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Institute of Computer Science, Academy of Sciences of the Czech Republic,
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Abstract.

In practical problems, iterative methods can hardly be used without some accel-
eration of convergence, commonly called preconditioning, which is typically achieved
by incorporation of some (incomplete or modified) direct algorithm as a part of the
iteration. Effectiveness of preconditioned iterative methods increases with possibility
of stopping the iteration when the desired accuracy is reached. This requires, however,
incorporating a proper measure of achieved accuracy as a part of computation.

The goal of this paper is to describe a simple and numerically reliable estimation
of the size of the error in the preconditioned conjugate gradient method. In this way
this paper extends results from [Z. Strakoš and P. Tichý, ETNA, 13 (2002), pp. 56–80]
and communicates them to practical users of the preconditioned conjugate gradient
method.
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1 Introduction

Discretization of mathematical models of real-world problems often leads to
large and sparse (possibly structured) systems of linear algebraic equations. All
steps of mathematical modeling (mathematical description of reality in the form
of a mathematical model, its discretization and numerical solution of the dis-
cretized problem) are subject to errors (errors of the model, discretization er-
rors and computational errors, the last being often composed of two parts –
truncation errors and errors due to roundoff). An output of the solution pro-
cess must therefore be confronted with its possible errors through verification
and validation. While verification addresses the question – whether and how
accurately the obtained (approximate) solution conforms to the mathematical
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model, validation deals with the more general question – to which extent the
whole modeling process represents the modeled reality (for a recent discussion
of these fundamental topics we refer to [7]). It is desirable that the errors of
the model, discretization errors and computational errors are in some balance.
They do not need to be of the same order; the discretization and computational
errors should not significantly contribute to the total error and affect negatively
the validation process [7].

When the linear algebraic systems arising from mathematical modeling are
very large (of orders of hundreds of thousands or millions of unknowns), precon-
ditioned iterative methods are taking ground over the purely direct methods.
Iterative methods can in very large scale computations exploit a fundamental
advantage – they can increase effectiveness of the whole solution process by
stopping the iteration when the desired accuracy (as compared to the discretiza-
tion error) is reached (cf. [1, 4]). This requires, however, a cheap and reliable
evaluation of convergence, which is the essential ingredience for choosing proper
stopping criteria.

In this paper we consider a system of linear algebraic equations

Ax = b(1.1)

where A is a symmetric positive definite n by n matrix and b is n-dimensional
vector (for simplicity of notation we consider A, b real; all results presented here
can trivially be extended to the complex case). For such systems the precondi-
tioned conjugate gradient method [22, 26, 34, 40] represents in most large scale
cases a good choice. A goal of this paper is to summarize and discuss evaluation
of convergence in the preconditioned conjugate gradient method. In particular,
we will focus on estimating the A-norm of the error.

Estimating the A-norm of the error in the conjugate gradient method was
subject of many papers, reports and subsections in the books. History and
various aspects of estimating the A-norm of the error in the unpreconditioned
conjugate gradient method were thoroughly described in [38]. The formulas pre-
sented in [38] were published (in some form) previously, e.g. in [22, 12] and [6].
The original contribution of [38] consists, to our opinion, in providing theoreti-
cal justification for practical use of the error estimates and in putting different
estimates in the proper context. Our present paper extends the results from [38]
to the preconditioned conjugate gradient method. A need for such paper can
be seen from [6, Section 6] or [1, Section 3], which thoroughly and extensively
examine estimating error norms in the preconditioned conjugate gradients. Both
papers [6, 1] present interesting original results and offer new insight into the er-
ror estimation in the preconditioned conjugate gradients. They do not consider,
however, an influence of rounding errors. All derivations in [6, Section 6] or [1,
Section 3] assume exact arithmetic. Consequently, they unrealistically assume
preserving orthogonality, and the results are based on exploiting the finite ter-
mination property, i.e., on getting the exact solution in a finite number of steps
(which does not exceed the dimension of the problem). These assumptions are
clearly drastically violated in most practical computations. In order to be widely
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used, practical error estimators need a proper justification including a thorough
analysis of rounding error effects (for a related discussion, see [38] and also [16]).

Section 2 summarizes fundamentals of the conjugate gradient method and
briefly recalls several possible ways of convergence evaluation. Section 3 pre-
sents a simple estimate for the A-norm of the error in the preconditioned conju-
gate gradient method. Section 4 deals with numerical stability of the proposed
estimate and section 5 contains numerical experiments which demonstrate its
effectivity and possible drawbacks. The paper ends with concluding remarks.

2 Fundamentals of convergence evaluation

The conjugate gradient method (CG) [22] belongs to the class of the so-called
Krylov subspace methods. Starting with an initial approximation x0, it con-
structs the subsequent approximations xj , j = 1, 2, . . . to the solution x on the
linear manifolds

xj ∈ x0 + Kj(A, r0)(2.1)

where
Kj(A, r0) = span {r0, Ar0, . . . , A

j−1r0}

represents the jth Krylov subspace, r0 = b − Ax0. CG determines its approx-
imations by orthogonal projections, i.e., the residual rj = b − Axj of the jth
approximate solution is orthogonal to the jth Krylov subspace Kj(A, r0). This
means that xj = x0+yj can be obtained from the solution yj of the j-dimensional
problem

Pj{r0 − Ay} = 0 ,(2.2)

where Pj stands for the orthogonal projection onto Kj(A, r0), and y ∈ Kj(A, r0)
(the operator A is in (2.2) restricted to Kj(A, r0)). It is well known [22] that,
until xj converges to the exact solution x (which must in the absence of roundoff
happen in at most n steps), xj is uniquely determined by (2.2).

In practical problems we hope that the acceptable approximate solution is
attained for j much smaller than the dimension of the problem n. Thus, CG
represents a typical model-reduction approach, in which the original problem
(represented by the large discretized model) is reduced (here by restriction and
orthogonal projection onto the Krylov subspace) to the problem of much smaller
dimension. The resulting reduced problem determines the approximate solution.
Quality of the approximate solution depends on the amount of significant infor-
mation about the original problem passed to the reduced problem.

The condition (2.2) is equivalent to the minimization of the A-norm of the
error over the manifold (2.1). The jth CG approximation is therefore uniquely
determined by the minimizing condition

‖x − xj‖A = min
u∈x0+Kj(A,r0)

‖x − u‖A ,(2.3)

where
‖x − u‖A = (x − u,A(x − u))

1
2 .(2.4)
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The A-norm of the error on the algebraic level (2.4) typically has a counterpart
in the original real-world problem. In some applications it can be interpreted
as the discretized measure of energy which is to be minimized see, e.g. [1, 4].
Then CG with stopping criterion based on the A-norm of the error consistently
reduces large discretized models to small ones. In other applications (such as in
image processing) the Euclidean norm of the error ‖x− xj‖ plays an important
role. In this paper we focus in particular on estimating the A-norm of the error.

Hestenes and Stiefel [22] considered the A-norm of the error a possible can-
didate for measuring the “goodness” of xj as an estimate of x. They showed
that though it was impossible to compute the A-norm of the jth error without
knowing the solution x, it was possible to estimate it. Later, and independently
of [22], the idea of estimating errors in CG was promoted by Golub in relation
to the problem of moments, Gauss quadrature and its modifications [10, 11]. A
comprehensive summary of this approach was given in the papers coauthored
with Meurant [14, 15].

In [38] it was shown that the lower bound for the A-norm of the error based on
the Gauss quadrature is mathematically equivalent to the lower bound derived
from the identity given by Hestenes and Stiefel in [22]. The estimate by Hestenes
and Stiefel can be computed at a negligible cost of several floating point oper-
ations per iteration. Until the A-norm of the error reaches its ultimate level of
accuracy, this estimate is numerically stable.

In [32, 3], backward error perturbation theory (see e.g. [30, 35, 2]) was used
to derive a family of stopping criteria for iterative methods. In particular, given
xj , the relative norms ‖∆A‖/‖A‖ = ‖∆b‖/‖b‖ of the smallest perturbations ∆A
and ∆b such that the approximate solution xj represents the exact solution of
the perturbed system

(A + ∆A)xj = b + ∆b

can be computed by the normwise backward error

‖rj‖

‖A‖‖xj‖ + ‖b‖
.(2.5)

This approach can be generalized in order to quantify levels of confidence in A
and b, see [32, 3]. Normwise backward error is, as a base for stopping criteria,
frequently recommended in the numerical analysis literature, see, e.g. [8, 23],
and it is used and popularized by numerical analysts [29, 13]. Despite this
effort, evaluating convergence is in most of scientific computations still based on
the relative residual norm

‖rj‖

‖r0‖
.(2.6)

With x0 = 0, it measures the relative norm ‖∆b‖/‖b‖ of the smallest perturba-
tion ∆b in the right-hand side b only (A is considered unperturbed) such that
xj is the exact solution of the perturbed system Axj = b+∆b. For x0 6= 0 (2.6)
strongly depends on the initial approximation x0 and can give a misleading in-
formation about convergence, see, e.g. [33]. For some additional information see
also [5, 20].
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We do not argue that the relative residual norm can not be useful. In some
cases it is a proper quantity to be checked. Sometimes it is a part of more
complex convergence considerations, e.g. in solving nonlinear systems or in
numerical optimization. We do argue, however, that in many other cases, and
in particular in numerical solving of partial differential equations, the relative
residual norm is often uncritically used as the only measure of convergence.

Mathematically (ignoring effects of rounding errors), extension of the ap-
proaches mentioned above to preconditioned methods does not represent a prob-
lem, see, e.g., [29, 13]. Extension of the Gauss quadrature-based formulas for
estimating the A-norm of the error in CG (algorithm CGQL [15]) to the precon-
ditioned conjugate gradient method (PCG) was published in [27, 28] (algorithm
PCGQL). In the following Section we deal with the extension of error estimates
based on the Hestenes and Stiefel formula [22, 38].

3 PCG error estimates

In the standard view of preconditioning, the CG method is thought of as being
applied to a “preconditioned” system

Âx̂ = b̂,(3.1)

Â = L−1AL−T , b̂ = L−1b,(3.2)

where L represents a proper nonsingular (lower triangular) matrix, giving

Algorithm 1. CG for Âx̂ = b̂

given x̂0, r̂0 = b̂ − Âx̂0,
for j = 0, 1, . . .

γj =
(r̂j , r̂j)

(p̂j , Âp̂j)

x̂j+1 = x̂j + γ̂j p̂j

r̂j+1 = r̂j − γ̂j Âp̂j

δ̂j+1 =
(r̂j+1, r̂j+1)

(r̂j , r̂j)

p̂j+1 = r̂j+1 + δ̂j+1 p̂j

end for.

Defining

γj ≡ γ̂j , δj ≡ δ̂j ,(3.3)

xj ≡ L−T x̂j , rj ≡ L r̂j , pj ≡ L−T p̂j , sj ≡ L−T L−1rj ≡ M−1rj ,

(here xj and rj represent the approximate solution and residual for the original
problem Ax = b), we obtain the standard version of the PCG method
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Algorithm 2. PCG for Ax = b

given x0, r0 = b − Ax0, s0 = M−1r0, p0 = s0,
for j = 0, 1, . . .

γj =
(rj , sj)

(pj , Apj)

xj+1 = xj + γj pj

rj+1 = rj − γj Apj

sj+1 = M−1rj+1

δj+1 =
(rj+1, sj+1)

(rj , sj)

pj+1 = sj+1 + δj+1 pj

end for.

The preconditioner
M = LLT(3.4)

is chosen so that the linear system with the matrix M is easy to solve, while the
matrix L−1AL−T should ensure fast convergence of CG. The last goal is fulfilled,
e.g., when L−1AL−T is well conditioned (approximates the identity matrix) or
has properly clustered eigenvalues. Here we emphasize that location as well as
diameter of the clusters are important; improperly located clusters of very small
diameter do not necessarily ensure fast convergence, see [21, 37]. Location of the
clusters is sometimes omitted from consideration, and this leads to inaccurate
or even false statements, which can be found in widespread literature.

3.1 Estimating the A-norm of the error

In PCG, the A-norm of the error can be estimated similarly as in ordinary
CG. For a given d, the approximate solutions x̂j of the system (3.1) satisfy

‖x̂ − x̂j‖
2
Â

=

j+d−1∑

i=j

γ̂i‖r̂i‖
2 + ‖x̂ − x̂j+d‖

2
Â
,(3.5)

see [38, (4.4)]. Using (3.3),

‖r̂j‖
2 = rT

j L−T L−1rj = rT
j M−1rj = (rj , sj) ,

and

‖x̂ − x̂j‖
2
Â

= (LT x − LT xj)
T L−1AL−T (LT x − LT xj) = ‖x − xj‖

2
A.

The identity (3.5) can therefore be written in the form

‖x − xj‖
2
A =

j+d−1∑

i=j

γi (ri, si) + ‖x − xj+d‖
2
A.(3.6)
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Assuming a reasonable decrease of the A-norm of the error in the steps j + 1
through j + d, the square root of the quantity

νj,d ≡

j+d−1∑

i=j

γi (ri, si)(3.7)

gives a tight lower bound for the A-norm of the jth error of PCG applied to
the system Ax = b. Please notice that (similarly as in the ordinary CG) the
quantities γi and (ri, si) are at our disposal during the PCG iterations. For
earlier publications of these identities please see [39, 1].

3.2 Estimating the relative A-norm of the error

Consider PCG applied to linear algebraic systems arising from a finite element
discretization of self-adjoint elliptic partial differential equations. Then it is
natural to use the stopping criterion that compares the relative A-norm of the
error

‖x − xj‖A

‖x‖A
(3.8)

with the discretization error, see [1].
In [1], however, the A-norm of the jth error is estimated using (3.7), while the

estimate of the A-norm of the solution ‖x‖A is based on the formula

‖x‖2
A = rT

0 xj + bT x0 + ‖x − xj‖
2
A(3.9)

which gives the lower bound

‖x‖2
A ≥ ξ̃j ≡ rT

0 xj + bT x0 .(3.10)

Estimating the A-norm of the solution using the value ξ̃1/2

j has, besides com-
puting an unnecessary scalar product rT

0 xj , a possible disadvantage. Derivation
of the identity (3.9) assumes preserving of global orthogonality during the PCG
computations, cf. [1, p. 9]. In particular, it can be shown that in finite precision
arithmetic it holds (up to some small inaccuracy)

‖x‖2
A ≈ rT

0 xj + bT x0 + rT
j (xj − x0) + ‖x − xj‖

2
A.(3.11)

In exact arithmetic, the term rT
j (xj − x0) is equal to zero. In finite precision

arithmetic, however, its size can be close to ‖rj‖ ‖xj − x0‖. Consequently, the

estimate ξ̃1/2

j can for large rT
j (xj − x0) + ‖x − xj‖

2
A (in comparison to ‖x‖2

A)
provide misleading information about the size of ‖x‖A.

A mathematically equivalent identity to (3.9) that overcomes previous diffi-
culties can be obtained in the following way. Subtracting

‖x − x0‖
2
A = ν0,j+d + ‖x − xj+d‖

2
A,

‖x − x0‖
2
A = ‖x‖2

A − 2bT x0 + ‖x0‖
2
A = ‖x‖2

A − bT x0 − rT
0 x0,(3.12)
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the identity

‖x‖2
A = ν0,j+d + bT x0 + rT

0 x0 + ‖x − xj+d‖
2
A(3.13)

gives the corresponding lower bound

‖x‖2
A ≥ ξj+d ≡ ν0,j+d + bT x0 + rT

0 x0 .(3.14)

With d = 0, the identities (3.13) and (3.9), as well as the estimates ξj and ξ̃j

are mathematically equivalent. However, the evaluation of ξj is cheaper than the

evaluation of ξ̃j and, more substantially, (3.13) holds with a small inaccuracy
also in finite precision PCG computations independently on the loss of global
orthogonality, cf. Section 4.

Replacing the squared A-norm of the solution ‖x‖2
A by the lower bound ξj+d

and the squared jth A-norm of the error ‖x− xj‖
2
A by the lower bound νj,d, we

obtain the estimate ̺j,d for the squared relative A-norm of the error

̺j,d ≡
νj,d

ξj+d
.(3.15)

It should be noted that an improper choice of x0 can give ξj+d ≤ 0 which makes
the estimate ̺j,d in such case useless. We will, however, explain that ξj+d ≤ 0
means a meaningless choice of x0. First, a nonzero x0 should not be used in
an application of the CG method (and of any other Krylov subspace method)
unless there is a good reason for using it. In CG, the very natural condition

‖x − x0‖
2
A ≤ ‖x‖2

A(3.16)

should always be imposed. Though we can not compute the individual values
‖x‖2

A, ‖x − x0‖
2
A, its difference can easily be checked using (3.12). Second, if

ξj+d ≤ 0, then from (3.14)

bT x0 + rT
0 x0 = ‖x‖2

A − ‖x − x0‖
2
A < 0(3.17)

and x0 violates the condition (3.16). In such case, x0 should be discarded or
properly scaled in order to satisfy (3.16). In particular, x0 can be scaled such
that ‖x − αx0‖

2
A is minimal using

α =
bT x0

xT
0 Ax0

,

(for another application of the same little trick see [33, p. 1903]). With (3.16)
ξj+d > 0 and, using (3.13),

0 < ̺j,d =
‖x − xj‖

2
A − ‖x − xj+d‖

2
A

‖x‖2
A − ‖x − xj+d‖2

A

≤
‖x − xj‖

2
A

‖x‖2
A

,

i.e. ̺1/2

j,d is a lower bound on the jth relative A-norm of the error. Please note

that ̺1/2

j,d can be close to the relative A-norm of the error even when ν1/2

j,d is far
from ‖x − xj‖A.
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3.3 Estimating the M -norm of the error

In our paper [38] we described an estimate of the Euclidean norm of the error

in CG. For CG applied to Âx̂ = b̂, Algorithm 1, the estimate is based on the
identity

‖x̂ − x̂j‖
2 =

j+d−1∑

i=j

‖p̂i‖
2

(p̂i, Âp̂i)
(‖x̂ − x̂i‖

2
Â

+ ‖x̂ − x̂i+1‖
2
Â
)(3.18)

+ ‖x̂ − x̂j+d‖
2.

Using (3.3), (3.18) can be rewritten as

‖x − xj‖
2
M =

j+d−1∑

i=j

‖pi‖
2
M

(pi, Api)
(‖x − xi‖

2
A + ‖x − xi+1‖

2
A)(3.19)

+ ‖x − xj+d‖
2
M

where xj represents the PCG approximate solution for the original problem
Ax = b. Replacing the unknown ‖x − xi‖

2
A for i = j, . . . , j + d by the estimates

νi,2d−i+j (see [38]) we obtain

‖x − xj‖
2
M ≥ τj,d + ‖x − xj+d‖

2
M(3.20)

where the square root of the quantity

τj,d ≡

j+d−1∑

i=j

‖pi‖
2
M

(pi, Api)

(
γi (ri, si) + 2

j+2d−1∑

k=i+1

γk (rk, sk)

)
(3.21)

represents a lower bound for the M -norm of the error.

4 Numerical stability analysis

In [38] we showed that the Hestenes and Stiefel estimate is numerically sta-
ble (i.e. it is in finite precision CG computations not substantially affected by
rounding errors) until the A-norm of the error approaches its ultimate level of
accuracy. A similar result can be shown for the estimate (3.7) of the A-norm of
the error in PCG.

PCG computes at each step an additional vector sj+1 as a solution of the
linear system

Msj+1 = rj+1 ,(4.1)

and uses
(rj+1, sj+1)(4.2)

for computation of the coefficients γj+1 and δj+1 needed for determining of the
new direction vector pj+1. This is the difference which must be addressed in
extension of the results from CG [38] to PCG.
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From now on xj+1, xj , γj , pj , rj+1, rj , sj+1, δj+1 and pj+1 will represent
numerically computed quantities. Numerical stability analysis of the estimate
(3.7) must answer a question to which extent the identity (3.6) holds for quan-
tities computed in finite precision arithmetic. Please note that this question is
fundamentally different from its trivial part examining the error in computing
νj,d from γi and fl[(ri, si)], where fl[·] denotes the result of the operation per-
formed in finite precision arithmetic, using (3.7). In order to justify the estimate
(3.7), we have to derive the identity for the computed quantities analogous to
(3.6) without using any assumption which does not hold in finite precision com-
putations. In particular, we can not use any assumption about orthogonality or
finite termination.

The key step considers the exact identity for numerically computed quantities

‖x − xj‖
2
A = ‖x − xj+1 + xj+1 − xj‖

2
A

= ‖x − xj+1‖
2
A + 2(x − xj+1)

T A(xj+1 − xj) + ‖xj − xj+1‖
2
A

which gives the desired one-step difference

‖x − xj‖
2
A − ‖x − xj+1‖

2
A = ‖xj − xj+1‖

2
A(4.3)

+ 2(x − xj+1)
T A(xj+1 − xj).

The technically complicated and quite tedious analysis which must follow can
be summarized in several logically simple steps:

• First, the difference xj+1 − xj is equal to γjpj perturbed by inaccuracies
due to rounding errors. Consequently, ‖xj+1 − xj‖

2
A can be expressed as

γj(rj , sj) plus some additional terms depending on machine precision ε
characterizing the finite precision arithmetic. These additional terms are
small (this is not obvious; the proof requires a careful analysis).

• Second, considering the approximation of A(x−xj+1) by the residual vector
rj+1 computed in the (j+1)th iteration, the term 2(x−xj+1)

T A(xj+1−xj)
can be seen as 2γj(rj+1, pj) plus additional small terms depending on ε
(again, bounding the size of these terms needs nontrivial work).

The whole problem of justification of the estimate (3.7) in finite precision arith-
metic is in this way reduced to proving that local orthogonality between the
computed (j + 1)th residual rj+1 and the computed jth direction vector pj is
in PCG maintained proportionally to machine precision. This represents the
technically most complicated part of the whole analysis.

In following four subsections we present a detailed rounding error analysis of
the identity (3.6). Subsection 4.1 describes the rounding errors arising in PCG
iterates due to finite precision arithmetic. In subsection 4.2 we develop a finite
precision analogue of the identity (3.6) for d = 1. Subsection 4.3 shows that
the local orthogonality between the vectors rj+1 and pj is preserved, up to a
term proportional to machine precision, in finite precision PCG computation.
We finalize the rounding error analysis in subsection 4.4.
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Readers who wish to skip the details of our rounding error analysis may pro-
ceed immediately to Subsection 4.4 or even to numerical experiments in Sec-
tion 5.

4.1 Finite precision PCG computations

In the analysis we assume the standard model of floating point arithmetic with
machine precision ε, see, e.g. [23, (2.4)],

fl[a ◦ b] = (a ◦ b)(1 + δ), |δ| ≤ ε,(4.4)

where a and b stands for floating-point numbers and the symbol ◦ stands for the
operations addition, subtraction, multiplication and division. We assume that
this model holds also for the square root operation. Under this model, we have
for operations involving vectors v, w, a scalar α and the matrix A the following
standard results [17], see also [19], [31]

‖α v − fl[α v]‖ ≤ ε ‖α v‖,(4.5)

‖v + w − fl[v + w]‖ ≤ ε (‖v‖ + ‖w‖),(4.6)

|(v, w) − fl[(v, w)]| ≤ ε n (1 + O(ε)) ‖v‖ ‖w‖,(4.7)

‖Av − fl[Av]‖ ≤ ε c ‖A‖‖v‖.(4.8)

When A is a matrix with at most h nonzeros in any row and if the matrix-vector
product is computed in the standard way, c = hn1/2. In the following analysis
we count only for the terms linear in the machine precision ε and express the
higher order terms as O(ε2). By O(const) where const is different from ε2 we
denote const multiplied by a bounded positive term of an insignificant size which
is independent of the const and of any other variables present in the bounds.

Numerically, the PCG iterates satisfy

xj+1 = xj + γjpj + εzx
j ,(4.9)

rj+1 = rj − γjApj + εzr
j ,(4.10)

pj+1 = sj+1 + δj+1pj + εzp
j ,(4.11)

where εzx
j , εzr

j and εzp
j account for the local roundoff (r0 = b − Ax0 − εf0,

ε‖f0‖ ≤ ε{‖b‖+‖Ax0‖+c‖A‖‖x0‖}+O(ε2)). The local roundoff can be bounded
according to the standard results (4.5)–(4.8) in the following way

ε ‖zx
j ‖ ≤ ε {‖xj‖ + 2 ‖γjpj‖} + O(ε2)

≤ ε {3‖xj‖ + 2‖xj+1‖} + O(ε2),(4.12)

ε ‖zr
j ‖ ≤ ε {‖rj‖ + 2 ‖γjApj‖ + c ‖A‖‖γjpj‖} + O(ε2),(4.13)

ε ‖zp
j ‖ ≤ ε {‖sj+1‖ + 2 ‖δj+1pj‖} + O(ε2)

≤ ε {3‖sj+1‖ + 2‖pj+1‖} + O(ε2).(4.14)

Similarly, the computed coefficients γj and δj satisfy

γj =
(rj , sj)

(pj , Apj)
+ εζγ

j , δj =
(rj , sj)

(rj−1, sj−1)
+ εζδ

j .(4.15)
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In order to bound the local terms |εζγ
j | and |εζδ

j | we need following two lemmas.

Lemma 4.1. Consider the standard model of floating point arithmetic with
machine precision ε [23, 38], ε n ≪ 1. Let L be a nonsingular lower triangular
matrix and M = LLT . Then the numerically computed vector sj+1 is the exact
solution of the perturbed system

(M + ∆M) sj+1 = rj+1, ‖∆M‖ ≤
ε n2

1 − ε n
‖M‖.(4.16)

Proof. To prove (4.16) we use standard results of backward error analysis
[23]. Using the Theorem 9.4 [23, p. 175] and the fact that we have exact Cholesky
factorization of the matrix M = LLT we obtain

(M + ∆M) sj+1 = rj+1, |∆M | ≤
ε n

1 − ε n
|L||LT |

where |L| denotes the matrix L with elements in absolute value. As shown in
the proof of the Theorem 10.4 in [23, p. 206],

‖ |L||LT | ‖ ≤ n ‖M‖.

Summarizing,

‖∆M‖ ≤ ‖ |∆M | ‖ ≤
ε n

1 − ε n
‖ |L||LT | ‖ ≤ n

εn

1 − ε n
‖M‖

which completes the proof.

Remark. The assumption M = LLT is not substantial. The result simi-
lar to (4.16) and the following analysis, will remain valid also if the Cholesky
decomposition of M is computed numerically, see e.g. [17].

Lemma 4.2. Consider the standard model of floating point arithmetic with
machine precision ε [23, 38], let ε n2 κ(M) ≪ 1. The numerically computed
inner product fl[(rj , sj)] satisfies

fl[(rj , sj)] = (rj , sj) + ε ζrs
j ,

ε|ζrs
j | ≤ ε κ(M)1/2(rj , sj)O(n) + O(ε2) ,(4.17)

where κ(M) denotes the condition number of the matrix M . Moreover, (rj , sj)
is bounded from below by

(rj , sj) ≥
‖rj‖ ‖sj‖

κ(M)1/2
O(1) .(4.18)

Proof. Using (4.7), ε|ζrs
j | can be bounded as

ε|ζrs
j | ≤ ε n ‖rj‖ ‖sj‖ + O(ε2).(4.19)
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To prove (4.17), we have to relate ‖rj‖ ‖sj‖ to (rj , sj). From (4.16) it follows

‖rj‖ ‖sj‖ ≤ ‖rj‖ ‖(M + ∆M)−1rj‖

= ‖rj‖ ‖(I + M−1∆M)−1M−1rj‖

≤ ‖rj‖ ‖M
−1rj‖ ‖(I + M−1∆M)−1‖ .(4.20)

Assuming ε n2 κ(M) ≪ 1, it holds ‖M−1∆M‖ ≪ 1 and the matrix inverse
(I +M−1∆M)−1 can be approximated by two terms of the Neumann expansion.
Then, (4.20) changes to

‖rj‖ ‖sj‖ ≤ ‖rj‖ ‖M
−1rj‖CM ( 1 + O(‖M−1∆M‖2)) ,(4.21)

where
CM ≡ ‖ I − M−1∆M ‖

is a constant close to one. It remains to bound the product ‖rj‖ ‖M
−1rj‖. A

simple manipulation gives

‖rj‖ ‖M
−1rj‖ =

‖rj‖ ‖M
−1/2M−1/2rj‖

(M−1/2rj ,M−1/2rj)
(rj ,M

−1rj)

≤ ‖M−1/2‖
‖rj‖

‖M−1/2rj‖
(rj ,M

−1rj).(4.22)

Using Msj + ∆Msj = rj we get

(rj ,M
−1rj) = (rj , sj) + (rj ,M

−1∆Msj)

= (rj , sj) + (M−1/2rj ,M
−1/2∆Msj)

and ‖rj‖ ‖M
−1rj‖ can be bounded by

‖rj‖ ‖M
−1rj‖ ≤

‖M−1/2‖ ‖rj‖

‖M−1/2rj‖
(rj , sj)

+
‖M−1/2‖ ‖rj‖

‖M−1/2rj‖
(M−1/2rj ,M

−1/2∆Msj)

≤ κ(M)1/2(rj , sj) +
ε n2

1 − ε n
κ(M) ‖rj‖ ‖sj‖ .(4.23)

From (4.21) and (4.23) it follows

‖rj‖ ‖sj‖ ≤ ε κ(M)1/2(rj , sj)CM

+
ε n2

1 − ε n
κ(M) ‖rj‖ ‖sj‖CM + O(‖M−1∆M‖2) .(4.24)

Defining

DM ≡ CM

(
1 −

ε n2

1 − ε n
κ(M)CM

)−1

,
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(4.24) can be written in the form

‖rj‖ ‖sj‖ ≤ κ(M)1/2(rj , sj)DM + O(‖M−1∆M‖2) .(4.25)

Since ε n2 κ(M) ≪ 1 and CM is close to one, the definition of DM implies that
DM is close to one also. The term O(‖M−1∆M‖2) is under our assumption
unimportant and will not be further explicitly considered. Finally, (4.25) gives

‖rj‖ ‖sj‖ ≤ κ(M)1/2(rj , sj)O(1) ,(4.26)

where O(1) stands for a number close to one. (4.17) follows immediately from
(4.26) and (4.19). Dividing (4.26) by κ(M)1/2 gives (4.18), which finishes the
proof.

Assuming ε n2 κ(M) ≪ 1, the local term εζδ
j is bounded, according to (4.4),

(4.7) and (4.17), by

ε|ζδ
j | ≤ ε

(rj , sj)

(rj−1, sj−1)
κ(M)1/2 O(n) + O(ε2).(4.27)

Using (4.5)–(4.8) and ‖A‖‖pj‖
2/(pj , Apj) ≤ κ(A),

fl[(pj , Apj)] = (pj , Apj) + ε ‖Apj‖‖pj‖O(n) + ε ‖A‖‖pj‖
2O(c) + O(ε2)

= (pj , Apj)
(
1 + ε κ(A)O(n + c)

)
+ O(ε2).

Assuming ε(n + c)κ(A) ≪ 1, the local roundoff εζγ
j is bounded by

ε|ζγ
j | ≤ ε (κ(A) + κ(M)1/2)

(rj , sj)

(pj , Apj)
O(n + c) + O(ε2).(4.28)

It is well known that in finite precision arithmetic the true residual b − Axj

differs from the recursively updated residual vector rj ,

rj = b − Axj − εfj .(4.29)

This topic was studied in [36] and [19]. The results can be written in the following
form

‖εfj‖ ≤ ε ‖A‖ (‖x‖ + max
0≤i≤j

‖xi‖)O(jc),(4.30)

‖rj‖ = ‖b − Axj‖ (1 + εFj),(4.31)

where εFj is bounded by

|εFj | =
|‖rj‖ − ‖b − Axj‖|

‖b − Axj‖
≤

‖rj − (b − Axj)‖

‖b − Axj‖
=

ε‖fj‖

‖b − Axj‖
.(4.32)

Rounding errors affect results of PCG computations in two main ways: they
delay convergence and limit the ultimate attainable accuracy. Here we are pri-
marily interested in estimating the convergence rate. We therefore assume that
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the final accuracy level has not been reached yet and εfj is, in comparison to
the size of the true and iterative residuals, small. In the subsequent text we will
relate the numerical inaccuracies to the A-norm of the error ‖x − xj‖A. The
following inequalities derived from (4.32) will prove useful,

λ
1/2
1 ‖x − xj‖A (1 + εFj) ≤ ‖rj‖ ≤ λ1/2

n ‖x − xj‖A (1 + εFj).(4.33)

Similarly as in the ordinary CG (see [18], [21]) we can argue that the monotonic-
ity of the A-norm is in PCG preserved (with small additional inaccuracy) also
in finite precision computations. Using this fact we get for j ≥ i

ε
‖rj‖

‖ri‖
≤ ε

λ
1/2
n

λ
1/2
1

·
‖x − xj‖A

‖x − xi‖A
·
(1 + εFj)

(1 + εFi)
≤ ε κ(A)

1/2
+ O(ε2).(4.34)

This bound will be used later.

4.2 Finite precision analysis – basic identity

We show that the ideal (exact precision) identity (3.6) changes numerically to

‖x − xj‖
2
A = νj,d + ‖x − xj+d‖

2
A + ν̃j,d(4.35)

where ν̃j,d is as small as it can be. We once more emphasize that the difference
between (3.6) and (4.35) is not trivial. The ideal and numerical counterparts of
each individual term in these identities may be orders of magnitude different!
Due to the facts that rounding errors in computing νj,d numerically from the
quantities γi and fl[(ri, si)] are negligible and that ν̃j,d will be related to ε ‖x −
xj‖A, (4.35) will justify the estimate νj,d in finite precision computations.

In order to get the desired form leading to (4.35), we will develop the right
hand side of (4.3). In this derivation we will rely on local properties (4.9)–(4.11)
and (4.15)–(4.16) of the finite precision PCG recurrences.

Using (4.9), the first term on the right hand side of (4.3) can be written as

‖xj+1 − xj‖
2
A = (γjpj + ε zx

j )T A(γjpj + ε zx
j )

= γ2
j (pj , Apj) + 2ε γj(pj , Azx

j ) + O(ε2)

= γj (pj , Apj) + 2ε (xj+1 − xj)
T Azx

j + O(ε2).(4.36)

Similarly, the second term on the right hand side of (4.3) transforms, using
(4.29), to the form

2 (x − xj+1)
T A(xj+1 − xj) = 2 (rj+1 + ε fj+1)

T (xj+1 − xj)

= 2 rT
j+1(xj+1 − xj) + 2ε fT

j+1(xj+1 − xj).(4.37)

Combining (4.3), (4.36) and (4.37),

‖x − xj‖
2
A − ‖x − xj+1‖

2
A = γ2

j (pj , Apj)(4.38)

+ 2 rT
j+1(xj+1 − xj) + 2ε (fj+1 + Azx

j )T (xj+1 − xj) + O(ε2).
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Substituting for γj from (4.15), the first term in (4.38) can be written as

γ2
j (pj , Apj) = γj(rj , sj) + ε γj (pj , Apj) ζγ

j

= γj(rj , sj) + ε γj(rj , sj)

{
ζγ
j

(pj , Apj)

(rj , sj)

}
.

Consequently, the difference between the squared A-norms of the error in the
consecutive steps can be written in the form convenient for the further analysis

‖x − xj‖
2
A − ‖x − xj+1‖

2
A = γj(rj , sj) + ε γj(rj , sj)

{
ζγ
j

(pj , Apj)

(rj , sj)

}
(4.39)

+ 2 rT
j+1(xj+1 − xj) + 2ε (fj+1 + Azx

j )T (xj+1 − xj) + O(ε2).

The goal of the following analysis is to show that until ‖x − xj‖A reaches its
ultimate attainable accuracy level, the terms on the right hand side of (4.39) are,
except for γj(rj , sj) insignificant. Bounding the second term will not represent
a problem. The norm of the difference xj+1 − xj = (x − xj) − (x − xj+1)
is bounded by 2‖x − xj‖A/λ1/2

1 , and therefore the size of the fourth term is
proportional to ε ‖x−xj‖A. The third term is related to the line-search principle.
Ideally (in exact arithmetic), the (j + 1)-th residual r̂j+1 is orthogonal to the
difference between the (j + 1)-th and j-th approximation x̂j+1 − x̂j (which is a
multiple of the j-th direction vector p̂j). This is equivalent to the line-search:
ideally, in terms of the transformed quantities used in Algorithm 2, the (j +
1)-th PCG approximation minimizes the A-norm of the error along the line
determined by the j-th approximation and the j-th direction vector. Here the
term rT

j+1(xj+1 − xj), with rj+1, xj and xj+1 computed numerically, examines
how closely the line-search holds in finite precision arithmetic. In fact, bounding
the local orthogonality rT

j+1(xj+1 − xj) represents the technically most difficult
part of the remaining analysis.

4.3 Local orthogonality

Since the classical work of Paige it is well known that in the three-term Lanczos
recurrence local orthogonality is preserved close to the machine epsilon (see [31]).
We will derive an analogue of this for the PCG algorithm, and state it as an
independent result.

The local orthogonality term rT
j+1(xj+1 − xj) can be written in the form

rT
j+1(xj+1 − xj) = rT

j+1(γjpj + ε zx
j ) = γj(rj+1, pj) + ε (rj+1, z

x
j ).(4.40)

Using the bound

‖rj+1‖ ≤ λ1/2
n ‖x − xj+1‖A(1 + εFj+1) ≤ λ1/2

n ‖x − xj‖A(1 + εFj+1) ,

see (4.33), the size of the second term in (4.40) is proportional to ε ‖x − xj‖A.
The main step consist of showing that the term (rj+1, pj) is sufficiently small.
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Scalar multiplying the recurrence (4.10) for rj+1 by the vector pj gives (using
(4.11) and (4.15))

(pj , rj+1) = (pj , rj) − γj(pj , Apj) + ε (pj , z
r
j )

= (sj + δjpj−1 + ε zp
j−1)

T rj

−

(
(rj , sj)

(pj , Apj)
+ ε ζγ

j

)
(pj , Apj) + ε (pj , z

r
j )

= δj (pj−1, rj) + ε {(rj , z
p
j−1) − ζγ

j (pj , Apj) + (pj , z
r
j )}.(4.41)

Denoting
Gj ≡ (rj , z

p
j−1) − ζγ

j (pj , Apj) + (pj , z
r
j ),(4.42)

the identity (4.41) is

(pj , rj+1) = δj (pj−1, rj) + εGj .(4.43)

Recursive application of (4.43) for (pj−1, rj), . . . , (p1, r2) with (p0, r1) = (p0, r0)−
γ0 (p0, Ap0) + ε (p0, z

r
0) = ε {−ζγ

0 (s0, As0) + (s0, z
r
0)} ≡ εG0, gives

(pj , rj+1) = εGj + ε

j∑

i=1

( j∏

k=i

δk

)
Gi−1.(4.44)

Since

ε

j∏

k=i

δk = ε

j∏

k=i

(rk, sk)

(rk−1, sk−1)
+ O(ε2) = ε

(rj , sj)

(ri−1, si−1)
+ O(ε2),

we can express (4.44) as

(pj , rj+1) = ε (rj , sj)

j∑

i=0

Gi

(ri, si)
+ O(ε2).(4.45)

Using (4.42),

|Gi|

(ri, si)
≤

‖ri‖‖z
p
i−1‖

(ri, si)
+ |ζγ

i |
(pi, Api)

(ri, si)
+

‖pi‖‖z
r
i ‖

(ri, si)
.(4.46)

When bounding the first and the last terms on the right hand side of (4.46), we
will use the inequality (4.18) proved in Lemma 4.2. From (4.14) it follows

ε
‖ri‖‖z

p
i−1‖

(ri, si)
≤ ε κ(M)1/2

{
3 + 2

‖pi‖

‖si‖

}
O(1) + O(ε2).(4.47)

Using (4.28),

ε |ζγ
i |

(pi, Api)

(ri, si)
≤ ε (κ(A) + κ(M)1/2)O(n + c) + O(ε2).(4.48)
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The last part of (4.46) is bounded using (4.13) and (4.18)

ε
‖pi‖‖z

r
i ‖

(ri, si)
≤ ε

{
κ(M)1/2 ‖pi‖‖ri‖

‖si‖‖ri‖
O(1)

}

+ ε

{
2 γi

‖pi‖‖Api‖

(ri, si)
+ c γi

‖pi‖‖A‖‖pi‖

(ri, si)

}
+ O(ε2)

= ε

{
κ(M)1/2 ‖pi‖

‖si‖
O(1)

}

+ ε

{
2
‖pi‖‖Api‖

(pi, Api)
+ c

‖A‖‖pi‖
2

(pi, Api)

}
+ O(ε2)

≤ ε

{
κ(M)1/2 ‖pi‖

‖si‖
O(1) + (2 + c)κ(A)

}
+ O(ε2),(4.49)

where

ε
‖pi‖

‖si‖
≤ ε

‖si‖ + δi‖pi−1‖

‖si‖
+ O(ε2)

≤ ε

{
1 + δi

‖si−1‖

‖si‖

‖pi−1‖

‖si−1‖

}
+ O(ε2).(4.50)

Recursive application of (4.50) for ‖pi−1‖/‖si−1‖, ‖pi−2‖/‖si−2‖, . . ., ‖p1‖/‖s1‖
with ‖p0‖/‖s0‖ = 1 gives

ε
‖pi‖

‖si‖
≤ ε

{
1 +

(si, ri)

(si−1, ri−1)

‖si−1‖

‖si‖
+ . . . +

(si, ri)

(s0, r0)

‖s0‖

‖si‖

}
+ O(ε2)

≤ ε

{
1 +

‖ri‖‖si−1‖

(si−1, ri−1)
+ . . . +

‖ri‖‖s0‖

(s0, r0)

}
+ O(ε2)

≤ ε

{
1 + κ(M)1/2 ‖ri‖

‖ri−1‖
+ . . . + κ(M)1/2 ‖ri‖

‖r0‖

}
O(1) + O(ε2).

The size of ε ‖ri‖/‖rk‖, i ≥ k is, according to (4.34), less or equal than the value
ε κ(A)1/2 + O(ε2). Consequently,

ε
‖pi‖

‖si‖
≤ ε {1 + i κ(A)1/2κ(M)1/2}O(1) + O(ε2).(4.51)

Denote
κ(A,M) ≡ max(κ(A), κ(M)κ(A)1/2).

Summarizing (4.47), (4.48), (4.49) and (4.51), the ratio ε |Gi|/(ri, si) is bounded
as

ε
|Gi|

(ri, si)
≤ ε κ(A,M)O(8 + 3c + 2n + 3i) + O(ε2).(4.52)

Combining this result with (4.45) proves the following theorem.
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Theorem 4.3. Let ε (n + c)κ(A) ≪ 1, ε n2 κ(M) ≪ 1. Then the local
orthogonality between the direction vectors and the iteratively computed residuals
is in the finite precision implementation of the preconditioned conjugate gradient
method (4.9)–(4.11) and (4.15)–(4.16) bounded by

|(pj , rj+1)| ≤ ε (rj , sj)κ(A,M)O((j + 1)(8 + 3c + 2n + 3j)) + O(ε2)(4.53)

where
κ(A,M) ≡ max (κ(A), κ(M)κ(A)1/2) .

4.4 Finite precision analysis – conclusions

We now return to (4.39) and finalize our discussion. Using (4.40) and (4.45),

‖x − xj‖
2
A − ‖x − xj+1‖

2
A = γj(rj , sj)(4.54)

+ ε γj(rj , sj)

{
ζγ
j

(pj , Apj)

(rj , sj)
+ 2

j∑

i=0

Gi

(rj , sj)

}

+2ε {(fj+1 + Azx
j )T (xj+1 − xj) + (rj+1, z

x
j )} + O(ε2).

The term

E(1)

j ≡ ε

{
ζγ
j

(pj , Apj)

(rj , sj)
+ 2

j∑

i=0

Gi

(rj , sj)

}

is bounded using (4.28) and (4.52),

|E(1)

j | ≤ εκ(A,M)O(2n + 2c + 2(j + 1)(8 + 3c + 2n + 3j))) + O(ε2).(4.55)

We write the remaining term on the right hand side of (4.54) proportional to ε

2ε {(fj+1 + Azx
j )T (xj+1 − xj) + (rj+1, z

x
j )} ≡ ‖x − xj‖A E(2)

j(4.56)

where

|E(2)

j | = 2ε

∣∣∣∣(fj+1 + Azx
j )T

(
xj+1 − x + x − xj

‖x − xj‖A

)
+

(rj+1, z
x
j )

‖x − xj‖A

∣∣∣∣

≤ 2ε {2 (‖fj+1‖λ
−1/2
1 + ‖A‖1/2‖zx

j ‖) + ‖A‖1/2‖zx
j ‖}.(4.57)

With (4.30) and (4.12),

|E(2)

j | ≤ 4ε‖A‖1/2κ(A)1/2(‖x‖ + max
0≤i≤j+1

‖xi‖)O(jc)

+ 5‖A‖1/2ε(3‖xj‖ + 2‖xj+1‖) + O(ε2)

≤ ε‖A‖1/2κ(A)1/2(‖x‖ + max
0≤i≤j+1

‖xi‖)O(4jc + 25) + O(ε2).(4.58)

Finally, using the fact that the monotonicity of the A-norm is with small addi-
tional inaccuracy preserved also in finite precision PCG computations (see also
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the discussion following (4.33)), we obtain the finite precision analogue of (3.6),
which is formulated as a theorem.

Theorem 4.4. Let ε (n + c)κ(A) ≪ 1, ε n2 κ(M) ≪ 1. Then the PCG
approximate solutions computed in finite precision arithmetic satisfy

‖x − xj‖
2
A − ‖x − xj+d‖

2
A = νj,d(4.59)

+ νj,d E(1)

j,d + ‖x − xj‖A E(2)

j,d + O(ε2),

where

νj,d =

j+d−1∑

i=j

γi (ri, si).(4.60)

The terms due to rounding errors are bounded by

|E(1)

j,d| ≤ ε κ(A,M) p(1)(n, d) + O(ε2),(4.61)

|E(2)

j,d| ≤ ε ‖A‖1/2κ(A)1/2 (‖x‖ + max
0≤i≤j+1

‖xi‖) p(2)(n, d) + O(ε2),

where
κ(A,M) ≡ max (κ(A), κ(M)κ(A)1/2),

p(1)(n, d) and p(2)(n, d) represent small degree polynomials in n and d independent
of any other variables.

Based on the assumptions we consider |E(1)

j,d| ≪ 1. Then, assuming that the
A-norm of the error reasonably decreases, the numerically computed value νj,d

gives a good estimate for the A-norm of the error ‖x − xj‖
2
A until

‖x − xj‖A |E(2)

j,d| ≪ ‖x − xj‖
2
A,

which is equivalent to
‖x − xj‖A ≫ |E(2)

j,d|.(4.62)

The quantity E(2)

j,d represents various terms. Its upper bound is, apart from
κ(A)1/2, which comes into play as an effect of the worst-case rounding error
analysis, linearly dependent on an upper bound for ‖x − x0‖A. The value of
E(2)

j,d is (similar to terms or constants in any other rounding error analysis) not
important. What is important is the following possible interpretation of (4.62):
until ‖x− xj‖A reaches a level close to ε‖x− x0‖A, the computed estimate ν1/2

j,d

must work.
Please note that νj,d represents here the exact value determined from the

computed inputs γi, ri and si. In fact, we should consider the computed value
fl[νj,d]. Additional rounding errors in evaluating the formula (4.60) are, however,
negligible in comparison to the other rounding error terms in (4.59), and need
not be considered here.



ERROR ESTIMATION IN PRECONDITIONED CONJUGATE GRADIENTS 21

5 Numerical experiments

We test our theoretical results on three linear systems with a symmetric pos-
itive definite matrix A. The first two systems (by R. Kouhia) arise from cylin-
drical shell modeling. The matrices are large and sparse, and PCG represents
a natural choice for solving the systems in practical computations. The third
system (by P. Benner) appears in large-scale control problems. PCG is not used
for practical solution of the last (rather small) system. We use it here for illus-
tration of how the estimate of the A-norm of the error works for this type of
problem. We describe the problems in more detail.

The system s3dkt3m2. The collection Cylshell (by R. Kouhia) from the elec-
tronic library Matrix Market [25] contains matrices that represent low order
finite element discretization of a shell element test, the pinched cylinder. An
illustration of the mesh for this problem provided by R. Kouhia is given below.

In our experiments we use the matrix s3dkt3m2 of the order n = 90449. The
matrix has nnz(A) = 1921955 nonzero elements, and the condition number
κ(A) = 3.62e+11. Only the last element of the right-hand side vector b is
nonzero, which corresponds to the given physical problem (for more details
see [24] and the references in [24]). The preconditioner was determined by in-
complete Cholesky decomposition with no fill-in.

The system tube. The second system is given at the R. Kouhia’s homepage
http://www.hut.fi/~kouhia/ (the system tube1-2). The tube is a cylindrical
shell with the constant wall thickness, loaded with an axial stress distribution at
both ends. The mesh is refined at the center, and it is almost uniform towards
the ends.
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The order of the matrix A is n = 21498, nnz(A) = 894490. The factor L of
the preconditioner M is determined by the incomplete Cholesky decomposition
with the drop tolerance 1e–5, nnz(L) = 4384369.

The system stahl. We consider the problem of optimal cooling of steel profile,
that arises, e.g. in a rolling mill when different steps in the production process
require different temperatures of the raw material. The problem is modeled
using a boundary control (given by the temperature of the cooling fluid) for a
heat-diffusion process described by the linearized heat equations. This leads to
the Lyapunov equations that are solved by the ADI iterations. For more detail
about this problem see [9]. We test the proposed estimates on the system from
the initial step of the ADI iteration. The matrix is of the order n = 5177,
κ(A) = 1.56e+05, nnz(A) = 35241. The system is preconditioned by incomplete
Cholesky decomposition with no fill-in.

In all experiments we use the initial approximation x0 = 0. We do not tune
the preconditioner for the best performance; our aim is to demonstrate the
behaviour of the estimate of the A-norm of the error in practical computations.
The substitutes for the exact solutions x used in the figures are for each system
computed in two steps: 1. We apply PCG to the system and iterate until ultimate
level of accuracy is reached (the norm of true and recursive residuals start to
differ). 2. We apply PCG to the system for the second time, with the initial
approximation given by the approximate solution computed in the first step.
In this way, we obtain approximate solutions that represent for our purpose
sufficiently accurate approximations to the exact solutions x. Our numerical
experiments showed that even for the first step the obtained residual norms
were comparable with that ones obtained by the direct Cholesky decomposition
solver. After the second step the residual norms further decreased, but less than
by a factor of 10.

In experiments with the system s3dkt3m2 we use a Fortran program CG6
provided us by M. Tůma. The other two systems are solved using our im-
plementation of PCG in Matlab 6.5; we use the Matlab-function cholinc to
determine the incomplete Cholesky decomposition of the matrix A. All exper-
iments were performed on a AMD Athlon XP 2100+ personal computer with
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Figure 5.1: The system s3dkt3m2. In an extremal case of very slow PCG convergence
the estimate ν

1/2

j,d can significantly underestimate the actual A-norm of the error (left

part). The estimate ̺
1/2

j,d of the relative A-norm of the error (right part) is in general
much tighter than the estimate of the A-norm of the error.

machine precision ε ∼ 10−16.

5.1 Estimates for the A-norm of the error

In the first numerical experiment we test the estimate ν1/2

j,d of the A-norm of the

error and the estimate ̺1/2

j,d of the relative A-norm of the error in PCG applied to
the three systems described above. The results are presented in the figures Fig-
ure 5.1 (s3dkt3m2), Figure 5.2 (tube) and Figure 5.3 (stahl). All three figures
consist of two parts. The left part includes various convergence characteristics:
the A-norm of the error ‖x− xj‖A (dashed line), its estimate ν1/2

j,d for some par-
ticular value of the parameter d (bold solid line), the residual norm ‖b − Axj‖
(dash-dotted line) and the normwise backward error ‖b−Axj‖/(‖A‖ ‖xj‖+‖b‖)
(dotted line). In the right part of the figure we plot the relative A-norm of the
error ‖x− xj‖A/‖x‖A (dashed line) and its estimates ̺1/2

j,d for different values of
d (solid lines). The bold line corresponds to the same value of d as the bold line
in the left part of the figure.

Figure 5.1 (s3dkt3m2), left part. We start with the most difficult situation
when the A-norm of the error (dashed line) almost stagnates for many steps
(here up to the iteration ∼ 2400). Then the estimate ν1/2

j,d (bold solid line) can
give a poor information about the actual A-norm of the error. The values of
‖x−xj‖A and ν1/2

j,d , can significantly differ even for a considerably large value of
the parameter d (here d = 200). Please notice that the situation just described
is not frequent in practical computations. It corresponds to an extremely slow
convergence of PCG, i.e. to the case of very difficult problem which is hard to
precondition. We have chosen such problem on purpose to show the possible
drawback of the proposed error estimator. We emphasize that this situation
represents an extremal case. Typical situation is demonstrated below on Fig-
ure 5.2 (tube) and Figure 5.3 (stahl). As soon as the convergence takes place
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(around the iteration 2400), we get a tight lower bound for the A-norm of the
error.

In CG, we often observe a close correlation between the behaviour of the
residual norm and the estimate ν1/2

j,d for small values of d. This is a consequence
of the fact that in ordinary CG the coefficients γj usually oscillate around some
value and, apart from this oscillations, the behaviour of ‖rj‖ determines the
behaviour of ν1/2

j,d . Similar phenomenon appears also in the PCG iterations. Here

νj,d and (rj ,M
−1rj) (the squared M−1-norm of the residual rj) are correlated

for small values of d. The M−1-norm of the residual rj frequently behaves in
practical computation similarly as a constant multiple of the Euclidean norm
of the residual. Then the correlation between ‖rj‖ and ν1/2

j,d is observed also
in the PCG iterations. For larger values of d, however, there is, in general, no
correlation between the behaviour of ‖rj‖ and ν1/2

j,d . In the left part of Figure 5.1
(where d = 200) we clearly see periods of decrease of ‖rj‖ with simultaneous
increase of ν1/2

j,d , and vice versa.
By the dotted line we plot the normwise backward error. After the convergence

becomes steady, the values of ‖xj‖ typically stabilize. The residual norm and the
normwise backward error are then in a strong correlation. Until then, however,
both characteristics can behave differently. This fact is demonstrated by the
convergence curves in the first 500 iterations; the backward error decreases while
the residual norm stagnates.

Figure 5.1 (s3dkt3m2), right part. In the right part of the Figure 5.1 we plot
the relative A-norm of the error (3.8) (dashed line) and its estimate ̺1/2

j,d for
d = 1, d = 10, d = 80 (solid lines) and d = 200 (bold solid line). The estimate
̺1/2

j,1 , and sometimes even ̺1/2

j,10, ̺1/2

j,80 and ̺1/2

j,200, are not tight when the A-norm of

the error almost stagnates. In the other cases ̺1/2

j,1 as well as the bounds for the
larger d are close to the considered convergence curve. By the bold solid line we
plot the estimate for d = 200. In comparison to the left part of the Figure 5.1,
the estimate of the relative A-norm of the error gives better results (it is closer
to the approximated curve) than the estimate of the absolute A-norm of the
error.

Figure 5.2 (tube), left part. When the A-norm of the error (dashed line)
decreases rapidly (iterations 350 − 400), we can not visually distinguish this
quantity from its estimate ν1/2

j,d (bold solid line). On the other hand, when the
convergence is slow (iterations 1 − 350), the difference between the actual A-
norm of the error and its estimate is observable but insignificant. The normwise
backward error (dotted line) behaves similarly, apart from the difference in mag-
nitude, as the residual norm (dash dotted line).

Figure 5.2 (tube), right part. The right part of the Figure 5.2 contains the
curve of the relative A-norm of the error (dashed line) and its estimates for
d = 1, d = 4 (solid lines) and d = 20 (bold solid line). For d = 1, the curve of
the estimate is erratic. The irregularity of the curve is due to the oscillations
of the coefficients γj . The estimate ̺1/2

j,1 does not differ from the actual rela-
tive A-norm of the error for more than a single order of magnitude, although
the convergence is in iterations 1–350 slow. Increasing d provides a very good
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Figure 5.2: The system tube. Even a slow decrease of the A-norm of the error is
sufficient for obtaining a satisfactory value of the estimate ν

1/2

j,d of the A-norm of the
error. The erratic behaviour for d = 1 is caused by the oscillations of the coefficients
γj (right part). By increasing the value of d, the curves are more smooth and closer to
the relative A-norm of the error.
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Figure 5.3: The system stahl. The estimates for the absolute and relative A-norm of
the error are tight throughout the whole computation.

estimate throughout the whole computation.
Figure 5.3 (stahl), left part. The preconditioning by incomplete Cholesky

decomposition represents here a very good choice; the convergence of the A-norm
of the error (dashed line) is fast during the whole computation and the estimate
(bold solid line) for the parameter d = 20 describes very well the convergence
curve.

Figure 5.3 (stahl), right part. The estimates of the relative A-norm of the
error give a satisfactory information about the convergence also for small values
of d (d = 1, d = 4).

5.2 Reconstruction of the convergence curve

Up to now we estimated the A-norm of the error at the iteration step j at
the price of running d extra steps, and we considered d to be fixed. The simple
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Figure 5.4: The system s3dkt3m2. The relative A-norm of the error (dashed line), the
estimate of the relative A-norm of the error with d = 100 (solid line) and the curves
reconstructed at iterations 1000 (dots), 1700 (x-marks), 2200 (pentagrams) and 2500
(stars).

form of the estimate νj,d, see (3.6), (3.7) enables at the given iteration step j
updating of the estimates of the A-norm of the error at the steps j−d, j−2d, . . .
at a negligible cost. Indeed, assuming, for simplicity of exposition, that j is a
multiple of the chosen d (j mod d = 0), the identity (3.6) gives

‖x − xj−id‖
2
A =

i∑

l=0

νj−ld,d + ‖x − xj+d‖
2
A, i = 0, 1, . . . .(5.1)

In this way,

ν1/2

j−id,(i+1)d =

(
i∑

l=0

νj−ld,d

)1/2

(5.2)

approximates ‖x−xj−id‖A with the inaccuracy at most ‖x−xj+d‖A. In practical
computations we can simply store the values of ν0,d, νd,d, ν2d,d, . . . , νj−d,d, and
with the additional d steps update the estimates for the A-norm of the error in
the steps 0, d, 2d, . . . , j − d to

ν1/2

0,j+d, ν1/2

d,j , ν1/2

2d,j−d, . . . , ν1/2

j−d,2d .

Dividing by ν1/2

0,j+d we get the corresponding values of the estimates ̺1/2

d,j , ̺1/2

2d,j ,

. . ., ̺1/2

j−d,2d for the relative A-norm of the error. We illustrate this “reconstruc-
tion” of the convergence curve in Figure 5.4, computed for the problem s3dkt3m2

with d = 100, where we plot the relative A-norm of the error (dashed line), its
estimate ̺1/2

j,d (solid line) and the updated estimates of the relative A-norm of the
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Figure 5.5: The system tube. The norms of the errors show similar behaviour. For
d = 4, the estimates of ‖x − xj‖M and of ‖x − xj‖A behave erratically, similarly to
the residual norm (left part). For d = 40, the estimates are smoother and closer to the
approximated curves (right part).

error computed for j = 1000 (dots), j = 1700 (x-marks), j = 2200 (pentagrams)
and j = 2500 (stars). Please notice that when ‖x − xj‖A almost stagnates, the
updated estimates can significantly differ from the original ones represented by
the solid line.

We point out that in this paper we deal with evaluation of convergence, and we
left heuristics for proper stopping criteria to further investigation. The problem
s3dkt3m2 illustrates that the last question is not trivial. Though, e.g., the
computed estimates (even those updated at the iteration j = 2200) significantly
decrease in the iterations 1800-2000, the actual value of the A-norm of the error
still almost stagnates. We emphasize that neither the residual norm nor the
normwise backward error reliably indicate the convergence of the A-norm of the
error (cf. Fig. 5.1, iterations 1800-2000).

5.3 Comparison of the convergence characteristics

In Figure 5.5 we plot various convergence characteristics and error estimates
for the system tube. We have used d = 4 (left part) and d = 40 (right part). The
M -norm of the error ‖x − xj‖M (dash-dotted line), the Euclidean norm of the
error ‖x − xj‖ (bold solid line) and the A-norm of the error ‖x − xj‖A (dashed
line) show, except for a few initial iterations, similar behaviour. The estimates
both of ‖x − xj‖M and ‖x − xj‖A are plotted by the solid lines (no confusion
is possible; the line that is always under the dashed curve is the estimate of the
A-norm of the error). The A-norm of the error is estimated more accurately
than the M -norm of the error; while the estimate ν1/2

j,d differs for no more that

one order of magnitude from ‖x − xj‖A, τ 1/2

j,d differs often for about two orders
of magnitude. The behaviour of both estimates is similar, but the peaks on the
line representing τ 1/2

j,d are higher than the peaks on the line representing ν1/2

j,d . For
d = 4 both estimates behave erratically, similarly to the residual norm (dotted
line). By increasing the value of d, the estimates are smoother and closer to the
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approximated curves (see right part). The estimate of the M -norm of the error
is in our example more sensitive to a slow decrease of error norms.

6 Conclusions

We propose to incorporate the estimate for the A-norm of the error ν1/2

j,d (see

(3.7)) and the estimate for the relative A-norm of the error ̺1/2

j,d (see (3.15))
into software realizations of the PCG method. They are simple and numerically
stable, and can complement with a great benefit the quantities commonly used
for evaluating convergence. The estimates are tight if the A-norm of the error
reasonably decreases. With a good preconditioner ensuring fast convergence we
get an authentic information about convergence in terms of the A-norm of the
error. Similarly, the estimate τ 1/2

j,d (see (3.21)) for the M -norm of the error should
be used whenever appropriate.

The proposed estimates can be combined with the standard quantities, such
as residual norm or normwise backward error, for constructing a proper stopping
criteria. The last topic as well as the (variable) choice of the parameter d in the
estimates still needs further work.
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16. G. H. Golub and Z. Strakoš, Estimates in quadratic formulas, Numer.
Algorithms, 8 (1994), pp. 241–268.

17. G. H. Golub and C. van Loan, Matrix computation, The Johns Hopkins
University Press, Baltimore MD, third ed., 1996.

18. A. Greenbaum, Behavior of slightly perturbed Lanczos and conjugate-
gradient recurrences, Linear Algebra Appl., 113 (1989), pp. 7–63.

19. A. Greenbaum, Estimating the attainable accuracy of recursively computed
residual methods, SIAM journal on matrix analysis and applications, 18
(1997), pp. 535–551.

20. A. Greenbaum, Iterative methods for solving linear systems, vol. 17 of Fron-
tiers in Applied Mathematics, Society for Industrial and Applied Mathemat-
ics (SIAM), Philadelphia, PA, 1997.



30 ZDENĚK STRAKOŠ AND PETR TICHÝ
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