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1 Introduction

Consider an orthogonally invariant linear approximation problem Ax ≈ b. In [8] it is proved that the partial upper bidiagonal-
ization of the extended matrix [b, A] determines a core approximation problem A11x1 ≈ b1, with all necessary and sufficient
information for solving the original problem given by b1 and A11. It is shown how the core problem can be used in a simple and
efficient way for solving different formulations of the original approximation problems. In [3] the core problem formulation
is derived from the relationship between the Golub-Kahan bidiagonalization [2] and the Lanczos tridiagonalization [5], and
from the known properties of Jacobi matrices. Here we briefly recall the approach from [3], and outline a possible direction
for further research.

2 Core problem

Consider estimating x from the real linear approximation problem

Ax ≈ b , A a nonzero n by m matrix, b a nonzero n-vector, (1)

where the uninteresting case is excluded by the assumption AT b 6= 0. In the paper [8] it was proposed to transform the original
data [b, A] into the form

PT
[

b AQ
]

=
[

b1 A11 0
0 0 A22

]
, where P−1 = PT , Q−1 = QT , (2)

b1 = β1e1 and A11 is a lower bidiagonal matrix with nonzero bidiagonal elements. The matrix A11 is either square, when (1) is
compatible, or rectangular, when (1) is incompatible. The original problem is in this way decomposed into the approximation
problems A11x1 ≈ b1 and A22x2 ≈ 0. It is suggested to solve the first problem, set x2 ≡ 0 and substitute x ≡ Q [xT

1 , 0]T for
the solution of (1). The transformation described above has the following remarkable properties, see [3, Theorem 1.1], with
the proof given in [8, Theorem 2.2, 3.2, 3.3].

Theorem 2.1 Let A be a nonzero n by m real matrix and b a nonzero real n−vector, AT b 6= 0. Then there exists a
decomposition (2), where b1 = β1e1 and A11 is a lower bidiagonal matrix with nonzero bidiagonal elements. Moreover:

1: The matrix A11 has full column rank and its singular values are simple.
2: The matrix A11 has minimal dimensions over all orthogonal transformations giving the block structure (2).
3: All components of b1 = β1e1 in the left singular vector subspaces of A11 are nonzero.

The proof of Theorem 2.1 in [8] is based on the singular value decomposition of the matrix A. In [3] the relationship
between the Golub-Kahan bidiagonalization and the Lanczos tridiagonalization is used for constructing the proof.

3 Lanczos tridiagonalization and core problem properties

Consider the partial lower Golub-Kahan bidiagonalization of [b, A] in the following form. Given the initial vectors v0 ≡
0, u1 ≡ b/β1, where β1 ≡ ‖b‖ 6= 0 and ‖.‖ represents the standard Euclidean norm, the algorithm computes for i = 1, 2, . . .

αivi = AT ui − βivi−1 , ‖vi‖ = 1 , βi+1ui+1 = Avi − αiui , ‖ui+1‖ = 1 (3)
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until αi = 0 or βi+1 = 0, or until i = min{n, m}. Denote Uk ≡ (u1, . . . , uk), Vk ≡ (v1, . . . , vk) the matrices with orthonor-
mal columns, Lk the square lower bidiagonal matrix with the main diagonal (α1, . . . , αk) and the subdiagonal (β2, . . . , βk)
and Lk+ ≡ (LT

k , βk+1ek)T . In the rest of this contribution we consider (1) incompatible; the compatible case is simpler and
can be treated analogously, see [3]. Then (3) must stop with some αp+1 = 0 or p = m giving

AT Up = VpL
T
p , AVp = Up+1 Lp+ .

Consequently, UT
p+1[b, AVp] = [β1e1, Lp+] ≡ [b1|A11] and A11x1 ≡ Lp+ x1 ≈ β1e1 ≡ b1 is the incompatible core

problem. The matrices Up+1 and Vp represent the first (p + 1) and p columns of the matrices P and Q, respectively.
Given a real symmetric matrix B and a starting vector w1, ‖w1‖ = 1, the Lanczos tridiagonalization algorithm can be

written in the matrix form

BWk = WkTk + δk+1wk+1e
T
k , WT

k wk+1 = 0 , (4)

where Wke1 = w1, Wk has orthonormal columns and Tk is a symmetric tridiagonal matrix with positive subdiagonal el-
ements, a Jacobi matrix. Defining B ≡ AT A,w1 ≡ v1 = AT b/‖AT b‖, it can be shown (see, e.g., [1]) that the Lanczos
tridiagonalization (4) produces the matrices Wk ≡ Vk, Tk ≡ LT

k+Lk+ and δk+1 ≡ αk+1βk+1. Thus, the matrix Lp+ can be
linked to the Jacobi matrix

Tp ≡ LT
p+Lp+ =


α2

1 + β2
2 α2β2

α2β2 α2
2 + β2

3

. . .
. . . . . . αpβp

αpβp α2
p + β2

p+1

 ; Lp+ =


α1

β2 α2

. . . . . .
βp αp

βp+1

 . (5)

This fact is used in [3], together with the properties of Jacobi matrices (see, e.g., [9]), for proving Theorem 2.1.

The presented relationship may be found useful in applications of the core problem formulation. In large ill-posed problems
the outer Golub-Kahan bidiagonalization can be combined with an inner regularization applied to the problem Lk+y ≈
β1e1. Here stopping criteria are typically based on estimation of the L-curve, the discrepancy principle or generalized cross
validation (see, e.g., [6], [7]). From the core problem point of wiev one should ask whether and when the matrix Lk+ for
k < p (possibly k � p) can be considered a sufficiently good approximation to the core matrix Lp+. When p � m, one must
ask how to numerically indicate the separation of the core problem, since in finite precision computation αp+1 will hardly
be identicaly zero. Similarly, one can ask when the tridiagonal matrix Tk, k < p, sufficiently approximates the matrix Tp

discussed above. It might be useful to study in this context perturbation theory of Jacobi matrices, in particular the specific
perturbations when the off-diagonal element δk+1 = αk+1βk+1 is replaced by zero, see [4].

We believe that the presented relationships, together with known results on Jacobi matrices, can be used in further investi-
gation of effective stopping criteria in regularization methods.
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