider a polynomial Φ(λ) of degree at most 2k− 1. Then we can
write

Φ(λ) = pk+1(λ)Φ1(λ) + Φ2(λ) = pk+1(λ)Φ1(λ) +
k∑
l=2

νlpl(λ) + ν1,

where Φ1(λ), Φ2(λ) are of degree at most k−1 and ν1, . . . , νk are some scalar
coefficients. From the orthogonality of 1, p2(λ), . . . , pk(λ) with respect to
both (2.4) and (2.5) it immediately follows that∫ λn

λ1

Φ(λ) dω(λ) =
∫ λn

λ1

ν1 dω(λ) = ν1 =
∫ λn

λ1

ν1 dω(k)(λ) =
∫ λn

λ1

Φ(λ) dω(k)(λ).

Since χk−1(λ) = −χk(λ)/(λ−θ(k)
l ) + a polynomial of degree at most k−2,∫ λn

λ1

χ2
k−1(λ) dω(λ) = −

∫ λn

λ1

χk−1(λ)
χk(λ)

(λ− θ
(k)
l )

dω(λ)

= −
∫ λn

λ1

χk−1(λ)
χk(λ)

(λ− θ
(k)
l )

dω(k)(λ)

= −
k∑
i=1

ω
(k)
i

[
χk−1(λ)

χk(λ)

(λ− θ
(k)
l )

]
λ=θ

(k)
i

= −ω(k)
l χk−1(θ

(k)
l )χ′

k(θ
(k)
l ).
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Consequently

ω
(k)
l = |(zl(k), e1)|2 = −

∫ λn

λ1
χ2
k−1(λ) dω(λ)

χk−1(θ
(k)
l )χ′

k(θ
(k)
l )

= − η2
2η

2
3 . . . η

2
k

χk−1(θ
(k)
l )χ′

k(θ
(k)
l )

(2.6)

gives for l = 1, . . . , k the weights ω(k)
l of the kth Gauss quadrature applied

to (2.4). It is worth noticing that this identity gives squares of the first
elements of eigenvectors of any unreduced symmetric tridiagonal matrix Tk
in terms of the values of the derivative χ′

k(λ) of its characteristic polynomial
and of the values of the characteristic polynomial χk−1(λ) of the reduced
matrix with the last row and column omitted. Here (and in several other
places below) we do not use the positiveness of the subdiagonal entries of the
coefficient matrices in the Lanczos algorithm, since in the theory of unre-
duced symmetric tridiagonal matrices the positiveness of the subdiagonal
entries is insignificant: see Parlett (1980, Lemma 7.2.1).

Clearly we can consider the Lanczos algorithm applied to Tk with the
initial vector ek, leading to the Riemann–Stieltjes integral analogous to (2.5)
but with the weights |(zl(k), ek)|2. Then, analogously to (2.6),

|(zl(k), ek)|2 = − η2
2η

2
3 . . . η

2
k

χ2,k(θ
(k)
l )χ′

k(θ
(k)
l )

, (2.7)

where χ2,k(λ) is the characteristic polynomial of the reduced matrix with
the first row and column omitted. It is useful to exploit the knowledge about
unreduced symmetric tridiagonal matrices: see, e.g., Wilkinson (1965),
Thompson and McEnteggert (1968), Golub (1973), Paige (1971, 1980), Par-
lett (1980), Elhay, Gladwell, Golub and Ram (1999) and also Strakoš and
Greenbaum (1992). For other equivalent expressions for the components of
the eigenvectors: see Meurant (2006). In particular,

χ2,k(θ
(k)
l )χk−1(θ

(k)
l ) = η2

2η
2
3 . . . η

2
k,

and

|(zl(k), e1)|2 = −χ2,k(θ
(k)
l )

χ′
k(θ

(k)
l )

, |(zl(k), ek)|2 = −χk−1(θ
(k)
l )

χ′
k(θ

(k)
l )

. (2.8)

One of the most beautiful and most powerful features of mathematics is the
translation of a given problem into appropriate language where the problem
can easily be resolved. The Lanczos algorithm and related mathematical
structures offer an excellent example.

• Given A and v1, the Lanczos algorithm is usually formulated in n-
dimensional vector space, and computes the orthonormal basis vectors
v1, v2, . . . of the Krylov subspaces Kk(v1, A), k = 1, 2, . . . .
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• The Lanczos algorithm can be formulated in terms of the unreduced
symmetric tridiagonal matrices Tk, k = 1, 2, . . . , with positive next to
diagonal elements, where Tk is appended by a row and a column at
each Lanczos step.

• The Lanczos algorithm can be formulated as a Stieltjes procedure in
terms of polynomials p1(λ) = 1, p2(λ), p3(λ), . . . orthonormal with
respect to the Riemann–Stieltjes integral (2.4).

• The Lanczos algorithm can be formulated in terms of Gauss quadrature
approximations (2.5) to the original Riemann–Stieltjes integral (2.4).

Thus the purely algebraic formulation of the problem can be translated
to a problem in the classical theory of orthogonal polynomials, and vice
versa. Similarly, classical tools such as moments, continued fractions and
interpolatory quadratures can be directly related to the algebraic tools,
developed a century, or many decades, later. These connections are funda-
mental. They were promoted in modern numerical linear algebra by many
distinguished mathematicians. Of these, particular recognition should be
given to Gene Golub: see, e.g., Gautschi (2002). For a comprehensive text
on generating orthogonal polynomials, Stieltjes procedure and its compu-
tational aspects we refer to Gautschi (1982) and the book Gautschi (2004).
Other useful information can be found, e.g., in Strakoš and Tichý (2002)
and Fischer (1996).

2.3. Approximation from subspaces and the persistence theorem

Approximation results for eigenvalues can be obtained by using the general
theory of Rayleigh–Ritz approximations. Good expositions of the theory
are given by Stewart (2001) or Parlett (1980). Here is an example of such
a result for an eigenpair (λi, qi) of A that we quote from Stewart (2001,
p. 285).

Theorem 2.2. Let U be an orthonormal matrix, let B = UTAU be the
matrix Rayleigh quotient, and let θ be the angle between the eigenvector qi
we want to approximate and the range of U , where Aqi = λiq

i. Then there
exists a matrix E satisfying

‖E‖ ≤ sin θ√
1 − sin2 θ

‖A‖

such that λi is an eigenvalue of B + E.

Then one can apply a general theorem on eigenvalues of perturbed ma-
trices: see Stewart (2001, pp. 285–286).
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Corollary 2.3. With the notation of Theorem 2.2, there exists an eigen-
value µ of B such that

|µ− λi| ≤ ‖E‖.
This shows that if, as a result of an iterative algorithm, we get a small an-

gle θ between the wanted eigenvector qi and U , then we get an approximate
eigenvalue of B = UTAU converging towards the eigenvalue λi of A.

In the case of the Lanczos algorithm we build up a sequence U = Vk
and B = Tk, k = 1, 2, . . . . We will not further describe the a priori error
bounds which can be found elsewhere. We will rather concentrate on a pos-
teriori bounds and properties important for analysis of the finite precision
behaviour.

Let A = QΛQT and Tk = ZkΘkZ
T
k be the spectral decompositions of A

and Tk respectively, Λ = diag (λi), Θk = diag (θ(k)
j ). Denote by V̄k ≡ QTVk

the matrix whose columns are composed of the projections of the Lanczos
vectors on the eigenvectors of A. Since Tk = V T

k AVk = V̄ T
k ΛV̄k, we have the

following relationship between the Ritz values and the eigenvalues of A.

Proposition 2.4. Let Wk = (w1
(k), . . . , w

k
(k)) ≡ QTVkZk = V̄kZk,

wj(k) ≡ (ξ(k)1,j , . . . , ξ
(k)
n,j )

T . Then,

Θk = W T
k ΛWk,

θ
(k)
j =

n∑
l=1

(ξ(k)l,j )2 λl and
n∑
l=1

(ξ(k)l,j )2 = 1.

Proof. The result follows from Tk = V T
k AVk and the eigendecompositions

of A and Tk, W T
k Wk = ZTk V

T
k QQ

TVkZk = I.

Clearly the Ritz values are convex combinations of the eigenvalues. We
have seen above that a small residual norm ‖rj(k)‖ = ηk+1|ζ(k)

k,j | means that

θ
(k)
j is close to some eigenvalue λi of A. The following fundamental result

proved by Paige, which we formulate for its importance as a theorem, shows
that once an eigenvalue λi of A is at step t approximated by some Ritz value
θ
(t)
s with a small residual norm, it must be approximated to a comparable

accuracy by some Ritz value at all subsequent Lanczos steps.

Theorem 2.5. (Persistence Theorem) Let t < k. Then,

min
j

|θ(t)
s − θ

(k)
j | ≤ ηt+1|ζ(t)

t,s |.

Proof. A proof was given by Paige (1971) using the result in Wilkinson
(1965, p. 171); see (3.9) on p. 241 of Paige (1980).
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Theorem 2.5 implies that for every k > t and for any unreduced sym-
metric tridiagonal extension Tk of Tt there is an eigenvalue θ(k)

j of Tk within

ηt+1|ζ(t)
t,s | of θ(t)

s . The situation deserves a formal definition. In order to avoid
possible subtle ambiguities in the exposition, we slightly modify Definition 1
of Paige (1980).

Definition 2.6. We call an eigenvalue θ(t)
s of the t by t unreduced sym-

metric tridiagonal matrix Tt stabilized to within δ ≡ ηt+1|ζ(t)
t,s |. In short, if

ηt+1|ζ(t)
t,s | is small, we call θ(t)

s stabilized to within small δ.

We will see in Section 4 that, for some Ritz value θ(t)
s at step t of the

Lanczos algorithm, it can happen that for any unreduced symmetric tridi-
agonal extension Tk of Tt there is an eigenvalue θ(k)

j very close to θ(t)
s , even

though δ = ηt+1|ζ(t)
t,s | is not small. However the subsequent Theorem 2.7

and results in Section 4 will also show that in such a case θ(t)
s must be a

close approximation to some eigenvalue of A.
Another useful result in Paige (1971) relates the difference θ(t)

s − θ
(k)
j to

the scalar products of the corresponding eigenvectors.

Theorem 2.7. Using the same notation as in Theorem 2.5,

(θ(t)
s − θ

(k)
j )(zj(k))

T

[
zs(t)
0

]
= ηt+1ζ

(t)
t,s ζ

(k)
t+1,j .

Proof. See Paige (1980, p. 241).

Using this theorem, it is interesting to compare Ritz values on successive
steps of the Lanczos algorithm, i.e., take k = t + 1. Then, because of the
interlacing property of Ritz values it is enough to consider j = s or j = s+1,

(θ(t)
s − θ

(t+1)
j )

t∑
l=1

ζ
(t)
l,s ζ

(t+1)
l,j = ηt+1ζ

(t)
t,s ζ

(t+1)
t+1,j .

In particular this leads to

ηt+1|ζ(t)
t,s ζ

(t+1)
t+1,j | ≤ |θ(t)

s − θ
(t+1)
j |,

for j = s or j = s + 1. Assuming that ηt+1 is not small (a small ηt+1

would mean the lucky event indicating closeness to an invariant subspace
and convergence of all Ritz values), this shows that if the difference between
the Ritz values |θ(t)

s − θ
(t+1)
j | from two successive steps is small, then the

product of the last elements of the corresponding eigenvectors is small. This
suggests that Ritz values in two successive steps which are close to each
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other indicate convergence to some eigenvalue of A. This question has been
further investigated by Wülling (2005) following some earlier thoughts in
Strakoš and Greenbaum (1992). We will discuss the related results in more
detail in Section 4.

3. The conjugate gradient algorithm

The conjugate gradient (CG) algorithm was developed independently by
Magnus Hestenes in the US and by Eduard Stiefel in Switzerland, at the
beginning of the 1950s. Then they met during a conference in 1951 and
wrote a famous joint paper, Hestenes and Stiefel (1952). The algorithm was
derived using conjugacy and minimization of functionals. However, it turns
out that it is very closely related to the Lanczos algorithm, which can easily
be applied for solving linear algebraic systems (Lanczos 1950, 1952).

Consider a symmetric positive definite matrix A, right-hand side b, and
the problem Ax = b. With an initial vector x0 and the corresponding
residual r0 = b − Ax0, we can seek an approximate solution to the given
linear system in the form xk = x0 + Vky

k, where Vk is the matrix of the
orthonormal basis vectors of the Krylov subspace Kk(v1, A) generated by
the Lanczos algorithm with v1 = r0/‖r0‖. If we ensure that the residual
rk = b−Axk is orthogonal to Vk, then rn+1 = 0. The resulting method will
give (in exact arithmetic) the exact solution in at most n steps and therefore
will represent a direct method. Since rk = r0 −AVky

k, this will give

0 = V T
k r

k = V T
k r

0 − Tky
k,

implying that the coordinates of the approximate solution in Vk are given
by the solution of the k by k system with matrix Tk. With the background
of the Lanczos algorithm, the whole method can be formulated as

Tky
k = ‖r0‖e1, xk = x0 + Vky

k. (3.1)

The residual rk is proportional to vk+1, since from the matrix form of (2.1)

rk = r0 −AVky
k = r0 − (VkTk + ηk+1v

k+1(ek)T )yk

= −ηk+1(yk, ek) vk+1 = (−1)kvk+1‖r0‖η2 · · · ηk+1/det(Tk),

using the adjugate of Tk. We next show that ideally (3.1) is equivalent to
the CG algorithm of Hestenes and Stiefel (1952).

3.1. Relationship between the formulation of the CG and Lanczos
algorithms

In our notation, the Hestenes–Stiefel formulation of the CG algorithm for
solvingAx = b with a symmetric positive definite matrixA given in Hestenes
and Stiefel (1952) is as follows. Given x0, r0 = b − Ax0, p0 = r0, the
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subsequent approximate solutions xk and the corresponding residual vectors
rk = b−Axk are computed by:

for k = 1, 2, . . .

γk−1 =
‖rk−1‖2

(pk−1, Apk−1)
,

xk = xk−1 + γk−1p
k−1,

rk = rk−1 − γk−1Ap
k−1, (3.2)

βk =
‖rk‖2

‖rk−1‖2
,

pk = rk + βkp
k−1.

With v1 = r0/‖r0‖ it can be seen, for example by induction, that

Kk(v1, A) = span{r0, . . . , rk−1} = span{p0, . . . , pk−1}.
Another straightforward induction (see Hestenes and Stiefel (1952)) gives

(ri, rj) = 0 and (pi, Apj) = 0 for i �= j.

This immediately implies rk⊥Kk(v1, A) and therefore proves the equiva-
lence (up to signs) with the Lanczos algorithm-based formulation described
above. Eliminating pk−1 from the recurrence for the CG residual, we get,
after a simple manipulation,

− 1
γk−1

rk = Ark−1 −
(

1
γk−1

+
βk−1

γk−2

)
rk−1 +

βk−1

γk−2
rk−2. (3.3)

Comparing (3.2) with the Lanczos recurrence (2.1), or more easily with the
3-term recurrence (3.3) for rk, shows that

vk+1 = (−1)k
rk

‖rk‖ . (3.4)

If v̂m+1 = 0 in (2.1), i.e., ηm+1 = 0 and the Lanczos algorithm stops,
then r0, . . . , Am−1r0 are linearly independent while r0 ∈ AKm(v1, A), i.e.,
rm = b−Axm = r0−Aum = 0, um ∈ Km(v1, A). Consequently, termination
of the Lanczos algorithm implies convergence of CG to the exact solution.

The Lanczos coefficients αk, ηk+1 can be determined from the CG co-
efficients γk−1, βk in the following way. Using (3.4) in (3.3) and βk =
‖rk‖2/‖rk−1‖2, we obtain

√
βk

γk−1
vk+1 = Avk −

(
1

γk−1
+
βk−1

γk−2

)
vk −

√
βk−1

γk−2
vk−1,
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and therefore we have for k = 1, 2, . . . the following relations between the
coefficients:

αk =
1

γk−1
+
βk−1

γk−2
, β0 = 0, γ−1 = 1,

ηk+1 =
√
βk

γk−1
.

On the other hand, the CG algorithm (3.2) can be derived from the
Lanczos algorithm by the LDLT decomposition (a variant of the Cholesky
decomposition where L is a lower triangular, here lower bidiagonal, factor
with ones on the diagonal, and D is a diagonal matrix) of the matrix Tk.
This idea, presented in Section 5.7 of Householder (1964), and thoroughly
exploited by Paige and Saunders (1975) (see also Stoer (1983)), offers a very
insightful explanation of the behaviour of CG when A is indefinite. Since
the CG approximate solution satisfies (see (3.1))

xk = x0 + ‖r0‖VkT−1
k e1, k = 1, 2, . . . ,

it does not exist whenever Tk is singular. When the Lanczos algorithm
terminates, the matrix Tm has all its eigenvalues equal to some eigenvalues
of the (symmetric and nonsingular) matrix A. Clearly Tm must also be
nonsingular. An easy exercise shows that, whenever Tk and Tk+1 for any
1 ≤ k < m − 1 are simultaneously singular, then Tk+2, . . . , Tm must also
be singular, a contradiction. Consequently, at least every second Tk in
the sequence T1, . . . , Tm must be nonsingular, which means that the CG
approximation exists at least at every second step. It cannot, in general,
be computed via the formulas (3.2), since the Cholesky decomposition of
the singular Tk does not exist and the implementation (3.2) in such a case
breaks down. If Tk is close to singular, the Cholesky decomposition is poorly
determined numerically for all j > k, and so is the recurrence (3.2).

Paige and Saunders showed in a very instructive way how to compute the
CG approximation xk when it exists, and how to avoid numerical instabil-
ities when Tk is close to singular. Their approach is based on exploiting
the Lanczos algorithm, but it does not require storing the Lanczos basis Vk.
The CG approximations xk are computed recursively with the help of aux-
iliary approximations to the solution which exist at every step and which
define the method called SYMMLQ. They also suggested an effective im-
plementation of the Krylov subspace method MINRES, which minimizes
residual norms and is used for symmetric indefinite problems. Paige and
Saunders (1975) resolved open problems that had arisen from the earlier
work by Fridman (1963) and Luenberger (1969, 1970). The relationship
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between different implementations was further studied by Fletcher (1976),
and a numerically stable variant of the OD algorithm of Fridman (1963)
called STOD was suggested by Stoer and Freund (1982); see the overview
in Stoer (1983).

3.2. Orthogonality and optimality properties

In some important applications leading to systems with symmetric positive
definite matrices it is natural to measure the error in the A-norm,

‖x− u‖A = (x− u,A(x− u))
1
2 ,

since the A-norm can be interpreted as the discretized measure of energy
which is to be minimized: see, e.g., Arioli (2004) and Arioli, Noulard and
Russo (2001). The CG algorithm is, from this point of view, best suited to
solving such problems, since it minimizes the A-norm of the error among
all possible approximations from the same Krylov subspaces,

‖x− xk‖A = min
u∈x0+Kk(v1,A)

‖x− u‖A. (3.5)

Indeed, in order to reach the minimum (3.5), x − xk must be orthogonal
with respect to the inner product defined by the matrix A to the Krylov
subspace Kk(v1, A), i.e.,

0 = (rj , A(x− xk)) = (rj , rk) = (vj+1, rk) for j = 0, . . . , k − 1,

which uniquely determines the approximate solution xk generated by the
CG algorithm described above.

Using the A-orthogonality of the direction vectors p0, p1, p2, . . . , it can
be seen from (3.2) that the kth error, assuming that CG terminates at step
m with xm = x, can conveniently be written

x− x0 =
k∑
l=1

γl−1p
l−1 + x− xk =

m∑
l=1

γl−1p
l−1,

x− xk =
m∑

l=k+1

γl−1p
l−1,

‖x− x0‖2
A =

m∑
l=1

γ2
l−1(p

l−1, Apl−1) =
m∑
l=1

γl−1‖rl−1‖2,

‖x− xk‖2
A =

m∑
l=k+1

γl−1‖rl−1‖2,
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and, finally,

‖x− x0‖2
A =

k∑
l=1

γl−1‖rl−1‖2 + ‖x− xk‖2
A, k = 1, 2, . . . ,m. (3.6)

The last identity reflects the mathematical elegance of the CG algorithm,
but it also demonstrates complications which have to be dealt with in finite
precision arithmetic computations. The derivation of (3.6) presented above
relies upon the global A-orthogonality of all vectors p0, . . . , pm−1,

(pi, Apj) = 0 for i �= j,

which holds ideally, but which is not preserved numerically. Unless (3.6) is
supported by arguments that also hold numerically, it cannot be used for the
results of finite precision computations. This point is of crucial importance.
A patient reader will, however, see in Section 5 that (3.6) indeed holds, up
to a small insignificant inaccuracy, also numerically: see Strakoš and Tichý
(2002).

As the relationship of CG with the Lanczos algorithm suggests, there is of
course a three-term recurrence formulation ideally equivalent to (3.2): see,
e.g., Rutishauser (1959) and Hageman and Young (1981). The three-term
recurrence is reputed to have some disadvantages concerning the maximal
attainable accuracy: see Section 5 and Gutknecht and Strakoš (2000). How-
ever, it is of some interest for parallel computation.

Convergence bounds for CG are typically derived from its polynomial
formulation, which follows from (3.2) (see, e.g., the 3-term recurrence (3.3)
for rk):

rk = ϕk(A)r0, ϕk(0) = 1,

x− xk = ϕk(A)(x− x0),

where ϕk(0) = 1 follows, e.g., from induction on the 3-term recurrence
for rk, while the x − xk expression follows since A is nonsingular. The
3-term recurrences and the definition of the Lanczos polynomials pk in (2.3)
lead to

ϕk(λ) =
pk+1(λ)
pk+1(0)

.

Here the assumption that A is symmetric positive definite guarantees that
all roots of pk are no less than λ1 > 0, and therefore pk(0) �= 0. With the
spectral decomposition of A we can easily obtain the following theorem.
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Theorem 3.1.

‖rk‖2 = ‖r0‖2
n∑
i=1

k∏
l=1

(
1 − λi

θ
(k)
l

)2

ωi,

‖x− xk‖2 = ‖r0‖2
n∑
i=1

k∏
l=1

(
1
λi

− 1

θ
(k)
l

)2

ωi,

‖x− xk‖2
A = ‖r0‖2

n∑
i=1

k∏
l=1

(
1√
λi

−
√
λi

θ
(k)
l

)2

ωi,

where, as in (2.4), ωi = |(v1, qi)|2, v1 = r0/‖r0‖.
Proof. We remark that x− x0 = A−1r0 and

pk+1(λi)2

pk+1(0)2
=

k∏
l=1

(
1 − λi

θ
(k)
l

)2

.

By using this, the proofs become straightforward.

Since ‖x− xk‖A ≤ ‖ϕk(A)‖ ‖x− x0‖A, we have the bound

‖x− xk‖A ≤ min
ϕ∈Πk

max
i

|ϕ(λi)| ‖x− x0‖A, (3.7)

where Πk denotes the set of all polynomials of degree at most k with the
constant term equal to one (value one at zero). Any bound which is based
on (3.7) holds for any initial error (initial residual) and therefore represents
a worst case bound. Therefore, even analytic knowledge of the value

min
ϕ∈Πk

max
i

|ϕ(λi)| =
∣∣∣∣
k+1∑
l=1

(−1)l−1
k+1∏

j=1,j �=l

µj
µj − µl

∣∣∣∣
−1

, (3.8)

where {µ1, . . . , µk+1} is some properly chosen subset of the distinct eigen-
values of A (on which the kth minimax polynomial assumes its maximum
absolute value – see Greenbaum (1979) and Liesen and Tichý (2005)) does
not help in describing possible differences in the behaviour of CG for differ-
ent initial residuals (right-hand sides): cf. Beckermann and Kuijlaars (2002)
and Strakoš and Tichý (2005). The error bound (3.7) with (3.8) is sharp,
i.e., at any given step k it can be attained with a certain initial vector
(which depends on k).

The generally known bound is derived from using the kth degree Cheby-
shev polynomial on the spectral interval [λ1, λn], which gives

‖x− xk‖A
‖x− x0‖A ≤ 2

[(√
κ− 1√
κ+ 1

)k

+
(√

κ+ 1√
κ− 1

)k]−1

≤ 2
(√

κ− 1√
κ+ 1

)k

, (3.9)
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where κ ≡ κ(A) ≡ λn/λ1 denotes the condition number of A. This bound is
frequently attributed to Kaniel (1966) or Daniel (1967), but it appeared even
earlier in the paper by Meinardus (1963); see Li (2005). Though it is useful
in the analysis of many model problems, it cannot be identified, except for
some specific cases, with convergence behaviour of CG. The bound (3.9)
describes linear convergence; it shows that the closer the condition number
is to 1, the faster is the convergence of CG when measured in the A-norm.
However, we have seen in Theorem 3.1, and we are going to see again in the
next section, that CG convergence depends on the distribution of all the
eigenvalues of A and not just on the condition number. If the distribution
of eigenvalues is favourable, then the convergence of CG significantly accel-
erates as k increases. For an early investigation of convergence behaviour
in relation to the spectrum see, e.g., Axelsson and Linskog (1986) and van
der Vorst (1982).

3.3. Estimating quadratic forms and identities for the error norms in CG

We have seen that given A and v1 respectively r0, v1 = r0/‖r0‖, the Lanczos
algorithm and CG can be formulated in terms of the orthogonal polynomi-
als 1, p1(λ), p2(λ), . . . , and therefore in terms of the Gauss quadrature of
the Riemann–Stieltjes integral determined by A, v1. In this way, the Lanc-
zos algorithm and CG can be viewed as matrix representations of Gauss
quadrature. That explains the subtle character of problems related to the
Lanczos and CG convergence behaviour. Here we will go a step forward to
show how the A-norm of the error and the Euclidean norm of the error in
CG can be computed using Gauss quadrature and how they can be bounded
using some of its modifications.

Computing the A-norm of the error εk ≡ x− xk is closely related to ap-
proximating quadratic forms. This has been studied extensively by Gene
Golub with many collaborators during the last thirty-five years. The re-
lationship to Gauss quadrature was summarized in Golub and Meurant
(1994); see also Golub and Meurant (1997), Golub and Strakoš (1994), Fis-
cher (1996), Golub and von Matt (1991) and Calvetti, Morigi, Reichel and
Sgallari (2000). With A symmetric positive definite, the problem considered
by Golub and Meurant (1994) was to find upper and lower bounds (or ap-
proximations) for the entries of a function of a matrix. This problem leads
to the quadratic form

uT f(A)u,

where u is a given vector and f is a smooth (possibly C∞) function on a
given interval of the real line. The more general case uT f(A)v can easily be
converted into the previous one using the well-known identity

uT f(A)v =
1
2
(
uT f(A)u+ vT f(A)v − (u− v)T f(A)(u− v)

)
.
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This problem is of great importance in computational sciences such as com-
putational quantum chemistry or solid state physics. The example we are
interested in for CG is f(λ) = 1/λ. This is related to the problem of com-
puting the A-norm of the error, since the error εk is related to the residual
rk by the equation Aεk = rk. Therefore,

‖εk‖2
A = (Aεk, εk) = (A−1rk, rk) = (rk)TA−1rk.

Using the spectral decomposition of A (as above, for simplicity we assume
that the eigenvalues of A are distinct and ordered, λ1 < λ2 < · · · < λn)

f(A) = Qf(Λ)QT .

Therefore,

uT f(A)u = uTQf(Λ)QTu

= yT f(Λ)y,

=
n∑
i=1

ωif(λi), y ≡ QTu, ωi ≡ |(u, qi)|2.

We assume, without loss of generality, that ‖u‖ = 1. Clearly, as in Section 2,
the last sum is a Riemann–Stieltjes integral, namely

I[f ] = uT f(A)u =
∫ λn

λ1

f(λ) dω(λ),

where, as above, the distribution function ω is the non-decreasing piece-
wise constant function, with points of increase at the eigenvalues of A, and
discontinuities of sizes ω1, . . . , ωn.

We are looking for upper and lower bounds L[f ] and U [f ] for I[f ],

L[f ] ≤ I[f ] ≤ U [f ].

They can be obtained, among other techniques, by using Gauss, Gauss–
Radau and Gauss–Lobatto quadrature formulas; for the pioneering work
see, in particular, Dahlquist, Eisenstat and Golub (1972) and Dahlquist,
Golub and Nash (1978). We shall use the general formula

∫ λn

λ1

f(λ) dω(λ) =
k∑
j=1

ω
(k)
j f(τ (k)

j ) +
M∑
l=1

ϑ
(M)
l f(σ(M)

l ) +Rk,M [f ],

where the weights ω(k)
j , j = 1, . . . , k, ϑ(M)

l , l = 1, . . . ,M, and the nodes

τ
(k)
j , j = 1, . . . , k are to be determined, while the nodes σ(M)

l , l = 1, . . . ,M
are prescribed; see Davis and Rabinowitz (1984), Gautschi (1968, 1985)
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and Golub and Welsch (1969). It is well known (see the excellent survey by
Gautschi (1981)) that

Rk,M [f ] =
f (2k+M)(η)
(2k +M)!

∫ λn

λ1

M∏
l=1

(λ− σ
(M)
l )

[
k∏
j=1

(λ− τ
(k)
j )

]2

dω(λ),

where λ1 < η < λn. IfM = 0, this leads to the Gauss rule with no prescribed
nodes. If M = 1 and we fix the node at one of the end points, σ(1)

1 = λ1

or σ(1)
1 = λn, we have the Gauss–Radau formula. If M = 2 and σ

(2)
1 = λ1,

σ
(2)
2 = λn, this is the Gauss–Lobatto formula.
As presented above, the nodes and weights in the Gauss rule are given by

the eigenvalues of Tk (the Ritz values θ(k)
j ) and the squared first elements

of the normalized eigenvectors of Tk respectively (cf. Golub and Welsch
(1969)), where Tk is the tridiagonal matrix of the recurrence coefficients
generated by the Lanczos algorithm for A and the starting vector v1 = u.
For the Gauss quadrature rule, we have∫ λn

λ1

f(λ) dω(λ) ≡ L
(k)
G [f ] +R

(k)
G [f ],

with

L
(k)
G [f ] =

k∑
j=1

ω
(k)
j f(θ(k)

j ) = (e1)T f(Tk) e1,

R
(k)
G [f ] =

f (2k)(η)
(2k)!

∫ λn

λ1

[
k∏
j=1

(λ− θ
(k)
j )

]2

dω(λ).

Consequently, in order to compute the value of the quadrature, we do not
need to determine its nodes and weights. Suppose f is such that f (2k)(ξ) >
0, ∀k, ∀ξ, λ1 < ξ < λn. Then

LG[f ] ≤ I[f ], k = 1, 2, . . .

and the Gauss rule provides in this case a lower bound for the quadratic
form. Note that this applies for f(λ) = 1/λ.

To summarize, for estimating the A-norm of the error in CG, we obtain

‖ε0‖2
A = (A−1r0, r0) = ‖r0‖2(T−1

n e1, e1),

L
(k)
G

[
1
λ

]
= (T−1

k e1, e1),

‖r0‖2
[
(T−1
n e1, e1) − (T−1

k e1, e1)
]

= ‖r0‖2 R
(k)
G

[
1
λ

]
≥ 0.

and we formulate the key point as a theorem.



496 G. Meurant and Z. Strakoš

Theorem 3.2. Using the previous notation, we get the following identities
for the A-norm of the error in CG:

‖εk‖2
A = ‖r0‖2 R

(k)
G

[
1
λ

]
= ‖r0 ‖2[(T−1

n e1, e1) − (T−1
k e1, e1)],

i.e.,

‖εk‖2
A = ‖r0‖2

[
n∑
j=1

(zj(n), e
1)2

λj
−

k∑
j=1

(zj(k), e
1)2

θ
(k)
j

]
.

Proof. This result is known: see Dahlquist, Golub and Nash (1978). The
proof given here is, however, different from the original one.

By using the definition of the A-norm and Aεk = rk = r0 − AVky
k, we

have

‖εk‖2
A = (Aεk, εk) = (A−1r0, r0) − 2(r0, Vkyk) + (AVkyk, Vkyk).

Since Tkyk = ‖r0‖e1,
(r0, Vkyk) = ‖r0‖2(T−1

k e1, e1),

and

(AVkyk, Vkyk) = (V T
k AVky

k, yk) = (Tkyk, yk) = ‖r0‖2(T−1
k e1, e1),

the first identity is proved. The rest follows from the spectral decomposition
of Tn and Tk.

We can conclude that the square of the A-norm of the CG error at the kth
step divided by ‖r0‖2 represents the remainder of the kth Gauss quadrature
approximation of the corresponding Riemann–Stieltjes integral determined
by A and u = r0/‖r0‖. Therefore the Gauss quadrature (here represented
fully in the matrix form) gives lower bounds for the A-norm of the CG
error. Upper bounds can be obtained with the Gauss–Radau rule if we have
estimates of λ1: see Golub and Meurant (1994). The second identity reflects
the complicated relationship between the CG rate of convergence and the
convergence of the Ritz values towards the eigenvalues of A. Another point
on this is given by the following theorem.

Theorem 3.3. For all k, there exists ϑk, λ1 ≤ ϑk ≤ λn such that the
A-norm of the error is given by

‖εk‖2
A =

‖r0‖2

ϑ2k+1
k

n∑
i=1

[
k∏
j=1

(λi − θ
(k)
j )2

]
ωi,

where ωi = |(v1, qi)|2.
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Proof. The remainder of approximation
∫ λn

λ1
f(λ) dω(λ) with the Gauss

quadrature is

f (2k)(ϑ)
(2k!)

∫ λn

λ1

k∏
j=1

(λ− θ
(k)
j )2 dω(λ),

with λ1 ≤ ϑ ≤ λn. Using f = 1/λ, this gives the statement of the theorem.

This shows that, in exact arithmetic, when a Ritz value has converged to
an eigenvalue of A, we have eliminated the component of the initial residual
in the direction of the corresponding eigenvector of A. For related results
on this subject we refer in particular to Axelsson and Linskog (1986) and
van der Sluis and van der Vorst (1986).

The statement from Theorem 3.2 can be written as

‖ε0‖2
A = ‖r0‖2(T−1

k e1, e1) + ‖εk‖2
A.

This recalls (3.6); restated as a theorem it reads as follows.

Theorem 3.4.

‖ε0‖2
A =

k∑
l=1

γl−1‖rl−1‖2 + ‖εk‖2
A.

This means that the Gauss quadrature approximation (T−1
k e1, e1) can

easily be computed as

L
(k)
G

[
1
λ

]
=

k∑
l=1

γl−1
‖rl−1‖2

‖r0‖2
.

Theorem 3.4 is in fact proved in Theorem 6:1 of Hestenes and Stiefel (1952,
p. 416). The result was later derived and used, independently of the orig-
inal paper, by many authors: see, e.g., Deuflhard (1994), Axelsson and
Kaporin (2001), Greenbaum (1997a) and Arioli (2004). It was used without
being explicitly stated in Golub and Meurant (1997). In some of the given
references the motivation is estimation of the error in CG.

The importance of the formula in Theorem 3.4 was emphasized by Strakoš
and Tichý (2002, 2005). The first paper points to the original reference
Hestenes and Stiefel (1952), proves the equivalence with the Gauss quadra-
ture and gives an elementary proof which does not use the global orthogo-
nality of the residuals or the global A-orthogonality of the direction vectors

‖εk‖2
A − ‖εk+1‖2

A = ‖x− xk+1 + xk+1 − xk‖2
A − ‖εk+1‖2

A

= ‖xk+1 − xk‖2
A + 2(x− xk+1)TA(xk+1 − xk)

= γ2
k(p

k, Apk) + 2(rk+1, xk+1 − xk) = γk‖rk‖2.
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The independence of the result on the global orthogonality is fundamental:
it allows one to perform a detailed rounding error analysis, and to build
up a mathematically rigorous argument that justifies validity of the given
identity in finite precision CG computations. Without such an analysis,
results derived using assumptions violated because of rounding errors are
numerically useless, since they can give misleading information. Estimating
errors in CG will be reviewed in Section 5.

Regarding the Euclidean norm, Theorem 6:3 of Hestenes and Stiefel (1952,
pp. 416–417) gives the following result.

Theorem 3.5.

‖εk‖2 − ‖εk+1‖2 =
‖εk‖2

A + ‖εk+1‖2
A

µ(pk)
,

with
µ(pk) =

(pk, Apk)
‖pk‖2

.

Hence, the Euclidean norm of the error is monotonically decreasing.
There is another expression for the Euclidean norm of the error derived

by Meurant (2005).

Theorem 3.6.

‖εk‖2 = ‖r0‖2[(e1, T−2
n e1) − (e1, T−2

k e1)] − 2
(ek, T−2

k e1)
(ek, T−1

k e1)
‖εk‖2

A.

This result (which is, of course, equivalent to the expression obtained by
Hestenes and Stiefel) allows us, by using the spectral decomposition of Tn
and Tk, to relate the norm of the error to the eigenvalues of A and to the
Ritz values.

4. The Lanczos algorithm in finite precision

As an example, we consider a matrix that was introduced by Strakoš (1991)
and used by Strakoš and Greenbaum (1992). The matrix of dimension n is
diagonal, with the eigenvalues

λi = λ1 +
(
i− 1
n− 1

)
(λ1 − λn) ρn−i, i = 1, . . . , n.

The parameter ρ controls the distribution of the eigenvalues within the
interval [λ1, λn]. We shall use n = 30, λ1 = 0.1, λn = 100 and ρ = 0.8, which
gives well-separated large eigenvalues, and call this matrix D30. Figure 4.1
shows log10 of the elements of |V T

30V30|, each plotted against its index pair
i, j, for the Lanczos algorithm applied to A = D30 with the initial vector v1

having equal components. Ideally V T
30V30 should be the identity matrix.
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Figure 4.1. Matrix D30, log10 of |V T
30V30|.

But numerically this matrix is far from the identity. The magnitude of most
nondiagonal entries is much larger than the level of elementary round-off.
On the contrary, the magnitude of many of them is O(1).

It has been known since Lanczos (1950) that the behaviour of the algo-
rithm in finite precision arithmetic is far from ideal. The Lanczos vectors vk

do not stay orthogonal as they ideally should. This also means that V T
k AVk

is no longer a tridiagonal matrix and the computed tridiagonal matrix Tk
is not the projection of A on the computed Krylov subspace. Therefore
the computed Tn is not similar to A, and the algorithm typically does not
deliver sufficiently accurate numerical approximations to all eigenvalues of
A in n iterations. Moreover, some eigenvalues of A can be numerically ap-
proximated by sets of very close Ritz values (called multiple copies) and it is
difficult to decide whether such Ritz values are good approximations of the
genuine close eigenvalues of A or just artifacts caused by rounding errors.

All these troubles are easily observable from numerical experiments; they
are pointed out in practically all textbook expositions of the effect of round-
ing errors in the Lanczos algorithm. The same attention is, however, not
paid to the analysis and resolution of the worst consequence of rounding er-
rors, which every practical user of the Lanczos algorithm is inevitably faced
with. Since numerically the Lanczos vectors are not orthogonal and they
can very soon become linearly dependent, there is no guarantee whatsoever
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that the norm of the Ritz vector

xj(k) = Vkz
j
(k)

is close to one, where we assume for simplicity that the eigenvector zj(k) of

the computed Tk corresponding to the Ritz value θ(k)
j is determined exactly.

It can even numerically vanish, with norm close to the machine precision. In
such a case it is absolutely unclear whether a small value of the convergence
criterion ηk+1|ζ(k)

k,j | described in Section 2.1 means convergence of θ(k)
j to any

eigenvalue λi of A using the finite precision Lanczos algorithm. Please no-
tice that the trouble is not in computing ηk+1|ζ(k)

kj | more or less accurately
from Tk. We will assume (with negligible and easily quantifiable inaccu-
racy) that the exact spectral decomposition of Tk is known and that the
quantity in question is computed exactly. The trouble consists in the fact
that the derivation of the bound for mini |λi− θ(k)

j | is based on the assump-
tion that V T

k Vk = I, which is usually drastically violated in finite precision
computations.

It may seem that all the mathematical theory behind the Lanczos al-
gorithm is lost because of rounding errors and the loss of orthogonality.
Without a proper rounding error analysis we can not even interpret any
Ritz value as a close approximation to an eigenvalue of A.

The first, and at the same time most original and most significant step in
explaining the behaviour of the Lanczos algorithm in finite precision arith-
metic was made by Chris Paige in his PhD thesis (Paige 1971). He proved
the fundamental result that loss of orthogonality goes hand in hand with
convergence of Ritz values, and developed a theory which formed a basis
for practically all further progress in this area (except, perhaps, investiga-
tions of the maximal attainable accuracy of Krylov subspace linear algebraic
solvers). His results were published in a series of papers, Paige (1972, 1976,
1980). Most of them are also included, together with some subsequent de-
velopments, in the classical monograph by Beresford Parlett (1980).

In this paper we would like to (partially) address the following questions.

• What theoretical properties of the Lanczos algorithm remain (with an
insignificant inaccuracy) true in finite precision arithmetic?

• How can we describe the mechanics of the loss of orthogonality among
the Lanczos vectors?

• What happens numerically to the equivalence of the Lanczos and CG
algorithms as well as to the equivalence with orthogonal polynomials
and Gauss quadrature?

• How do we evaluate convergence of CG in finite precision arithmetic?
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The length of this paper is limited. Unless there is a good expository reason
for presenting a part or the whole proof, in the following review we present
theorems and statements without proofs. The reader interested in proofs or
further details is referred to the original works.

4.1. Finite precision arithmetic

We use the standard model for floating point computations: see, e.g.,
Higham (2002). Where needed we will denote by fl(X) the result of the
computation of X or denote the computed quantities by˜. For any of the
four basic operations (+,−, ∗, /) denoted by op, we have

fl(x op y) = (x op y)(1 + δ), |δ| ≤ uM

uM being the unit round-off which is (1/2)β1−t, where β is the base and t is
the number of digits in the mantissa. This bound is obtained using rounding
to the nearest floating point number, but this is generally the case. In IEEE
standard 754, double precision, (β = 2, t = 53) and

uM = 1.110223024625157 × 10−16,

which is half of the machine precision unit (machine epsilon) εM = β1−t
representing the distance from 1 to the next-larger floating point number.

4.2. Paige’s theory, loss of orthogonality, stabilization and convergence

The fundamental work of Chris Paige started at the end of the 1960s with
some technical reports and papers, Paige (1969a), (1969b), (1970a) and
(1970b), whose results led to his PhD thesis, Paige (1971), which clearly
stated and proved, contrary to the common wisdom of the time, that even
though the Lanczos algorithm in finite precision arithmetic does not keep
its theoretical properties, it nevertheless works well as a reliable and highly
efficient numerical tool for computing highly accurate approximations of
dominant, and often other, eigenvalues of large sparse matrices.

The main contributions of Chris Paige presented in his thesis, or further
developed from it, can be described as follows. He derived bounds for the
local rounding errors in the Lanczos algorithm. He showed that the last
elements of the eigenvectors of the computed tridiagonal matrix Tk indeed
reliably tell us how well the eigenvalues of A are approximated by Ritz
values, and how we can always obtain useful intervals containing eigenvalues
of A. The computed Ritz values always lie between the extreme eigenvalues
of A to within a small multiple of the machine precision. Moreover, at
least one small interval containing an eigenvalue of A is found by the nth
iteration. The algorithm behaves numerically like the Lanczos algorithm
with full reorthogonalization until a very close eigenvalue approximation
is found. Of course, the most (and rightly) celebrated of the results from
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Paige’s thesis is his proof that loss of orthogonality follows a rigorous pattern
and implies that some Ritz values have converged.

Paige used a handy notation to bound combinations of rounding errors.
Given ε1, . . . , εp with each |εi| ≤ uM , then there exists a value α such that

p∏
i=1

(1 + εi) = αp, |α− 1| ≤ uM .

Let D(α) represent a diagonal matrix with elements not necessarily equal
but satisfying the above bounds. Rules for manipulating such quantities are

αpαq = αp+q,

x = α(y + z) ⇒ x = αy + αz,

x =
(
αp

αq

)
y or x = αpαqy ⇒ x = [1 + (p+ q)ε]y,

where |ε| ≤ 1.01uM . Using this notation, for the inner product we have,
neglecting higher order terms in ε,

fl(xT y) = xTD(αn) y = xT y + nε |xT | |y|,
and for the computation of the Euclidean norm,

fl(xTx) = αnxTx.

For the matrix vector product Paige used

fl(Ax) = (A+ δA)x, |δA| ≤ mAε |A|,
where mA is the maximum number of nonzero elements per row. This
leads to

‖δA‖ ≤ mAε ‖ |A| ‖.
Let β be such that ‖ |A| ‖ = β‖A‖. Then

‖δA‖ ≤ mAεβ ‖A‖.
Then Paige’s thesis analysed various implementations of the Lanczos al-

gorithm. This part of his work was published and complemented in Paige
(1972), which justifies (2.1) as the preferable variant of the Lanczos algo-
rithm.

In the subsequent part of the thesis, published in Paige (1976), the im-
plementation (2.1) was studied further. The results were gathered in a
theorem; see also Paige (1980, (2.10)–(2.16)).

Theorem 4.1. Let ε0 = 2(n + 4)εM < 1
12 , ε1 = 2(7 + mAβ)εM . Then

the computed results of the Lanczos algorithm in finite precision arithmetic
satisfy the matrix identity

AVk = VkTk + ηk+1v
k+1(ek)T + δVk,
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where, for j = 1, 2, . . . , k,

|(vj+1)T vj+1 − 1| ≤ ε0,

‖δvj‖ ≤ ε1‖A‖,
ηj+1|(vj)T vj+1| ≤ 2ε0‖A‖,

|η2
j + α2

j + η2
j+1 − ‖Avj‖2| ≤ 4j(3ε0 + ε1)‖A‖2.

Since the local errors collected in δVk are minor, the computed quantities
satisfy the identity which formally looks very close to its exact precision
counterpart. The presence of the extra term δVk has, however, significant
consequences. As an immediate one we get the following theorem.

Theorem 4.2. (Paige 1971, 1976 (21)–(23)) If Rk is the strictly up-
per triangular part of V T

k Vk such that

V T
k Vk = RTk + diag((vj)T vj) +Rk,

then

TkRk −RkTk = ηk+1V
T
k v

k+1(ek)T + δRk,

where δRk is upper triangular with elements such that |(δRk)1,1| ≤ 2ε0‖A‖,
and for j = 2, 3, . . . , k

|(δRk)j,j | ≤ 4ε0‖A‖, |(δRk)j−1,j | ≤ 2(ε0 + ε1)‖A‖,
|(δRk)i,j | ≤ 2ε1‖A‖, i = 1, 2, . . . , j − 2.

This shows how the loss of orthogonality propagates through the algo-
rithm.

A paper which finalizes publication of many of the results presented in
Paige’s thesis was published in 1980 in Linear Algebra and its Applications
(Paige 1980). This paper is truly seminal; in this time of malign overempha-
sis on quantity of publications it should serve as a textbook example of a
paper which could easily be split, although not for good reasons, into several
publishable papers. The effect would have been similar to cutting a large
diamond of superb quality into several pieces of more common size. The
resulting pieces would still be easy to sell, but would be reduced to average
quality. As a single brilliant piece, the paper Paige (1980) will continue to
be read decades after its publication.

The paper starts by recalling the theorems of Paige (1976) quoted above
(in Paige (1980) and here too the values of ε0 and ε1 are twice those of
Paige (1976)). The matrix δRk is bounded by

‖δRk‖2
F ≤ 2[2(5k − 4)ε20 + 4(k − 1)ε0ε1 + k(k − 1)ε21] ‖A‖2,
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where ‖ ·‖F denotes the Frobenius norm. If we denote ε2 =
√

2 max(6ε0, ε1)
then

‖δRk‖F ≤ kε2‖A‖.
The fundamental result relating the loss of orthogonality to eigenvalue con-
vergence is given in the following theorem. We present the proof for its
elegance and instructiveness.

Theorem 4.3. Let zj(k) = (ζ(k)
1,j , . . . , ζ

(k)
k,j )

T be the eigenvector of Tk corre-

sponding to the Ritz value θ(k)
j and xj(k) = Vkz

j
(k) the corresponding Ritz

vector, j = 1, . . . , k. Let ε(k)l,j = (zl(k))
T δRkz

j
(k). Then,

|ε(k)l,j | ≤ kε2‖A‖,
and

(xj(k))
T vk+1 = − ε

(k)
j,j

ηk+1|ζ(k)
k,j |

.

Proof. Multiplying the identity from Theorem 4.2 on both sides with a
different eigenvector of Tk, we have

(zl(k))
T (TkRk −RkTk)z

j
(k) = ηk+1(xl(k))

T vk+1ζ
(k)
k,j + ε

(k)
l,j .

Therefore,

(θ(k)
l − θ

(k)
j )(zl(k))

TRkz
j
(k) = ηk+1(xl(k))

T vk+1ζ
(k)
k,j + ε

(k)
l,j .

If we take l = j, we obtain the result. The bound on ε
(k)
l,j is a consequence

of the bound on the norm of δRk.

Hence, until ηk+1|ζ(k)
k,j | is very small (at least proportional to kε2‖A‖), the

scalar product of the Ritz vector xj(k) and vk+1 is small.
We point out that here and elsewhere in this expository paper the actual

values of the upper bounds for the quantities which are small are not at all
tight for realistic problems. They do not represent indicators of the maximal
attainable accuracy using the Lanczos algorithm. Most of the known worst
case bound techniques inevitably produce values of the bounds which are
largely oversized. But this has little effect, if any, to the value of the results
obtained by the worst case rounding error analysis. Their importance and
strength is in the insight , not in values of the bounds.

Now we come to the point. Ideally, small ηk+1|ζ(k)
k,j | means convergence

of θ(k)
j to some eigenvalue λi of A. Numerically, however, we must take into
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account that ‖xj(k)‖ can be significantly smaller than unity, and, as given in
Paige (1980, relation (3.15)),

min
i

|λi − θ
(k)
j | ≤ ηk+1|ζ(k)

k,j |(1 + ε0) +
√
kε1‖A‖

‖xj(k)‖
.

A bound for the accuracy of the Ritz vector is then (see Paige (1971) and
also Strakoš and Greenbaum (1992, Lemma 3.4))

‖xj(k) − (xj(k), q
i)qi‖ ≤ ηk+1|ζ(k)

k,j | +
√
kε1‖A‖

minl �=i |λl − θ
(k)
j |

.

Up to now, the analysis has been relatively simple and straightforward. This
is no longer true for the remainder. In order to prove convergence of θ(k)

j

for ‖xj(k)‖ significantly different from unity, Paige has ingeniously exploited
properties of unreduced symmetric tridiagonal matrices. In particular, his
concept of stabilized eigenvalues of Tk (see Section 2) plays the main role
here. Paige has proved that if ‖xj(k)‖ is significantly different from unity,
then for some step t < k there must be an eigenvalue of the left principal
submatrix Tt of Tk which has stabilized to within a small δ and is close
to θ(k)

j . This has further been used to prove that if ηk+1|ζ(k)
k,j | is small, i.e.,

if θ(k)
j has stabilized to within a small δ, then it is always close to some

eigenvalue λi of A, regardless the size of ‖xj(k)‖. Consequently, although
the Lanczos algorithm can produce multiple Ritz approximations of single
original eigenvalues, it can never produce any ‘spurious’ eigenvalues, i.e.,
Ritz values for which the convergence test ηk+1|ζ(k)

k,j | is small and θ
(k)
j does

not correspond to any eigenvalue λi of A. We summarize the result of Paige
(1980, pp. 241–249) in the following theorem.

Theorem 4.4. Using the previous notation, for an eigenvalue θ(k)
j of the

matrix Tk computed via the Lanczos algorithm in finite precision arithmetic,
we have

min
i

|λi − θ
(k)
j | ≤ max{2.5(ηk+1|ζ(k)

k,j |+
√
k‖A‖ε1), [(k + 1)3 +

√
3n2] ‖A‖ε2}.

In the particular case when ηk+1|ζ(k)
k,j | is small, the statement can be

strengthened.

Theorem 4.5. If

ηk+1|ζ(k)
k,j | ≤

√
3k2‖A‖ε2,
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then there exists a step 1 ≤ t ≤ k and an index 1 ≤ s ≤ t such that

ηt+1|ζ(t)
s,t | ≤

√
3t2‖A‖ε2 and ‖xs(t)‖ ≥ 1

2
,

min
i

|λi − θ(t)
s | ≤ 5t2‖A‖ε2,

and θ(t)
s , xs(t) is an exact eigenpair for a matrix within 5t2‖A‖ε2 of A.

Please note that we are unable to prove a similar result for the given θ(k)
j .

The difficulty is related to the possible existence of other Ritz values θ(k)
l

close to θ(k)
j . Using (2.8), Theorems 2.5, 2.7 and 4.3, Paige has proved that

if θ(k)
j is well separated from the other Ritz values at the same step, then

‖xj(k)‖ cannot be significantly different from unity; see Paige (1980, (3.21),
p. 243). In particular, if

min
l �=j

|θ(k)
j − θ

(k)
l | ≥ k5/2‖A‖ε2,

we have

0.42 < ‖xj(k)‖ < 1.4.

Then, the result proved for θ(t)
s will also hold for θ(k)

j . The strength of

Theorem 4.4 is in the fact that the statement holds for θ(k)
j no matter how

many other eigenvalues of Tk are close to it.
The following theorem (see Paige (1980, Theorem 4.1)) shows that at least

one eigenvalue of Tn (please recall that in exact arithmetic n represents the
maximal number of steps of the Lanczos algorithm applied to A with any
initial vector) must approximate some eigenvalue of A.

Theorem 4.6. If n(3ε0 + ε1) ≤ 1, then at least one eigenvalue θ(n)
j of Tn

must be within (n+ 1)3‖A‖ε2 of an eigenvalue λi of the (n by n) matrix A.
Moreover, there exist 1 ≤ s ≤ t ≤ n such that

ηt+1|ζ(t)
t,s | ≤ 5t2‖A‖ε2,

i.e., θ(t)
s is within 5t2‖A‖ε2, of λi.

One may question whether an analogous result can be proved for some
Lanczos step k < n. The answer is negative, as follows from the beautiful
result published in Scott (1979), which we now recall. Please note that the
previous theory must hold for any initial vector v1, ‖v1‖ = 1. Scott’s sug-
gestion is to find, using the idea of reconstructing the unreduced symmetric



Finite precision Lanczos and CG 507

tridiagonal matrix from the spectral data (for the history of this classical
problem see Strakoš and Greenbaum (1992, p. 8)) a particular initial vector
constructed in the following way.

Consider the diagonal matrix A = diag(λi). Then (remember the assump-
tion that the eigenvalues of A are distinct) the weights in the corresponding
Riemann–Stieltjes integral (2.4) are determined by ωl = |(v1, el)|2. Us-
ing (2.6) for the last step of the ideal Lanczos algorithm, the same weights
are given by

ωl = |(v1, el)|2 = − η̂

χn−1(λl)χ′
n(λl)

, l = 1, . . . , n, (4.1)

where η̂ is a proper normalization constant chosen such that the constructed
vector v1 will have ‖v1‖ = 1. Clearly, prescribing the eigenvalues of Tn−1

(polynomial χn−1), (4.1) allows us to construct

v1 ≡ (
√
ω1, . . . ,

√
ωn)T

such that the ideal Lanczos algorithm applied to A = diag(λi) with this v1

gives Tn in the last step (and Tn−1 in the step n− 1). The point is that the
eigenvalues Tn−1 (Ritz values θ(n−1)

l ) can be chosen, e.g., as the midpoints of
the intervals determined by the (distinct) eigenvalues of Tn (and A). Then
no Ritz value θ(n−1)

l at the step n−1 of the ideal Lanczos algorithm applied
to A, with v1 constructed as above, approximates an eigenvalue of A and
no ηn|ζ(n−1)

n−1,l | is small, l = 1, . . . , n − 1. But this means, by Theorem 2.5

(the Persistence Theorem), that no ηt+1|ζ(t)
t,s | can be small for any choice

1 ≤ s ≤ t ≤ n− 1. Consequently, for this A and v1 no Ritz value converges
until step n.

A variant of the above construction of v1 works for any given symmetric
matrix A. Moreover, using a clever argument, Scott quantified the result in
the following theorem; see Scott (1979, Section 4, Theorem 4.3).

Theorem 4.7. Let A be a symmetric n by n matrix with eigenvalues
λ1 < λ2 < · · · < λn, δA ≡ minl �=i |λi − λl|. Then there exists a starting
vector v1 such that, for the exact Lanczos algorithm applied to A with v1,
at any step j < n the residual norm

‖Ax(j) − θ(j)x(j)‖
of any Ritz pair θ(j), x(j) will be larger than δA/4.

It should be emphasized that this result does not imply that no Ritz value
can be close to an eigenvalue of A before step n. Under some lucky circum-
stances this can happen. Theorem 4.7 proves that such a situation cannot
be revealed by the residual norm ‖Ax(j)−θ(j)x(j)‖ or by the value ηj+1|ζ(j)

j,l |.



508 G. Meurant and Z. Strakoš

The previous results have remarkable consequences.

• First, since small ηk+1|ζ(k)
k,j | means convergence of θ(k)

j to some eigen-
value λi of A, Theorem 4.3 may be restated:

Orthogonality can be lost only in the directions of converged Ritz vectors.

In contrast to this, we do not have a proof that convergence of a
Ritz value is necessarily accompanied by the loss of orthogonality of
vk+1 in the direction of the corresponding Ritz vector, since ε(k)j,j in
the numerator in the statement of Theorem 4.3 can vanish. We have,
however, not seen an example of such behaviour.

• Second, in the example constructed by Scott there is ideally no con-
vergence of Ritz values until the final step. If this also remains true
numerically, then for the particular A, v1 given by Scott there is no
significant loss of orthogonality among the computed Lanczos vectors
v1, . . . , vn! This means that loss of orthogonality in the finite precision
Lanczos algorithm significantly depends for a given A on the choice
of v1. It should be admitted, though, that the particular initial vec-
tors for which the loss of orthogonality is suppressed typically have
rather weird components varying by many orders of magnitude. In-
terested readers can check the validity of the above statements and
the illustrative properties of the initial vectors suggested by Scott by
numerical experiments.

An argument derived from the investigation of the accuracy of θ(k)
j as the

Rayleigh quotient shows (Paige 1980, (3.48))

λmin(A) − k
5
2 ‖A‖ε2 ≤ θ

(k)
j ≤ λmax(A) + k

5
2 ‖A‖ε2,

which is true whether or not θ(k)
j has stabilized to within a small δ.

We have seen that until some Ritz value stabilizes to within small δ,
the orthogonality of numerically computed Lanczos vectors cannot be lost.
This poses the question as to how closely the Lanczos algorithm in finite
precision arithmetic can resemble the ideal one. Paige gives an elegant
answer in terms of the backward error. In fact, if at step k

ηl+1|ζ(l)
l,j | ≥

√
3k2‖A‖ε2, 1 ≤ j ≤ l ≤ k, (4.2)

then ‖Rk‖2
F < 1/12 and all singular values of Vk lie in the open interval

(0.41, 1.6): see Paige (1980, p. 250). If the Lanczos algorithm is applied with
full reorthogonalization at every step, implemented via the modified Gram–
Schmidt algorithm, then under a mild restriction the computed columns
Vk span the exact Krylov subspace of A + δA (starting with the same v1),
where ‖δA‖ is a multiple of ‖A‖εM (Paige 1970a). The following theorem
(see Paige (1980, Theorem 4.2)) completes the argument.
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Theorem 4.8. Using the previous notation, let (4.2) hold at step k of the
finite precision Lanczos algorithm applied to A with v1. Then there exists
a matrix

A′(k) within (3k)1/2‖A‖ε2 of A

such that, for all l = 1, . . . , k + 1, the Lanczos vectors v1, . . . , vl span the
Krylov subspaces of A′(k) with the initial vector v1.

Consequently, until the computed Krylov subspace contains an exact
eigenvector of a matrix to within 5k2‖A‖ε2 of the original matrix A (see
Theorem 4.5), this subspace is the same as the Krylov subspace generated
by a slightly perturbed matrix, i.e., it is numerically stable in the backward
error sense. It should, however, be noted that generally Krylov subspaces
can be very sensitive to small changes in the matrix A.

We conclude the journey through the fascinating paper of Paige (1980)
with the following comment. Until a Ritz value in steps 1 to k has stabilized
to within

√
3k2‖A‖ε2, the Lanczos algorithm behaves numerically like the

algorithm with full modified Gram–Schmidt reorthogonalization.

4.3. Backward-like analysis of Greenbaum and subsequent results

Consider a fixed step k of the finite precision Lanczos algorithm applied
to A and v1. We ask whether the results computed in steps 1 to k can be
interpreted in some sense as results of the ideal Lanczos algorithm applied
to some matrix B with an initial vector v1

B. Indeed, as we have seen in Sec-
tion 2, the numerically computed matrix Tk storing the Lanczos recurrence
coefficients can be obtained in k steps of the k-dimensional ideal Lanczos
algorithm applied to Tk with the initial vector e1. Components of e1 in the
basis of the (orthonormal) eigenvectors Zk = (z1

(k), . . . , z
k
(k)) of Tk are equal

to the elements of the first row of the matrix Zk; their squares represent-
ing weights in the corresponding k-dimensional Riemann–Stieltjes integral:
see (2.6). Consequently, the matrix Tk can be obtained as a result of the
exact Lanczos algorithm applied to any k by k matrix B having the same
eigenvalues as Tk with the initial vector v1

B having the components in the
corresponding eigenspaces of B equal to the elements of ZTk e

1.
This relationship, although interesting, does not tell us much, since Tk

(or B) can have some eigenvalues close to the eigenvalues of A, but others
can be very different from the eigenvalues of A. As we have seen, the finite
precision Lanczos algorithm may form multiple copies of several eigenvalues
of A, with the multiplicities growing as the number of iteration steps in-
creases. But the algorithm will never give a Ritz value stabilized to within
a small δ that does not approximate any eigenvalue of A. It therefore seems
necessary to impose additional conditions on B and v1

B.
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Given Tk computed in k steps of the finite precision Lanczos algorithm
applied to A with v1, we look for B and v1

B such that all eigenvalues of B
lie close to the eigenvalues of A. In addition to that, the sum of squares
of the components of v1

B in the invariant subspaces corresponding to close
approximations of some eigenvalue λi of A is required to be equal to the
squared component of v1 in the direction of the original eigenvector qi.
Finally, the point is that we require Tk to be determined in the first k steps
of the exact Lanczos algorithm applied to B with v1

B.
When Anne Greenbaum developed her highly original and deeply thought

theory on the foundations laid by Paige, she supported the previous intu-
itive argument with a rigorous mathematical derivation. She showed that
the exact Lanczos recurrence for a matrix whose eigenvalues are clustered
in small intervals can be thought of as a slightly perturbed recurrence, anal-
ogous to that of Theorem 4.1, for a new problem. This new problem has, for
each original cluster interval, one eigenvalue from this interval representing
the whole cluster. The sum of the weights of the original eigenvalues in
each cluster is equal to the weight of its chosen representing eigenvalue: see
Greenbaum (1989). From that she set the goal of proving that every slightly
perturbed Lanczos recurrence, including the finite precision Lanczos algo-
rithm described in Theorem 4.1, is in the sense described above equivalent
to an exact Lanczos recurrence for a matrix whose eigenvalues lie in small
intervals about the eigenvalues of the given original matrix.

While the details of the theorems and proofs of Greenbaum (1989) are
quite involved and have probably not been read carefully by many people,
the basic ideas are ingenious, and the paper should be considered obligatory
classical reading together with Paige (1980). We will try to recall the main
points in order to reveal, within our abilities, the beauty of the construction
given by Greenbaum.

To show that the matrix Tk generated at step k of the finite precision
Lanczos recurrence applied to A with v1 is the same as that given by the
exact Lanczos algorithm applied to some B with v1

B, where all eigenvalues
of B are close to those of A, it is sufficient and also necessary to show that
Tk can be extended to a larger unreduced symmetric tridiagonal matrix
(having positive subdiagonal entries)

Tk+K =




Tk ηk+1

ηk+1 αk+1 ηk+2

ηk+2 αk+2 ηk+3

. . . . . . . . .
ηk+K−1 αk+K−1 ηk+K

ηk+K αk+K




whose eigenvalues are all close to those of A. Then we can simply take
B ≡ Tk+K , v1

B ≡ e1.
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Greenbaum has constructed Tk+K by a hypothetical continuation of the
first k steps of the finite precision Lanczos algorithm applied to A with v1.
The needed situation ηk+K+1 = 0 for someK can be reached in the following
way. Based on the theory of Paige describing the loss of orthogonality among
the Lanczos and Ritz vectors, Greenbaum has identified a set of k−mk vec-
tors in the subspace generated by the computed {v1, . . . , vk} such that the
chosen vectors are mutually (exactly) orthogonal and normalized, and the
newly computed vk+1 is also approximately orthogonal to all of them. Let
these vectors be stored as the columns of the n by (k −mk) matrix Yk−mk

.
Exact orthogonalization of vk+1 against them adds a small additional contri-
bution into the error term. Then the Lanczos recurrence can hypothetically
be continued with the exact orthogonalization of the newly generated Lanc-
zos vectors against each other and with exact orthogonalization of them
against Yk−mk

. From the exact orthogonalization we must get ηk+K+1 = 0
since (Yk−mk

, vk+1, . . . , vk+K), where K = n+mk − k, represents a set of n
orthogonal vectors in the n-dimensional space. Summarizing, we get

AVk+K = Vk+KTk+K + Fk+K ,

where in Fk+K =
(
f1, . . . , fk−1, fk, . . . , fk+K

)
the first k − 1 columns are

the perturbations in the steps of the original finite precision Lanczos algo-
rithm and the other columns fk, . . . , fk+K are perturbations arising from
reorthogonalizations in Greenbaum’s construction. The way this is done
cannot be described here since it involves many details which cannot be
included in this expository paper. The key point is in the choice of the or-
thonormal vectors Yk−mk

; they cannot contain, e.g., any vector in the sub-
space of the converged Ritz vectors corresponding to well-separated Ritz
values, since these represent well-defined directions in which the orthog-
onality is definitely lost. More substantively, the clever choice of Yk−mk

described in Greenbaum (1989) allows her to prove that the perturbation
vectors fk, . . . , fk+K , introduced in the hypothetical continuation of the
finite precision Lanczos algorithm, are small. Paige’s results summarized
in Theorem 4.4 can then be applied to the k + K = n + mk steps of the
hypothetically extended finite precision Lanczos recurrence described above
with ηn+mk+1 = 0, where from the proofs in Paige (1980) it follows that the
size of the errors corresponding to the perturbations fk, . . . , fk+K can be
expressed in term of their norms.

Theorem 4.9. The matrix Tk generated at step k of the finite precision
Lanczos algorithm applied to A with v1 is equal to that generated by an
exact Lanczos recurrence applied to an (n + mk) by (n + mk) matrix B
whose eigenvalues lie within

O(n+mk)3 max{εM‖A‖, ‖fk‖, . . . , ‖fn+mk‖}
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of some of the eigenvalues of A, where fk, . . . , fn+mk are the smallest
perturbations that will cause a coefficient ηj+1 to be zero at or before
step n+mk.

The particular fk, . . . , fn+mk given via the construction of Greenbaum
(1989) are perhaps not the optimal ones, but they are small enough to justify
this approach. Finally, Theorem 4.2 of Strakoš (1991) proves the intuitively
expected fact that any matrix B with the property of Theorem 4.9 must
have at least one eigenvalue close to each eigenvalue of the original matrix
A for which the component of the initial vector v1 in the corresponding
invariant subspace is nonzero.

We remark that the value mk and the matrix B depend on k. The matrix
B with the required property described above is not unique; there might be
other constructions giving similar results with matrices of different sizes. If
we limit the number of steps in the application of the Lanczos algorithm to
some reasonable number N , say, much smaller than (nεM‖A‖)−1, then it is
legitimate to ask whether one can take a matrix B with v1

B such that the
exact Lanczos algorithm applied to B with v1

B will give in steps 1 to N not
necessarily identical, but very close Ritz values, to those provided by the
finite precision Lanczos algorithm applied to A, v1. Here we do not mean
determining B (and v1

B) a posteriori for the step N , but a priori using the
spectral decomposition of A and the components of v1 in the individual in-
variant subspaces. This idea was thoroughly illustrated in Greenbaum and
Strakoš (1992), where B was constructed by spreading sufficiently many
eigenvalues in tiny intervals around each eigenvalue of A. Numerical ex-
periments suggest that the size of such intervals is much smaller than the
technically complicated bounds from Greenbaum (1989) would suggest. A
rigorous mathematical quantification of this approach is still incomplete.
When completed, it would also lead to a possibly very elegant matrix-free
description of the Lanczos algorithm behaviour in finite precision arithmetic
in terms of the Gauss quadratures of a Riemann–Stieltjes integral with a
slightly blurred distribution function (see Section 5 of Golub and Strakoš
(1994), Section 4.5 of Greenbaum (1997a), and Section 5 of Strakoš and
Tichý (2002)). This must, however, include a sensitivity analysis of Gauss
quadrature to small perturbations of the Riemann–Stieltjes integral, which
appears to be a rather difficult problem (O’Leary and Strakoš 2004). A dif-
ferent but somewhat related problem concerning sensitivity of the Lanczos
coefficients to perturbations of the distribution function in the Riemann–
Stieltjes integral is investigated in Kautsky and Golub (1983); see also Gragg
and Harrod (1984), Laurie (1999, 2001) and Druskin, Borcea and Knizh-
nerman (2005).

A frequently asked question is whether the finite precision Lanczos algo-
rithm can simply miss an eigenvalue because it is constantly forming copies
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of others. This is known as the Lanczos phenomenon (see Cullum and
Willoughby (1985)) and it can be considered resolved by the series of works
by Druskin and Knizhnerman (Druskin and Knizhnerman 1991, Knizhner-
man 1995a, 1995b, 1996); see also Druskin, Greenbaum and Knizhnerman
(1998) and Greenbaum (1994). Using some technical assumptions, it is
proved that each eigenvalue of A will indeed eventually be approximated by
a Ritz value. The proven statement is, however, more of theoretical than
practical interest. A considerable part of these papers is also devoted to
approximation of matrix functions.

Existence of tight clusters of Ritz values is linked to most of the techni-
cal difficulties that complicate the bounds and proofs of Paige (1980) and
Greenbaum (1989). We know that a Ritz value can stabilize to within a
small δ only close to an eigenvalue of A. If the stabilized Ritz value is well
separated, then the norm of the Ritz vector cannot significantly differ from
unity, and the Ritz vector closely approximates the corresponding eigenvec-
tor of A. When a Ritz value is a part of a tight cluster, then some or all
Ritz pairs corresponding to the cluster can have weird properties.

In Strakoš and Greenbaum (1992) several conjectures have been formu-
lated, but not proved (except for some simple cases). In particular, it is
important to ask the following questions.

C1 (Stabilization of clusters.) Does any tight well-separated cluster
consisting of at least two Ritz values approximate an eigenvalue of A?

C2 (Stabilization of Ritz values in a cluster.) Is any Ritz value
in a tight well-separated cluster stabilized to within a small δ? In
particular, Strakoš and Greenbaum (1992) conjectured that the answer
is positive, and that δ is proportional to the square root of the size of
the cluster interval divided by the square root of the separation of the
cluster from the other Ritz values.

C3 (Stabilization of weights.) Let Ritz values in a tight well-separated
cluster, which may consist of one or more Ritz values, closely approx-
imate some eigenvalue λi of A. Does the sum of weights of these Ritz
values in the corresponding Riemann–Stieltjes integral closely approx-
imate the weight of the original eigenvalue λi?

Similar questions can be formulated solely in terms of unreduced symmetric
tridiagonal matrices, and they are therefore not specific to the finite preci-
sion Lanczos algorithm. In the latter case they are, however, of particular
importance. We will not specify the intuitive meaning of the terms ‘tight
cluster’, ‘size of the cluster interval’ and ‘separation of the cluster’ since
that would need detailed notation which we cannot afford, because of lack
of space. The intuitive meaning is clear; a technical quantification can be
found in the papers by Wülling, which we are now going to recall.
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The conjectures were investigated in Wülling (2005) and (2006) with the
following outcome.

• Every tight well-separated cluster of at least two Ritz values must
stabilize, i.e., the answer to C1 is positive.

• There are tight well-separated clusters of Ritz values (which, according
to the previous point, must approximate an eigenvalue of A) in which
none of the Ritz values is stabilized to within a small δ, i.e., the answer
to C2 is negative.

• The weights in the Riemann–Stieltjes integral corresponding to the
kth Gauss quadrature of the original Riemann–Stieltjes integral deter-
mined by A and v1 must stabilize, i.e., the answer to C3 is positive.
This is not proved directly in Wülling (2005), but it can be obtained by
a combination of Wülling (2005) with the inequality (8.21) in Green-
baum (1989): see Wülling (2005, Section 5).

In contrast with Strakoš and Greenbaum (1992), where the results are based
on relatively simple algebraic manipulations of the known formulas for eigen-
values and eigenvector elements of unreduced symmetric tridiagonal matri-
ces, Wülling (2005) and (2006) are based on the following very clever ob-
servation. The bottom and top elements of the eigenvectors of Tk, which
determine the stabilization criterion and the weights respectively, are ex-
pressed in terms of the values of polynomials χk−1(θ) and χ′

k(θ): see (2.6)–
(2.8). Moreover, χk−1(θ) and χk(θ) have simple roots in the corresponding
Ritz values. Therefore, using the residue theorem from complex analysis,
the sum of squares of the bottom elements of the (normalized) eigenvectors
of Tk, which correspond to the Ritz values in a cluster C, can be viewed as
the result of the line integral∑

C

(ζ(k)
k,l )

2 = −
∑
C

χk−1(θ
(k)
l )

χ′
k(θ

(k)
l )

=
1
2π

∣∣∣∣
∫
∂DC

χk−1(z)
χk(z)

dz
∣∣∣∣, (4.3)

where ∂DC is the circle which contains all Ritz values belonging to C in its
interior and all other eigenvalues of Tk in its exterior: see Wülling (2006).
Similarly, omitting technicalities, the changes in the weights can be investi-
gated using the line integral

1
2π

∣∣∣∣
∫
∂DC

η2
2η

2
3 . . . η

2
k

χk−1(z)χk(z)
dz

∣∣∣∣; (4.4)

see Wülling (2005, (4.5)). The results are then obtained by bounding the line
integrals (4.3) and (4.4), which represent an example of nontrivial technical
work. We also point out that, concerning C1 and C2, the results of Wülling
(2006) are stronger than the formulations of the conjectures in Strakoš and
Greenbaum (1992) have assumed.
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The analysis of Wülling gives another example of interplay between anal-
ysis (here complex analysis, which is used to obtain bounds for algebraic
expressions formulated in terms of values of orthogonal polynomials) and
algebra, often observable while dealing with the Lanczos algorithm.

4.4. Intermediate quantities and the accuracy of Ritz approximations

As we have already seen, the finite precision Lanczos algorithm serves as an
instructive example illustrating several fundamental principles. Its round-
ing error analysis is perhaps complicated, lengthy and full of unpleasant
technical details, bounds and formulas. However, it reveals the pattern rig-
orously, and the conclusions can be formulated clearly, simply and in an
elegant way.

In addition, the whole rounding error analysis reveals the following prin-
cipal fact of ‘philosophical’ importance. The Ritz values as approximations
to eigenvalues of the original matrix A can be computed to high accuracy
despite the fact that the intermediate quantities, i.e., the computed Lanc-
zos coefficients stored in the matrix Tk, k = 1, 2, . . . , can have from some
(typically rather modest) value of k not a single digit of accuracy. In other
words, the number of correct digits in the computed entries of Tk (in com-
parison with their ideal counterparts) is absolutely irrelevant for the ob-
tainable accuracy of the approximations to the eigenvalues of A determined
from Tk. Here we see the power of the backward-like analysis (cf. Parlett
(1990, pp. 22 and 24)), and the limitations of the mechanically applied for-
ward error analysis, when it considers comparison of all computed and ideal
quantities.

4.5. Reorthogonalization strategies and rewards for maintaining
semiorthogonality

Although the inaccuracy of Tk does not prevent accurate approximation of
eigenvalues of A by Ritz values, it has rather unpleasant effects: multiple
approximations of some eigenvalues of A, and delays in the approximation
of another ones. The way to suppress these side effects, which is some-
times desirable, is to apply a correction procedure which preserves maxi-
mally, or to some suitable level, the mutual orthogonality of the computed
Lanczos vectors. Reorthogonalization strategies and the rewards for main-
taining a proper level of mutual orthogonality are thoroughly described in
Scott (1978), Parlett and Scott (1979), Scott (1981), Simon (1982, 1984a)
and Parlett (1994), and excellently summarized in Simon (1984b), Parlett
(1992). Here we will briefly recall some main ideas. An extended exposition
can be found in the last two papers.

We start with the PhD thesis of Grcar (1981), which, to our knowledge,
was not published. In contrast to other researchers, his considerations are
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based on the forward error of the computed Lanczos vectors. Grcar’s results
suggest, though the formal proofs have not been completed, that until the
above-mentioned forward error exceeds the level proportional to

√
εM , the

computed Krylov subspace is correct to the level proportional to εM (the er-
ror stays largely within the ideal Krylov subspace). In order to maintain this
so-called projection property, Grcar suggested periodic reorthogonalization.
The forward approach of Grcar (1981) has to deal with some theoretical
and practical difficulties. The way Grcar uses nonhomogeneous three-term
recurrences inspired later solutions of other problems: see Gutknecht and
Strakoš (2000) and Meurant (2006).

Beresford Parlett and his PhD students played the instrumental role in the
other reorthogonalization strategies, which have been conveniently based on
Paige’s results and backward error analysis. It was discovered that, in order
to largely suppress the unpleasant effects of round-off on the approximation
of the eigenvalues of A, full reorthogonalization of the Lanczos vectors (in
order to maintain their mutual orthogonality close to εM ) is not necessary.
It suffices to maintain some ‘strong linear independence’ of the computed
Lanczos vectors. Scott has shown (see Parlett and Scott (1979), Scott (1978,
1981)) that it is beneficial to maintain semi-orthogonality of the numerically
computed Lanczos vectors, i.e., to satisfy

‖V T
k v

k+1‖ ≤ √
εM , k = 1, 2, . . . . (4.5)

Since Theorem 4.3 proved by Paige shows that orthogonality can be lost
only in the direction of converged Ritz vectors, one suggestion is to maintain
semi-orthogonality by reorthogonalizing at each step k the newly computed
Lanczos vector against all Ritz vectors for which

ηk+1|ζ(k)
k,l | < k

√
εM‖A‖;

cf. Simon (1984b, Theorem 6, p. 126). This strategy, called selective re-
orthogonalization (SO) requires computing Ritz vectors. That is avoided
in the partial reorthogonalization strategy (PRO) of Simon. Based on the
underlying rigorous analysis of Paige, Simon has suggested and justified a
simplified model of finite precision behaviour of the Lanczos algorithm. His
strategy is based on monitoring the loss of orthogonality among the Lanczos
vectors via a three-term recurrence: see Simon (1984b, Theorem 1, p. 107).
It reorthogonalizes the newly computed Lanczos vector at step k against
those previously computed Lanczos vectors related through some heuristic
to the threshold criteria for the loss of orthogonality proportional to

√
εM/k.

Simon then proved the following theorem.

Theorem 4.10. Let Tk be the unreduced symmetric tridiagonal matrix
computed by the Lanczos algorithm applied to A with v1 that uses some
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reorthogonalization in order to maintain semi-orthogonality among the com-
puted Lanczos vectors. Then, up to a (full) perturbation matrix having
norm proportional to ε‖A‖, Tk is the orthogonal projection of A onto the
subspace spanned by the computed Lanczos vectors.

This means (see also Simon (1984b, pp. 119–122), Parlett (1992, pp. 255–
257)) that in the above sense semi-orthogonality is as good as orthogo-
nality maintained proportional to full machine precision. Finally, Theo-
rem 4.4 of Parlett (1992) proves that an additional full reorthonalization
at a step k guarantees an improvement of the mutual orthogonality only if
semi-orthogonality is maintained in steps 1 to k.

As mentioned above, in our exposition we assume that the exact spectral
decomposition of the unreduced symmetric tridiagonal matrix Tk is known.
Here such an assumption is reasonable, since an investigation of further
issues related to computing this spectral decomposition is out of the scope
of this review. Nevertheless, since Tk can have tight clusters of eigenvalues,
we wish at least to point out several publications devoted to interesting
issues arising from this problem; see Ye (1995), Parlett (1996), Parlett and
Dhillon (2000) and Dhillon and Parlett (2003, 2004). .

4.6. Recent results on the loss of orthogonality and multiple approximation
of eigenvalues

As we have said before, an attempt at forward error analysis of the Lanczos
algorithm was given by Grcar (1981). Grcar obtained expressions for the
computed Lanczos vectors in terms of the exact Lanczos vectors. In this
section, we will summarize works (Zemke 2003, Meurant 2006) interested in
the components of the Lanczos vectors in the directions of the eigenvectors
of A. The goal of these works is to understand the behaviour of the projec-
tions of the Lanczos vectors, their relation to the loss of orthogonality, and
the appearance of multiple copies of the eigenvalues. This problem leads to
investigation of perturbed three-term scalar recurrences. There are different
ways to write the solution of these recurrences (for instance, using polyno-
mials or using the Lanczos matrix Tk). They show what equation (2.2),
giving Lanczos vectors as polynomials in A applied to the initial vector,
becomes in finite precision arithmetic.

Let us start by considering the D30 example. We look at components of
the Lanczos vectors in the directions of the eigenvectors of A. Since the
matrix D30 is diagonal, we simply consider the components of the Lanczos
vectors. The initial vector has all its components equal. The eigenvalue
which is first approximated by a Ritz value is the largest one, λ30 = 100.
In Figure 4.2 the solid line is log10(|vk30|) as a function of k, computed by
the Lanczos algorithm using full reorthogonalization of the newly computed
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Figure 4.2. D30, log10 of the absolute value of
the last component of the Lanczos vectors.

Lanczos vector against the previously computed Lanczos vectors, with the
reorthogonalization done twice (which we call double reorthogonalization).
Before the component of interest vk30 reaches the square root of machine
precision, the computed results of this example can be considered close ap-
proximations to the exact precision ones. As predicted by theory, the last
component of the Lanczos vector (with double reorthogonalization) con-
verges to machine precision. The dashed line (which is hidden behind the
solid line until it is nearly at the horizontal line) is log10(|ṽk30|) computed
by the standard finite precision Lanczos algorithm. The + signs represent
log10 of the absolute value of the differences vk30 − ṽk30. The horizontal line
is log10(

√
εM ). The dots give the distances of the Ritz values to λ30 after

they become smaller than a threshold of 0.1.
The computed component is almost equal to the ideal result down to

√
εM

but then, instead of continuing to go down, it starts going back up to O(1).
The difference is increasing almost from the beginning of the iterations up
to iteration 18. After that there is an almost periodic behaviour. Each
time the last component reaches O(1), a new copy of the largest eigenvalue
appears. This simple example shows there is an interesting structure in the
components of the Lanczos vectors in the directions of the eigenvectors of A.
Similar pictures with different examples are given and analysed in Zemke
(2003, pp. 210–217).
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In exact arithmetic we have the relation

ηk+1v
k+1 = Avk − αkv

k − ηkv
k−1.

In finite precision computations, this relation becomes

η̃k+1ṽ
k+1 = Aṽk − α̃kṽ

k − η̃kṽ
k−1 + fk, (4.6)

where fk represents the rounding errors that occurred while computing step
k + 1. Of course, the coefficients α̃k and η̃k are different from those in ex-
act arithmetic since they are determined (numerically) using the computed
Lanczos vectors. This is what makes a forward analysis of the finite precision
Lanczos algorithm difficult. Let v̄k = QT ṽk be the vector of the projections
of the computed Lanczos vector on the eigenvectors of A. We have

η̃k+1v̄
k+1
i = λiv̄

k
i − α̃kv̄

k
i − η̃kv̄

k−1
i + f̄ki , (4.7)

where f̄k = QT fk. Solutions of such three-term recurrences are studied in
Meurant (2006) where the following result is proved.

Theorem 4.11. Let j be given and let pj,k be the polynomials deter-
mined by

pj,j−1(λ) ≡ 0, pj,j(λ) ≡ 1,
ζk+1pj,k+1(λ) = (λ− τk)pj,k(λ) − ζkpj,k−1(λ), k = j, j + 1, . . . .

The solution of the perturbed scalar recurrence

ζk+1sk+1 = (λ− τk)sk − ζksk−1 + fk, (4.8)

starting from s0 = 0 and s1 is given by

sk+1 = p1,k+1(λ)s1 +
k∑
l=1

pl+1,k+1(λ)
fl
ζl+1

.

The polynomials pj,k, j > 1 are usually called the associated polynomials.
They are orthogonal with respect to a Riemann–Stieltjes integral with a
distribution function that depends on j. When applying this to the Lanczos
algorithm, we use the following result.

Lemma 4.12. The polynomial pj,k, k ≥ j is given by

pj,k(λ) = (−1)k−j
χj,k−1(λ)
η̃j+1 · · · η̃k ,

where χj,k(λ) is the determinant of T̃j,k − λI, where T̃j,k is the tridiagonal
matrix obtained from the computed Lanczos matrix T̃k by deleting the first
j − 1 rows and columns.
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The possible growth of the local round-off perturbations is therefore linked
to the eigenvalues of the matrices T̃j,k for all j ≤ k. A similar technique has
also been used by Gutknecht and Strakoš (2000) in the investigation of the
maximal attainable accuracy.

Applying these results to the finite precision Lanczos algorithm, that is,
to (4.7), we obtain the following result.

Theorem 4.13. Let j be given and p̃j,k be the polynomials given by

p̃j,j−1(λ) ≡ 0, p̃j,j(λ) ≡ 1,
η̃k+1p̃j,k+1(λ) = (λ− α̃k)p̃j,k(λ) − η̃kp̃j,k−1(λ), k = j, j + 1, . . . .

Then, the computed Lanczos vector at iteration k + 1 is

ṽk+1 = p̃1,k+1(A)v1 +
k∑
l=1

p̃l+1,k+1(A)
f l

η̃l+1
. (4.9)

This is to be compared with (2.2) which gives the result in exact arith-
metic. We note that the first term p̃1,k+1(A)v1 is different from what we
have in exact arithmetic since the coefficients of the recurrence are differ-
ent. If we want to pursue the forward analysis and consider the difference
between ideal and computed Lanczos vectors, we have to link ṽk+1 to vk+1.
Looking at the three-term recurrences for the ideal and computed polyno-
mials we have

ηk+1p1,k+1(λ) = (λ− αk)p1,k(λ) − ηkp1,k−1(λ),

and

η̃k+1p̃1,k+1(λ) = (λ− α̃k)p̃1,k(λ) − η̃kp̃1,k−1(λ).

Setting ∆pk(λ) = p1,k(λ) − p̃1,k(λ), this difference satisfies a three-term
recurrence relation,

η̃k+1∆pk+1(λ) = (λ− α̃k)∆pk(λ) − η̃k∆pk−1(λ) + gk(λ), (4.10)

with

gk(λ) = (η̃k+1 − ηk+1)p1,k+1(λ) + (α̃k − αk)p1,k(λ) + (η̃k − ηk)p1,k−1(λ).

From Theorem 4.11 we can obtain the solution of (4.10) and then derive
an expression for the difference between the ideal and computed Lanczos
vectors: see Meurant (2006).

Theorem 4.14. As long as k < n,

ṽk+1 = vk+1 +
k∑
l=1

p̃l+1,k+1(A)gl(A)
v1

η̃l+1
+

k∑
l=1

p̃l+1,k+1(A)
f l

η̃l+1
. (4.11)
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Theorem 4.14 shows that the difference between the ideal and the com-
puted Lanczos vectors arises from two sources: the local rounding errors f l

and the differences of the coefficients (which, of course, come from the dif-
ferences of the previous Lanczos vectors). From the D30 example, we have
seen that it is interesting to consider the behaviour of (v̄k+1)i = (QT ṽk+1)i.
This is given by

(QT ṽk+1)i = p̃1,k+1(λi)(QT v1)i +
k∑
l=1

p̃l+1,k+1(λi)
(QT f l)i
η̃l+1

. (4.12)

It is difficult to study the behaviour of the sum in (4.12). This shows
again the limitations of a forward analysis. However, in order to get some
insight, one can look at each term individually.

What can be shown is the fact that, for a given λi towards which a Ritz
value is converging, the absolute value of the polynomials |p̃1,k(λi)|, as a
function of k, first decreases to the level

√
εM , and then increases back to

O(1). The values |p̃j,k(λi)| for j > 1 increase as a function of k up to a
maximum of O(1), and then decrease down to

√
εM . This can be proved

rigorously for the beginning of the process until the first Ritz value has
converged and |p̃1,k(λi)| is back to O(1). This is done by investigating the
product |p̃1,k(λ)p̃j,k(λ)| for k > j > 1: see Meurant (2006).

The approach using polynomials offers some insight into the numerical
behaviour of the Lanczos algorithm. In the beginning, the growth of the
individual terms in the sum representing the influence of the round-off on
the components of the Lanczos vectors in the directions of the eigenvectors
of A goes hand in hand with the decrease of the original component. But,
the argument is incomplete since we cannot analyse the whole sums defining
a component of v̄k.

One can also consider other ways to write the solution of a three-term
nonhomogeneous recurrence: see Meurant (2006). We consider once again
the recurrence (4.8) with s1 given and ζ2s2 = (λ− τ1)s1 +f1. For simplicity
we take λ = 0 and let

Lk+1 =




1 0 · · · · · · 0 0
τ1 ζ2 0 · · · 0 0

ζ2 τ2 ζ3
...

...
. . . . . . . . . 0

...
ζk−1 τk−1 ζk 0

ζk τk ζk+1



.

This matrix is written as

Lk+1 =
(

(e1)T 0
Tk ζk+1e

k

)
,
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where Tk is the tridiagonal matrix of the recurrence coefficients. Let sk+1 =(
s1, . . . , sk+1

)T and g = s1, h =
(
f1, . . . , fk

)T then the non homogeneous
recurrence (4.8) can be written as

Lk+1s
k+1 =

(
g
h

)
.

In the following we shall use this for the Lanczos algorithm with T̃k − λiI
instead of Tk. To obtain the solution of the recurrence, the first step is to
find an expression for the inverse of Lk+1 involving Tk. This is given in the
next theorem in which we only give the entries we are interested in, and
with the proof left to Meurant (2006).

Theorem 4.15.

(L−1
k+1)(1:k,1) =

1
(T−1
k )1,k

T−1
k ek,

(L−1
k+1)(1:k,2:k+1) = T−1

k − 1
(T−1
k )1,k

T−1
k ek(e1)TT−1

k .

From Theorem 4.15 we have a characterization of the solution of the
three-term recurrence (4.8) involving the inverse of Tk.

Theorem 4.16. The k first elements of the solution of the three-term
recurrence (4.8) are given by

sk =
(
L−1
k+1

(
s1
h

))
1:k

=
s1

(T−1
k )1,k

T−1
k ek +

[
I − 1

(T−1
k )1,k

T−1
k ek(e1)T

]
T−1
k h.

(4.13)
Moreover, the last element is

sk = (T−1
k h)k −

(T−1
k )k,k

(T−1
k )1,k

(T−1
k h)1 +

(T−1
k )k,k

(T−1
k )1,k

s1.

The solution can also be written as

sk =
(T−1
k )k,k

(T−1
k )1,k

s1 +
1

ζk(T−1
k−1)1,k−1

k−1∑
j=1

(T−1
k−1)j,1fj .

For the components of the Lanczos vectors in the directions of the eigen-
vectors of A we apply Theorem 4.16 with T̆k = T̃k − λiI (which is non-
singular) instead of Tk, where T̃k is the computed Lanczos matrix. This gives

v̄k+1
i =

(T̆−1
k+1)k+1,k+1

(T̆−1
k+1)1,k+1

v̄1
i +

1
ηk+1(T̆−1

k )1,k

k∑
j=1

(T̆−1
k )j,1f̄

j
i .
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It can be shown that the first term on the right-hand side of the last iden-
tity is

(T̆−1
k+1)k+1,k+1

(T̆−1
k+1)1,k+1

v̄1
i = p̃1,k+1(λi)v̄1

i ,

where p̃1,k is the polynomial defined in Theorem 4.13.
We will finish this section by showing that the previous results are useful

when bounding perturbation terms. Going back to (4.13) and denoting

Uk = I − 1

(T̆k
−1

)1,k
T̆k

−1
ek(e1)T

and h(i) =
(
f̄1
i · · · f̄ki

)T , we can bound the perturbation term UkT̆k
−1
h(i) by

‖UkT̆k−1
h(i)‖ ≤ ‖Uk‖ ‖T̆k−1‖ ‖h(i)‖.

It can be shown (see Meurant (2006)) that ‖Uk‖ is bounded by C
√
k/|v̄1

i |,
where C is a constant independent of k, when the component of the initial
vector in the direction of the ith eigenvector |v̄1

i | = (qi, v1) is different from
zero. This result seems not to be optimal since, when |v̄1

i | is small, the bound
can be large. This can possibly reflect the fact that, in this case, T̃k − λiI
can be close to singular. Using this bound, we have the following result.

Theorem 4.17. Using the previous notation and supposing |v̄1
i | �= 0, the

perturbation term in (4.13) is bounded by

‖UkT̆k−1
h(i)‖ ≤ C

√
k

|v̄1
i |

‖h(i)‖
minj(θ

(k)
j − λi)

.

We note that

‖h(i)‖2 =
k∑
j=1

(qi, f j)2 ≤
k∑
j=1

‖f j‖2.

Theorem 4.17 shows that if minj(θ
(k)
j −λi) is large (no Ritz value is close to

λi), the perturbation term for the ith component (QT ṽk+1)i of the projection
of the finite precision Lanczos vector stays bounded and small, as long as
|v̄1
i | is not too small.
This represents a different point of view to the behaviour of the finite pre-

cision Lanczos algorithm, which also helps in understanding some properties
of CG convergence in presence of round-off errors. However, the approach
here does not allow us to study how |v̄ki | varies, since (T̆−1

k )j,1 seems to be
difficult to analyse.
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5. The conjugate gradient algorithm in finite precision

Let us start with an example. Figure 5.1 depicts the Euclidean norm of the
residual when the conjugate gradient algorithm is applied to a linear system
with the matrix D30, a right-hand side of all ones and starting vector equal
to zero. The solid line corresponds to the finite precision CG computation
and the dashed line to CG with full reorthogonalization of the iteratively
computed residual vectors at each step. As expected, in the latter case the
residual vanishes at iteration 30. However, in finite precision arithmetic it
takes many more iterations to get a small residual. Notice that even to reach
a modest decrease, the number of iterations is considerably larger than the
order of the matrix.

In finite precision arithmetic CG exhibits similar problems to the Lanczos
algorithm: the residual vectors lose their orthogonality. Moreover in com-
parison to what happens in exact arithmetic or with reorthogonalization,
convergence of the CG approximate solution is delayed. Intuitively, this ob-
served fact is closely related to convergence of Ritz values. In CG the tridi-
agonal matrix Tk and the Ritz values do not appear explicitly, therefore the
appearance of multiple Ritz approximations to single original eigenvalues is
hard to notice for a practical user of the algorithm. Since we know that ide-
ally CG behaviour depends on convergence of the Ritz values to eigenvalues
(see Section 3), we may also expect the same numerically. An appearance
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Figure 5.1. D30, log10 of the norms of residuals.
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of multiple Ritz approximations to some eigenvalues delays convergence of
Ritz values to other eigenvalues. Consequently it also delays convergence of
the approximate solutions in the finite precision CG algorithm.

We first recall the relationships between the Lanczos and CG algorithms
in finite precision arithmetic. For the finite precision CG algorithm we
present, based on the existing literature, the corresponding CG–Lanczos re-
currence which resembles, apart from the different perturbation error terms,
the finite precision Lanczos algorithm from Section 4. Using the established
correspondence, we then use the knowledge about the finite precision Lanc-
zos algorithm in order to understand the finite precision CG behaviour.

In practical applications it is important to estimate the errors of com-
puted approximate solutions. We recall the state-of-the-art error estimates
and explain the instrumental role of rounding error analysis in convergence
evaluation and in formulation of a meaningful stopping criteria. Finally, in
addition to delaying convergence, rounding errors also limit the maximal
attainable accuracy of the computed approximate solutions. We address
this issue and end the section by pointing out some recent developments.

5.1. Local rounding errors and the CG–Lanczos recurrence

In analogy to the finite precision Lanczos algorithm, the recurrences for
the CG quantities (cf. (3.2)) computed in finite precision arithmetic can be
written in the form

γk−1 ≡ γk−1 + δk−1
γ ≡ ‖rk−1‖2

(pk−1, Apk−1)
+ δk−1

γ ,

xk = xk−1 + γk−1p
k−1 + δkx,

rk = rk−1 − γk−1Ap
k−1 + δkr , (5.1)

βk ≡ βk + δkβ ≡ ‖rk‖2

‖rk−1‖2
+ δkβ ,

pk = rk + βkp
k−1 + δkp ,

where the perturbation terms also depend, in addition to εM , n and ‖A‖, on
the norms and absolute values of the computed vector and scalar quantities
respectively. The detailed bounds for the perturbation terms can be found
in relations (7.9)–(7.14) of Strakoš and Tichý (2002, p. 71); see also Meurant
(2006). The local orthogonality between the vectors rk+1 and rk, rk+1 and
pk, pk+1 and Apk can also be bounded analogously to the local orthogonality
among the computed subsequent Lanczos vectors in Theorem 4.1, but the
bounds (and the proofs) are considerably more complicated. They depend,
in addition to εM , n and ‖A‖ also on κ(A) and ‖rk‖2: see Strakoš and Tichý
(2002, Section 9).
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As in the ideal CG algorithm in Section 3.1 we can write a three-term
recurrence for the computed residuals:

rk = −γk−1Ar
k−1 +

(
1 +

γk−1βk−1

γk−2

)
rk−1 − γk−1βk−1

γk−2
rk−2 + ∆k

r , k ≥ 2,

r1 = r0 − γ0Ar
0 + ∆0

r .

Introducing the CG–Lanczos vectors wk determined from the iteratively
computed CG residuals (in finite precision arithmetic wk is not gener-
ally identical to the vector vk computed via the finite precision Lanczos
algorithm)

wk+1 = (−1)k
rk

‖rk‖ , k = 1, 2, . . . ,

we get the following theorem.

Theorem 5.1. The three-term recurrence for the CG–Lanczos vectors de-
termined from the finite precision CG algorithm is

ηk+1w
k+1 = Awk − αkw

k − ηkw
k−1 + ∆k

w, k = 2, 3, . . . , (5.2)

where

ηk+1 =
√
βk

γk−1
, αk =

1
γk−1

+
βk−1

γk−2
, α1 =

1
γ0

with

γk =
‖rk‖2

(Apk, pk)
, βk =

‖rk‖2

‖rk−1‖2

and the initial vectors given by

w1 = r0/‖r0‖ + ∆0
w, η2w

2 = Aw1 − α1w
1 − ∆1

w.

Here the recurrence is based on the coefficients γk and βk determined
from the computed rk, rk−1 and pk exactly. If we want to refer to the
computed coefficients γk and βk, we still have the same kind of relationship
but with slightly different perturbation terms. We leave the bound on the
perturbation terms ∆k

w to Meurant (2006).

5.2. Results of the backward-like analysis of CG

Based on Theorem 5.1, the analysis of Section 4.3 will also apply to the
finite precision CG algorithm: see Greenbaum (1989, p. 24). The tridiago-
nal matrix Tk, with the entries defined by the finite precision CG algorithm
as described in Theorem 5.1, is equal to that generated by the exact CG
algorithm for a matrix whose eigenvalues lie within small intervals of the
original eigenvalues. This relationship implies that the Euclidean norms of
the residuals in the finite precision CG algorithm are the same as those in
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the correspondingly constructed exact CG recurrence. With the A-norm of
the error, which is minimized at each step of the ideal CG algorithm, the sit-
uation is technically more complicated, as the reader can find in Greenbaum
(1989, Theorem 3, pp. 26–29), since the definition of the norm depends on
the matrix. It can still be concluded, however, that the A-norm of the error
in the finite precision CG algorithm is reduced at approximately the same
rate as the corresponding energy-norm of the error in the constructed exact
CG recurrence. This has been further discussed and illustrated numerically
in Greenbaum and Strakoš (1992).

Here it is assumed that the maximal attainable accuracy, which is limited
because of rounding errors, is far away. We are solely interested in the
delay of convergence. In principle, the delay at step k is given by the
rank-deficiency of a basis of the computed Krylov subspace. This is in
fact determined from the numerical rank (for some appropriate threshold
criterion) of the computed matrix Wk = (w1, . . . , wk), where the wj are the
CG–Lanczos vectors: cf. Paige and Strakoš (1999).

The results can be quantified in various ways using the polynomial for-
mulation of the CG algorithm. Instead of working with orthogonal polyno-
mials corresponding to the distribution function with n points of increase
λ1 < λ2 < · · · < λn (we again assume, for simplicity of notation, that the
eigenvalues of A are distinct), one must, however, consider orthogonal poly-
nomials with respect to distribution functions having possibly many points
of increase close to some or each λj .

In constructing the bounds one must consider the minimax polynomials
on the union of tiny intervals containing the eigenvalues λj : see Greenbaum
(1989), Greenbaum and Strakoš (1992), Greenbaum (1994). This seemingly
small difference generally has a dramatic impact. We notice this from the
fact that rounding errors can make a dramatic difference to the behaviour of
the CG errors and residuals: see, e.g., the example presented in Figure 5.1
above. The last fact is obvious, but in terms of polynomials it is not always
correctly understood. This sometimes leads to misleading statements relat-
ing convergence behaviour of finite precision CG to incorrectly interpreted
and simplified approximations to the minimal polynomial of A.

An example of a rigorous and instructive extension of the results from
Greenbaum (1989) and Greenbaum and Strakoš (1992) can be found in
Notay (1993), where the author presents bounds for the delay of convergence
of the finite precision CG algorithm in the presence of isolated outlying
eigenvalues.

5.3. Estimates of the error norms

As we have seen in Section 3.3, the initial error ε0 = x − x0 and the kth
error εk = x−xk, measured in the A-norm, are in exact precision CG ideally
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related by the identity

‖ε0‖2
A

‖r0‖2
= kth Gauss quadrature +

‖εk‖2
A

‖r0‖2
,

where ε0 and εk are unknowns and the kth Gauss quadrature can be deter-
mined by

(e1)TT−1
k e1 =

k∑
l=1

γl−1‖rl−1‖2.

In order to get an estimate for ‖εk‖2
A, we have to eliminate ‖ε0‖2

A: see Golub
and Strakoš (1994, pp. 262–263). Subtracting the identities for k and k+d,

‖εk‖2
A

‖r0‖2
= (k + d)th Gauss quadrature − kth Gauss quadrature +

‖εk+d‖2
A

‖r0‖2
.

Since the last term on the right-hand side is always nonnegative (and strictly
smaller than the term on the left-hand side), the difference between the
Gauss quadratures determines in exact arithmetic the square of the lower
bound for ‖εk‖A/‖r0‖.

Based on the analysis of the Gauss quadrature, Golub and Strakoš (1994)
proved that this bound also works in finite precision CG computations until
‖εk‖A/‖r0‖ drops below the level

√
εM . An appropriate numerically sta-

ble implementation of this estimate was proposed by Golub and Meurant
(1997). Experimental evidence shows that estimates obtained with this im-
plementation are not significantly affected by rounding errors until the finite
precision CG algorithm reaches its maximal attainable accuracy level. The
proof from Golub and Strakoš (1994) cannot, however, be extended in order
to justify that.

As mentioned in Section 3.3, using some simple algebraic manipulations
and a lengthy rounding error analysis Strakoš and Tichý (2002) proved that
in the finite precision CG algorithm the A-norm of the error satisfies

‖εk‖2
A − ‖εk+1‖2

A = γk‖rk‖2 + δkε , (5.3)

where δkε depends on the loss of orthogonality between rk+1 and pk. Based
on (5.3),

νk,k+d =
k+d−1∑
l=k

γl‖rl‖2 (5.4)

can be used as a lower bound for ‖εk‖2
A, and this lower bound is not signifi-

cantly affected by rounding errors until ‖εk‖A/‖ε0‖A reaches a level propor-
tional to the machine precision: see Strakoš and Tichý (2002, Section 10).

We wish to emphasize an important point. The numerical justification
for (5.4) as the squared lower bound for ‖εk‖A is in no way based on the
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fact that in finite precision arithmetic this term is evaluated with negligi-
ble additional errors (here we do not even consider them). It is based on
the nontrivial fact that (5.3) holds for the finite precision CG approximate
solutions, and that δkε is small. We see an analogy with the rounding er-
ror analysis of the accuracy of Ritz values in the finite precision Lanczos
algorithm given by Paige: see Section 4. Here again, the error estimate is
also valid in finite precision computations, but we know this only because
of rigorous and nontrivial mathematical proofs. It can be easily shown that
ideally equivalent but numerically different formulas can lead to highly mis-
leading results: see Strakoš and Tichý (2002, Figure 6.1, p. 69) and Strakoš
and Liesen (2005, Figure 8, p. 319). Error estimates without appropriate
rounding error analyses represent a highly hazardous pursuit.

In order to get a lower bound for the A-norm of the error at step k, we
need to perform d extra steps. If the A-norm of the error reasonably drops
at around step k, then d can be small. If on the other hand the A-norm
of the error almost stagnates, then a small d will not ensure a close lower
bound. Of course, the actual convergence behaviour is not known: it is to
be estimated. Therefore the choice of d represents a difficult open problem.
In any case, the proposed lower bound offers extra information which is
computable at negligible additional cost, and which can with great benefit
complement the commonly used measures of convergence: see Arioli (2004),
Arioli, Noulard and Russo (2001), Strakoš and Liesen (2005), Strakoš and
Tichý (2005) and Meurant (1999a). Moreover, if we agree to store one
additional real number per iteration, we can easily update the previous
estimates at each step. Together with the estimate for ‖εk‖A based on d, we
can get (at step k+d) an estimate for ‖εk−1‖A based on d+1, an estimate for
‖εk−2‖A based on d+ 2, etc. In this way, the convergence of CG measured
by the A-norm of the error can be ‘reconstructed’ using lower bounds: see
Strakoš and Tichý (2005, Figure 5.4).

In linear systems arising from finite element discretizations of self-adjoint
elliptic partial differential equations, it is natural to evaluate CG conver-
gence via the relative A-norm of the error

‖εk‖A
‖x‖A =

‖x− xk‖A
‖x‖A

(see Arioli (2004)). Subtracting the ideal identities

‖ε0‖2
A = ν0,k+d + ‖εk+d‖2

A,

‖ε0‖2
A = ‖x− x0‖2

A = ‖x‖2
A − bTx0 − (r0)Tx0

gives

‖x‖2
A = ν0,k+d + bTx0 + (r0)Tx0 + ‖εk+d‖2

A,

‖x‖2
A ≥ µk+d ≡ ν0,k+d + bTx0 + (r0)Tx0.
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We will assume that ‖x− x0‖A ≤ ‖x‖A. This represents a very natural as-
sumption which should never be violated in practical computations. Indeed,
it is meaningless to use a nonzero x0 without justification that guarantees
that a nonzero initial approximation is better than taking x0 = 0. For CG,
the A-norm of the error represents the proper measure of ‘goodness’. If
in doubt, it is always possible to scale an initial approximation such that
‖x− αx0‖A is minimal, which gives

α =
bTx0

(x0)TAx0

(see Strakoš and Tichý (2005)). If ‖x − x0‖A ≤ ‖x‖A, then it is easy to
show that µk+d > 0, and an algebraic manipulation ideally gives

‖εk‖2
A

‖x‖2
A

≥ νk,d
µk+d

> 0,

i.e., in exact precision CG, νk,d/µk+d is a lower bound for the squared
relative A-norm of the error. Since numerically all considerations leading
to this bound are based on local orthogonality only , this estimate is also
well established (though not always a lower bound) for the finite precision
CG algorithm. For further details we refer to Strakoš and Tichý (2005)
and also to Strakoš and Tichý (2002), who also describe estimation of the
Euclidean norm of the error and presents open problems. For the estimation
of the Euclidean norm see also Meurant (2005), and for that norm in finite
precision see Meurant (2006).

Various other options for computing the error bounds in the CG algorithm
are summarized by Calvetti, Morigi, Reichel and Sgallari (2000). Based on
quadrature considerations, the bounds are more complicated. They cannot
be easily justified for finite precision CG computations. Still, they can prove
useful in some particular applications. Interesting ideas concerning the up-
per bounds for the A-norm of the error can also be found in Greenbaum
(1997a, p. 108) and in Golub and Meurant (1997).

5.4. Maximal attainable accuracy

Rounding errors generally do not allow the finite precision CG algorithm to
produce approximate solutions to arbitrary accuracy. It is therefore impor-
tant to find out the maximal attainable accuracy which can be reached for
a given A and b. The importance of this question is, however, more in the
impact which the corresponding analysis has on understanding the CG algo-
rithm and its implementations, than in practical applications of the results.
In most applications, perhaps with the exception of some inner CG itera-
tions used in nonlinear optimization, or difficult problems with ‖A‖ large,
the computation is stopped much before the maximal attainable accuracy
is reached.
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Here we will assume, as above, that A is symmetric positive definite and
not close to singular, and we will concentrate on limitations on the maxi-
mal attainable accuracy caused by the possible amplification of elementary
round-off throughout the recurrences. We leave other effects, which can be
observed in indefinite systems or near-singular systems, to the literature:
see, e.g., Sleijpen, van der Vorst and Modersitzki (2001). Work on maxi-
mal attainable accuracy has focused on the residual as the easiest and most
common measure of convergence. Based on the residual, bounds for the
maximal attainable accuracy measured by the Euclidean or the A-norm of
the error can easily be obtained using the obvious relationships, together
with the characterization of conditioning of the matrix A.

In the CG algorithm, the residual vector is recursively computed at each
step as a part of the recurrence. In finite precision arithmetic, this recur-
sively computed residual rk (see (5.1)) can differ from the directly computed
quantity b − Axk, which is generally called the true residual. Convergence
of the recursive residuals was analysed by Wozniakowski (1978, 1980) and
Bollen (1984), for example. Although some assumptions used there cannot
in general be satisfied by the CG recurrence (5.1), the results proved useful
in a further analysis: see Greenbaum (1994, 1997b). For a survey of the
early developments see Higham (2002).

In Theorem 2 of Greenbaum (1989), the question of the difference between
the true residual and the recursively computed residual was analysed for the
first time, to our knowledge. It was shown that this difference at step k can
be bounded by a simple sum of the elementary perturbation terms at steps 0
(which means computation of the initial residual) to k, i.e.,

‖rk − (b−Axk)‖ ≤ ‖δ0r‖ +
k∑
l=1

(‖δlr‖ + ‖Aδlx‖
)
.

Sleijpen, van der Vorst and Fokkema (1994), Greenbaum (1994), and slightly
later Greenbaum (1997b) studied this problem further, resulting in the
bound

‖rk − (b−Axk)‖
‖A‖ ‖x‖ ≤ O(k)εM

(
1 + max

l≤k
‖xl‖
‖x‖

)
. (5.5)

If ‖rk‖ becomes of the order of the machine precision, which is often observed
numerically for large k but which has not yet been completely proved in
the given literature, then (5.5) gives a bound for the maximal attainable
accuracy measured by the true residual norm divided by ‖A‖ ‖x‖.

This result offers the following insight into the behaviour of the finite pre-
cision CG algorithm. One can expect a high maximal attainable accuracy
with the finite precision CG algorithm if the norms of the iterates do not sig-
nificantly exceed the norm of the true solution. Since ideally the Euclidean
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norm of the error is strictly decreasing, ‖x− xk‖ < ‖x− x0‖ implies

‖xk‖ ≤ 2‖x‖ + ‖x0‖.
Using the backward-like error analysis of Greenbaum described above, this
upper bound holds true, to within a small error, in the finite precision
CG algorithm. With a reasonable choice of ‖x0‖, the finite precision CG
algorithm can therefore be expected to achieve a high maximal attainable
accuracy if ‖A‖ is not too large.

The situation is dramatically different in CG-like algorithms applied to
nonsymmetric systems, to many of which the above analysis can also be
applied. For detailed discussions see Greenbaum (1997b) and Greenbaum
(1997a, Section 7.3).

When the CG algorithm is implemented via the mathematically equiva-
lent three-term recurrence (for examples see Rutishauser (1959) and Hage-
man and Young (1981)), the maximal attainable accuracy is much more
vulnerable to local errors. As shown by Gutknecht and Strakoš (2000), the
difference rk−(b−Axk) is then equal to a sum of local error terms (different
from those in the analysis of the two term recurrences above) plus multiples
of the same terms by factors which can become large if the norm of the
iteratively computed residual oscillates, i.e., if

max
0≤l<j≤k

‖rj‖2

‖rl‖2
is large.

Consequently a large increase in the norm of the computed iterative residu-
als can damage the maximal attainable accuracy. Moreover, damage caused
at an early stage of the computation cannot in general be compensated for
in the subsequent iterations. The technique used in Gutknecht and Strakoš
(2000) is based on writing k steps of the second-order nonhomogeneous dif-
ference equation for the gap rk − (b−Axk) as a superposition of the k + 1
homogeneous difference equations, which resembles the technique used in a
different context by Grcar (1981). For further details we refer to Gutknecht
and Strakoš (2000). As pointed out in the concluding part of the last paper,
the same result can also be attained by using matrix approach analogous to
that of Paige (1980). The matrix approach allows easier further generaliza-
tions. In some applications the matrix A is not explicitly available, and the
matrix–vector multiplication is performed by solving an auxiliary problem.
It might therefore be convenient to relax the accuracy of this operation.
That can, however, affect convergence behaviour and the maximal attain-
able accuracy. Analysis of this problem goes far beyond the investigation of
numerical stability. Several authors have recently presented interesting re-
sults focused mostly on maximal attainable accuracy: see, e.g., Bouras and
Frayssé (2005), and the surveys in Simoncini and Szyld (2005, Section 11)
and van den Eshof (2003, Chapter 5).



Finite precision Lanczos and CG 533

5.5. Recent developments

In this section we summarize some recent results about CG convergence in
finite precision arithmetic: see Meurant (2006).

For the recurrence of wk given in (5.2) we can directly apply the results
we have reviewed for general three-term recurrences: see Theorem 4.16. Let
us denote by w̄ki the component of wk in the direction of the ith eigenvector
of A, i = 1, 2, . . . , n.

Theorem 5.2. Let

δ̄k ≡ (δ̄k1 , . . . , δ̄
k
n)
T = QT∆k

w,

let j be given and let pj,k be the polynomial determined by

pj,j−1(λ) = 0, pj,j(λ) = 1,
ηk+1pj,k+1(λ) = (λ− αk)pj,k(λ) − ηkpj,k−1(λ), k = j, j + 1, . . . .

The solution of the perturbed recurrence

ηk+1w̄
k+1
i = (λi − αk)w̄ki − ηkw̄

k−1
i + δ̄ki

starting from w0
i = 0 and w1

i is given by

w̄k+1
i = p1,k+1(λi)w̄1

i +
k∑
l=1

pl+1,k+1(λi)
δ̄li
ηl+1

, i = 1, . . . , n.

This immediately leads to an expression for wk+1:

wk+1 = p1,k+1(A)w1 +
k∑
l=1

pl+1,k+1(A)
∆l
w

ηl+1
.

Then, using the correspondence between wk+1 and rk, we can express
the recursively determined CG residual vector computed in finite precision
arithmetic in the following form.

Theorem 5.3. Using the notation of Theorem 5.2,

rk = (−1)k
‖rk‖
‖r0‖p1,k+1(A)r0 + (−1)k‖rk‖

k∑
l=1

pl+1,k+1(A)
∆l
w

ηl+1
.

In exact arithmetic, after a Ritz value has converged, the corresponding
projections of the residual and of the error on the corresponding eigenvector
vanish. This is not the case in finite precision arithmetic. After decreasing
for a while, the projection of the residual on the subspace generated by
the corresponding eigenvector of A rises back to contribute to the norm
of the residual, because of the amplification of the local round-off. Once
a new Ritz copy is formed, the component again decreases, etc. This can
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delay convergence and lead to oscillations of the residual components in
the directions of the individual eigenvectors of A, and, as a consequence,
to oscillations of the residual norm. In comparison with the expression
for the finite precision Lanczos–CG vector wk+1, the perturbation term in
Theorem 5.3 is multiplied by ‖rk‖. Therefore, for small ‖rk‖ the possible
oscillations caused by possible amplification of the error terms are typically
much less pronounced in rk than in wk+1.

When considering CG convergence, we have to be careful on how to link
the error to the computed quantities. Ideally, the error is εk = x−xk where
x is the exact solution and it is related to the residual by Aεk = rk. But
this is only true if the residual is b − Axk. We have seen in Section 5.4
that the computed iterative residual can be different from b − Axk. Hence
there are more alternatives. Considering the ultimate stagnation of ‖b −
Axk‖, it seems reasonable to work (besides the true error linked to the
true residual) with (A−1rk, rk) = ‖A− 1

2 rk‖2, where rk is the (recursively)
computed iterative residual, as another useful measure. We denote it εk ≡
A−1rk. Then, we have the following result whose proof is based on a lengthy
analysis of local orthogonality: see Meurant (2006) and Strakoš and Tichý
(2002, (10.1)).

Proposition 5.4.

‖εk+1‖2
A = ‖εk‖2

A − γk‖rk‖2 + εMC
k
1 ‖rk‖2 + ε2MC

k
2 ‖rk‖2,

where |Ck1 | and |Ck2 | are bounded by quantities involving ‖rk‖ and ‖pk‖.
This proposition leads to a result about strict decrease of the error norm

under a restriction on the condition number of A.

Theorem 5.5. If

κ(A) <
1

εMλ1|Ck1 |
+ O(εM ), for all k,

then
‖εk+1‖A < ‖εk‖A.

Hence, if the condition number is not too large, ‖εk‖A is, as in exact
arithmetic, strictly decreasing. However, having a limitation on κ(A) is not
satisfactory, since in numerical computations we hardly observe an increase
or oscillation of ‖εk‖A.

This result complements those of Anne Greenbaum (1989) who obtained
a decrease of the A-norm of the error without an explicit restriction on the
condition number but with additional small terms. A proof of the strict
decrease of ‖εk‖A and a proof that the computed iterative residual must
ultimately vanish, i.e., ‖rk‖ → 0, without any restriction on the condition
number, remains open.
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6. Conclusions

The Lanczos and conjugate gradient algorithms are considered effective nu-
merical tools for computing eigenvalues, approximating matrix functions
and quadratic forms, and for solving (linear) algebraic equations. As we
have seen, they also represent interesting mathematical objects with very
deep links reaching far beyond the borders of numerical linear algebra, nu-
merical mathematics or algebraic structures. This is perhaps why the in-
vestigation into their behaviour in exact and in finite precision arithmetic is
leading to results which, piece by piece, are being assembled into a rigorous,
consistent, rich and beautiful mathematical theory. In this way the Lanc-
zos and conjugate gradient algorithms represent another example along the
lines drawn by Baxter and Iserles (2003). The rigour and beauty of their
mathematical structure, including the effects of rounding errors, reveals
once again the presence of such attributes in the field called computational
mathematics.
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A. Bouras and V. Frayssé (2005), Inexact matrix–vector products in Krylov meth-
ods for solving linear systems: A relaxation strategy, SIAM J. Matrix Anal.
Appl. 26, 660–678.

D. Calvetti, S. Morigi, L. Reichel and F. Sgallari (2000), Computable error bounds
and estimates for the conjugate gradient, Numer. Algorithms 25, 79–88.

E. B. Christoffel (1877), Sur une classe particulière de fonctions entières et de
fractions continues, Ann. Mat. Pura Appl. 8, 1–10.

J. K. Cullum and R. A. Willoughby (1985), Lanczos Algorithms for Large Symmet-
ric Eigenvalue Computations, Vol. I, Theory, Vol. II, Programs, Birkhäuser.
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M. Gutknecht and Z. Strakoš (2000), Accuracy of two three-term and three two-
term recurrences for Krylov space solvers, SIAM J. Matrix Anal. Appl. 22,
213–229.

W. Hackbusch (1994), Iterative Solution of Large Sparse Systems of Equations,
Vol. 95 of Applied Mathematical Sciences, Springer, New York. Translated
and revised from the 1991 German original.

L. Hageman and D. Young (1981), Applied Iterative Methods, Academic Press,
Orlando.

M. R. Hestenes and E. Stiefel (1952), Methods of conjugate gradients for solving
linear systems, J. Nat. Bur. Standards 49, 409–436.

M. R. Hestenes and J. Todd (1991), Mathematicians Learning to Use Computers,
National Institute of Standards and Technology Special Publication 730, US
department of Commerce, National Institute of Standards and Technology,
Washington, DC.

N. J. Higham (2002), Accuracy and Stability of Numerical Algorithms, second edi-
tion, SIAM.

A. S. Householder (1975), The Theory of Matrices in Numerical Analysis, Dover,
New York. Reprint of 1964 edition.

S. Kaniel (1966), Estimates of some computational techniques in linear algebra,
Math. Comp. 20, 369–378.

J. Kautsky and G. H. Golub, (1983), On the calculation of Jacobi matrices, Linear
Algebra Appl. 53/53, 439–455.

L. Knizhnerman (1995a), The quality of approximations to an isolated eigenvalue
and the distribution of ‘Ritz numbers’ in the simple Lanczos procedure, Com-
put. Math. Math. Phys. 35, 1175–1187.

L. Knizhnerman (1995b), On adaptation of the Lanczos method to the spectrum.
Report EMG-001-95-12, Schlumberger–Doll–Research.



Finite precision Lanczos and CG 539

L. Knizhnerman (1996), The simple Lanczos procedure: estimates of the error of
the Gauss quadrature formula and their applications, Comput. Math. Math.
Phys. 36, 1481–1492.
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