Seventieth anniversary of the conjugate gradient method and what do old papers reveal about our presence

Zdeněk Strakoš
Charles University, Prague Jindřich Nečas Center for Mathematical Modeling

ILAS, Galway, June 2022

Many thanks

I am greatly indebted to many collaborators and friends. I am more and more thankful to those, whom I have tried to learn from without a possibility of meeting them in person.

Old work can be surprisingly revealing

Cornelius Lanczos, Why Mathematics, Dublin, 1966
The naive optimist, who believes in progress and is convinced that today is better than yesterday and in ten years time the world will be infinitely better off than today, will come to the conclusion that mathematics (and more generally all the exact sciences) started only about twenty years ago, while all the predecessors must have walked in a kind of limbo of half-digested and improperly conceived ideas.

Cornelius Lanczos $(1950,1953)$

A chugire, bee bo phtuenth wat ive.' Iruarnol of Research of the Nobsenai Eureau ol Standarda Vol. 49, No, L. July $1952 \quad$ Research Pqper 2341

Solution of Systems of Linear Equations by Minimized Iterations

Cornelius Lanczos

1. Introduction

In an eartice publicetion $[14]^{2}$ a method was
described whirl generated thu eigenvalucs nad ceigenvectors of a matrix bv at successive alporithm thenon minimizations by lvast squeres, The ulvantage of this method consists in the flot that the succerssive iterations are constantly employed with muximum
rfficiency which guarantees fastest convergence for a given number of iterations. Moreover, with the proper care tho aceurnulation of rounding errors
can be avoided. The resuiting high preision can be avoided. The resuiting high procision is of rigenvalues and cigenvectors is demanded flit]. It was pointod out in [14, $p .256$] that the inversion of a matrix, and thus the aolution of simultaneoviss
systems of linear equations, is contained in the systems of linear equations, is contained in the
veneral procedure as a special case. However, in
riew of the great importand riew of the great importance associnted with the
solution of targe srstems of linear equations, this solution of Large systems of linear equations, this
problem deserved more than passing attention. it is the purpose of the present passins attention. the gencral primipiples of the previous investigation ested in the complete analyais of a matrix but only of a given set of lineur equations

$$
A y=b_{9}
$$

with a given matrix This is actually equivalent to thic evnluation of one rigenvector vily, of a symmetric, positive definite
 ig the entire sit of eirenvectors and cigensalues (er with an arbitrary matrix.
2. The Double Set of Vectors Associated With the Method of Minimized Iterations
 4t akorithm (sere p. 2010) whielt generatesf a donbly "et of polvowominls, later on denotiofl by p, (s) nud

 and

26004-52- 3
33
introduecd, catted "minimized iterations", wheth
nvoided the numerical difficultics of the first
 valuable properties for the sowhtion of tifferchtial
and interal equmet and integral equations (p.272).
In this second algorithm, how
of the previous polynomials, however, only one-haly responding to the $p_{p}(x)$ polynomials whase coelti-
cients appeared in tients appeared in the fult columns of the original
algorithon $[14,(60) \mid$. The polynomials 0 ($)$) ciated with the nalf colum nolynominals of $[14,(\mathrm{x})$, nsto-
come into evidene not come into evidence in the futer procedure. tions, correspond to the polynomials $p_{1}(z)$ in the

$$
b_{k}=p_{k}(A) b_{0} .
$$

(2)

We should expect that the rectors generated by
$q_{t}(A) b_{0}$ mightit also have some significance ${ }^{\text {We }}$, th $^{2}(A) 0_{0}$ might also have some significance. We wil
see that this is actually the case. It is of consid
erablet erable advantage to translate the elatiot selhem (14, (00)] into the language of minimized iterations,
without omitting the balf columna a double set of vectors, instead of the single get considered before
The additional work thus involved is not superfluous becuuse the second set of polynominhs can by
put to good use. Morenver, the two sels of polvput to good use Morenver, the two sets of polv-
nomials belong logically together and complement each other in a natural fashion. From the prantical
standpoint of adepting the resaltant algoritlim to standpoint of adapting the resultant algurithm to,
the demands of harge scule cicetronit computers, wo gain in tho simplicity of coding. The secturences $\mathcal{P}_{f}(t) ; q_{f}(x)$ nre simpler in structure the polynumials pr $(t) ;$ q (x) nre simpler in structure than the rectr
rence relation obtained by eliminating tho secoud set of polynomiuls.
We wavito
The veetor obtained by leting the polyuntions $p_{h}(A)$ uperute on the original vector $b_{\text {b }}$ shlull he allen p_{2} :

$$
\begin{equation*}
p_{k}=p_{k}(\Lambda) b_{0} \tag{3}
\end{equation*}
$$

We thes distinumieds between p_{8} ns a retor atut $h_{k}(A)$ ne a polpanomiol operoter. Hones the notaticen
 velops by थt

1953

CHEBYSHEV POLYNOMIALS IN THE SOLUTION OF LARGE-SCALE LINEAR SYSTEMS* (Toronto Symp. on
${ }^{\text {By }}$
National Barcuan of Stuandiris, Loo Anepliks


```
*)
```

tha probles of fladiseg the rolutio
nampartito of tur parze ot
of the antrix equatisea (3) $\quad t=1$

124

- iation to the pullisher for perminuion to ropioduce this paper. A fuller

(LANCZOS 1952) CHEBYSHEV POLYNOMIALS IN THE SOLUTION OF LARGE SCALE LINEAR . . . 3.317
Trom Lauceos' Collected Works, Vol. VI ($\begin{aligned} & \text { Papert } \\ & 2 \text { commentanes) }\end{aligned}$

Magnus R. Hestenes and Eduard Stiefel (1952)

Methods of Conjugate Gradients for Solving Linear Systems ${ }^{\prime}$
 Magnus R. Hestomes ${ }^{2}$ and Eduard Stiefel ${ }^{2}$

An Herative algorithm is diven for solving a zystem, Arek of a linear equation in

1. Introduction

One of the major problinens in machine computations in to find an effoetive method of solving a
ayutem of to simultaneorus equations in n unknown, ayutem of 5 simultanesus equations in n unknowns, particulatly if n is large. There is, of coursc, no of smethod dupends to sotme extent upon the partioular syatem to be solved. In judging the goodness of a method for maschine computations, one
should bear is mind that criteria for a good machine mothod may be diffisenat from those for a hand method. By a hand method, we shall mean one in which a deak calcelator may be used. By a machine method, we shar mean one in which requence-controllod machines sre used. propertices:
(1) The mothod should be simple, composed of a
repetition of elementary routines requiring a minirepetition of elementary routines requiring a minimum of storage space. If the number of steps roquired for the solution is infinite. A method which- if no rounding-off errons
ocoar-will yield the solution in a finite number of stepe is to be preferred.
(3) The procedure nhould be utable with respect to rounding-off errors. If needed, a subroutine uhould bo available to insure this stability. It by a repetition of the asme routine, starting with the previous reault as the sew entimate of she molution.
(4) Esch ntep should give informstion about the than the previous one. (5) As many of the original data as possible should be used during each step of the routine. Specinal properties of the given linear syatem-such as having (For example in the Gause elimination apecial properties of this type may be deatroyed.)
In our opinion there are two methode that beat fit bene criteris, namely, (a) the Gauss elimination

meched; (b) the conjugate gradient method premented
ia the present monograph. in the present monograph. method, juat as there are many variations of the oonjugnte grodient method here prosented. In the presnt paper it will be shown that both methode are speoial cases of a method that we call the method
of conjugate directions. This enablee one to comof canjugate directions. This enables ons to com-
pare the two methoda trom a thooretioal point of
view. view.
In our opinion, the coojugate gradient method is
suparior to the elimination method as a machine superrior to the elirination metbod as a mod
method. Our reasons can be stated as follows:
(a) Mike the Gauss of conjugete the Gradiente elimination method, the method of conjugate gradients givestion mothod, the method
no rounding-off error oocurs.
(b) The conjugate gradient method ia simpler to (c) The given matrix is mogeltered.
ent, wo that a maximum of the original dats in used. The advantage of having many zeros in the matrix is proserved. The method is, therefore, especially
suited to handle linear aystemis arising from difierence equations approximating boundary value problems. (d) At each step an catimate of the solution in given, which is an improvement over the one given in the preoeding step.
(e) At any step one can start anew by a very
simple device, keepiag the eatimate last obtained is the initial estimate.
In the proseat paper, the conjugnte gradient routines are developed for the symmetric and nonsymmetric cases. The principal resultes sre deseribed
in section 3. For moot of the theoretical considerd in section 3. For most of the theoretical considera-
tions, we reatrict ourselves to the positive definite symmetrie case. No gonerality in lost thereby. We
seal deal only with real matrices. The extension to complex matrices is simple.
The method of conjugate gradients was developed
independently by E. Stiefel of the Inatitute of Applied Mndependantics at Zurich and by M. R. Hestencs with the cooperstion of J. B. Rover. G. Forsythe, with N. Pnipe of the Inatisute for Numerical Analysis, Was prepared jointly by M. R. Hestenes nad E. Atictel during the latier's stay at the National Bureal of Standards. The firm papers on this method ware
givea by E. Stivfel 'and by M. R. Hestenes. ${ }^{4}$ Reports on this method were givon by E. Stiefel' ' and J. B.
 routine based oa his earlier paper on eqgeavalue
problem. method have been by R. Hiayes, U. Hochatrasser, and M. Stein.

2. Nolations and Terminology

Throughout the following pages we shall be conarmed with the problem of solving a wystem of linear equations

$$
\begin{aligned}
& a_{11} z_{1}+a_{n} z_{1}+\ldots+a_{14} x_{2}-k_{1} \\
& a_{n} x_{1}+a_{n} z_{2}+\ldots+a_{k 2} z_{2}=k_{2}
\end{aligned}
$$

$a_{* i} \lambda_{1}+a_{n} r_{1}+\ldots+a_{* *} I_{*}=k_{*}$
Thene equations will be written in the veetor form
 It is sasumed that A is nonsingular. Ita inverse A^{-} therelore exista. We denote the trenepose of A by Given two vectors $z=\left(z_{1}, \ldots, z_{z}\right)$ and $y=$ $\left(y_{1},-y_{n}\right)$, their sum $x+y$ is the vector $\left(x_{1}+y_{1}, v_{2}, x_{0}+y_{(}\right)$, and $a x$ is the
here a is a scalar. The sum
$(x, y)=x_{1} y_{1}+x_{2} y_{2}+\ldots+z_{2} y_{*}$
is their acalar product. The length of x will be denoted

$$
|x|=\left(x^{2}+\ldots+x_{2}^{2}\right)^{b}=(x, x)^{4}
$$

The Cowely-Selvearz ineouality staten that for all

$$
(x, y)^{2} \leq(x, x)(y, y) \quad \text { or } \quad|(x, y)| \leq|x||y| . \quad(2: z)
$$ The matrix A and its transpose A^{*} satiofy the

$$
(x, A y)=\sum_{j=1}^{\infty} a_{i j} x_{i} y /=\left(A^{*} x, y\right) .
$$

If $a_{0}=a_{j,}$, that is, if $A=A^{*}$, then A is said to be in case $(z, A x)>0$ whenever $z>0$. If $(z, A x) \geq 0$ for

all x, thon A is nsid to be nonnegative. If A is syma metric, than two veotors a nad y are suid to be com($A x, y)=0$ holdu. This is an exiension of the ortho gonality ralation. $(x, y)=0$.
λ such that $A y=\lambda y$ has a solution meant a number such that $\Delta y=\lambda y$ has a solution $y \neq 0$, and y is Unless otherwise expreasly steted the matrix A, with which we are ooncerned, will be asoumed to be graerality is caumed therelly from a theorotical point of view, becauso the system $A x=2$, is equivalent to the syplem $B z=l$, where $B=A^{*} A, l=A^{2} k$. Yrom a ent, becanase of rounding-off errors that oecor in fining the product $A^{*} A$. Our applications to the onsymmetric cuaso do not involve the computation of $A^{2} A$
particulquel we shall not have occaaion to refer to a partieular coordinate of a vector. Accondingly of componante. Thes x_{0} will denote the vector
 oall sttention to this fact unless the interpretation in evident from the coatext
The solvtion of the gyatem Ax-k vill be denoted by ence $r=k-A x$ will be called the retidun' of x aster eatimato of h. The quantity $\mid r ?^{2}$ will be called the ersared residuol. The vector $h-z$ will be called the arror sector of z, as an estimate of A .
3. Method of Conjugate Gradients (ogMethod)
The present seetion will be devotod to a dearription of a method of molving a syatem of linotr equations
$A_{x}=k$. This methor will by called the conjugate Ax $=k$. This method will be called the conjugate
grvdient method or, more briofly, the og-method, for grodient method or, more briefly, the og-method, for
reasons which will unfold from the theory developed in later section. For the moment, we shall limit ounivelves to oollecting in one place the basio formulas
ypon which the method is based and to describing upon which the method is based and to describing The cg -method is an iterative method which terminatos in at moot n stepe if no roundingeof errors aro encountered. Slarting vith an initial estimate Σ_{4} of the solution h, one determines suecessively new cotimates $z_{1} x_{1}, x_{2}, \ldots$ of A, the entimate
x_{i} bring cloner to K than I_{i+1}. At onch olep the x_{1} revidual $r_{i}=k-A r_{1}$ is computed. Normally thin vector can be uned an a mensure of the "goodness"
of the estimate z_{4} However this measure is not of the estimate z_{*}. However, this mesure is not a
reliablo one because, as will be seen in seetion is is is ponsible to construet caske in which the revared revidual $\mathrm{I}^{\prime}{ }^{\prime}$ inerenses at each step (except for the
leat) while the langth of the error veetor $\mathrm{A}-\mathrm{I}_{\mathrm{e}}$ last) while the longth of the error veotor $\mid A-x_{e}$ |
decreases monotonically. If no rounding-olf ncror decreases monotonically. If no rounding-odf nrror
is cacountered, one will reach an eatimate $z_{n}(\mathrm{~m} \leq n)$ at which $T_{n}=0$. This ostimate in the desired aolution h. Normaily, $m=n$. However, mince rounding-

Thomas Jan Stieltjes (1856-1894)

Thomas Jan Stieltjes
1856-1894

Investigations on Continued Fractions

T. J. Stieltjes

Ann. Fac. Sci. Toulouse 8 (1894) J.1-122; 9 (1895) A.1-47 (translation)

Introduction

The object of this work is the study of the continued fraction

$$
\begin{equation*}
\frac{1}{a_{1} z+\frac{1}{a_{2}+\frac{1}{a_{3} z+\cdots+\frac{1}{a_{2 n}+\frac{1}{a_{2 n+1} z+\cdots}}}}} \tag{I}
\end{equation*}
$$

in which the a_{i} are positive real numbers, while z is a variable which can take all real or complex values.

Denoting by $\frac{P_{n}(z)}{Q_{n}(z)}$ the nth convergent ${ }^{1}$, which depends only on the first n coefficients a_{i}, we shall determine in which cases this convergent tends to a limit for $n \rightarrow \infty$ and we shall investigate more closely the nature of this limit regarded as a function of z.

We shall summarize the principal result of this study. There are two distinct cases.

First case. - The series $\sum_{1}^{\infty} a_{n}$ is convergent.
In this case we have for cach finite value of z,

$$
\begin{aligned}
\lim P_{2 n}(z) & =p(z) \\
\lim Q_{2 n}(z) & =q(z) \\
\lim P_{2 n+1}(z) & =p_{1}(z) \\
\lim Q_{2 n+1}(z) & =q_{1}(z)
\end{aligned}
$$

$p(z), q(z), p_{1}(z), q_{1}(z)$ being holomorphic functions in the whole plane which satisfy the relation

$$
q(z) p_{1}(z)-q_{1}(z) p(z)=+1 .
$$

These functions are of genus zero and admit onlv simple zeros which are

W. Karush (1952) and R. M. Hayes (1954)

CONVERGENCE OF A METHOD OF SOLVING

 LINEAR PROBLEMS ${ }^{1}$
w. KARUSH

1. Introduction. We are concerned with the solution of two problems associated with a linear operator A. First, the characteristic value problem
(1)

$$
A y=\lambda y
$$

for the determination of the characteristic values λ and the characteristic vectors y; second, the linear equation problem
(2)

$$
(A-\lambda I) x=b
$$

$$
b \neq 0
$$

for the determination of x, given the number $\boldsymbol{\lambda}$ and the vector b (I is the identity operator). Lanczos [3] ${ }^{2}$ has described an interesting iterative method for the solution of these problems which appears to be effective for numerical calculation. It is our purpose to consider the convergence and rate of convergence of the method, in the Hilbert space sense, for a bounded self-adjoint operator.
The procedure for obtaining the solution may be described as follows. Let $b \neq 0$ be a given initial vector, arbitrary for problem (1), equal to the right side of (2) for problem (2). Let

$$
\text { (3) } \quad \Vdash_{i}=\left(b, A b, \cdots, A^{i-1} b\right) \text {, }
$$

i.e., the linear subspace spanned by the indicated vectors. Let $\mathcal{H C}$ be the invariant subspace which is the closure of the linear subspace spanned by all non-negative powers $A^{i} b$; symbolically

$$
\text { (4) } \quad x=\left(b, A b, \cdots, A^{i} b, \cdots\right) \text {. }
$$

Let $\pi ;$ be the projection operator onto \mathscr{H}_{i}. Then to solve (1) and (2) we replace the operator A by the operator $\pi_{i} A$ on \mathcal{K}_{i}, solve the corresponding finite-dimensional problem, and allow i to approach ∞. That is, (1) and (2) are approximated respectively by
(5)
$\pi: A y=\lambda y$
on \varlimsup_{i}
and
(6)

$$
(\pi ; A-\lambda I) x=b
$$

on $\Re_{\text {. }}$.

Received by the editors February 13, 1952.
The preparation of this paper was sponsored (in part) by the Office of Naval Research.
${ }^{2}$ Numbers in brackets refer to the list of references at the end of the paper.
3. Iterative Methods of Solving Linear Problems on Hilbert Space ${ }^{1.2}$

R. M. Hayes

I. Preliminaries

1. Introduction

This paper is concerned with the study of some iterative procedures for solving linear equations for a general class of linear operators. In particular, we will consider operators expressible as the sun of a positive definite operator and a completely continuous operator. Such vill be called Lesendre operators. These will be considered as operators on a Hilbert space, and hence it vill first be convenient to recall sone of the fundamental properties of operators on a Hilbert space. The firat few sections of the paper *ill do this.

Following that, the basic convergence theorens which are the concern of this paper will be proved. They include as a special case the convergence of the Rayleigh-Ritz neth od. The proof for the most general problem will be done in four steps. First the case where the operator is positive dafintie is proved. Then the convergence theoren for the nonstinsutar Lefendre operator is reduced to that for the positive definite one. Third, the nonnefatlue operator is treated. And finally, the proof for the fenerat tesendre operator is reduced to that for the nonnegative case. It is also passible to consider convergence questions for eigenvalue problens involving the sane type of operators. This is done in the final section of this part of the paper. The results in this part of the pa per are dependent upon the work of M. R. Hestenes [6] ${ }^{1}$

The third najor part of the paper is concerned with a description of three specific examples of iterative procedures for solving such problems. These three procedures are considered as special cases of a general iterative process which might be called relaxatlon. The first procedare considered is the shin athod. Conversence is proved, and an estinate for rate of comperse nethod convergence is peonetric.

The second procedure is the so-called confufate-dtrection method. Convergence is shown for this method, and a geometric interpretation of such processes is given. Final ly, a specialization of the conjugate-direction nethod is considered-the conjufatesrodient sethod. Some properties of the functions generated by this method are mentioned and estinates for rates of convergence are given. Here again, it is shown that the conju-

Therea in breckets isticate the literature references at the end of this paper.
71

Hierarchy of linear problems starting at infinite dimension

A problem with bounded invertible operator \mathcal{G} on an infinite dimensional Hilbert space V

$$
\mathcal{G} u=f
$$

is approximated on a finite dimensional subspace $V_{n} \subset V$ by a problem with the finite dimensional operator

$$
\mathcal{G}_{n} u_{n}=f_{n},
$$

represented, using an appropriate basis of V_{n}, by the matrix problem

$$
\mathbf{A x}=\mathbf{b}
$$

Hierarchy of linear problems starting at infinite dimension

A problem with bounded invertible operator \mathcal{G} on an infinite dimensional Hilbert space V

$$
\mathcal{G} u=f
$$

is approximated on a finite dimensional subspace $V_{n} \subset V$ by a problem with the finite dimensional operator

$$
\mathcal{G}_{n} u_{n}=f_{n},
$$

represented, using an appropriate basis of V_{n}, by the matrix problem

$$
\mathbf{A x}=\mathbf{b}
$$

There is a continuous operator equation posed in infinite-dimensional spaces that underlines the linear system of equations [...] awareness of this connection is key to devising efficient solution strategies for the linear systems. Hiptmair (2006)

Krylov subspace methods

(Infinite dimensional) Krylov subspace methods implicitly construct at the step j the finite dimensional approximation \mathcal{G}_{j} of \mathcal{G} which determines the desired approximate solution $u_{j} \in u_{0}+\mathcal{K}_{j}(\mathcal{G}, r), \quad r=f-\mathcal{G} u_{0}$

$$
u_{j}:=u_{0}+p_{j-1}(\mathcal{G}) r \approx u=\mathcal{G}^{-1} f
$$

Here $p_{j-1}(\lambda)$ is the associated polynomial of degree at most $j-1$ and \mathcal{G}_{j} is obtained by restricting and projecting \mathcal{G} onto the j th Krylov subspace

$$
\mathcal{K}_{j}(\mathcal{G}, r):=\operatorname{span}\left\{r, \mathcal{G} r, \ldots, \mathcal{G}^{j-1} r\right\}
$$

A.N. Krylov (1931), Gantmakher (1934), Hestenes and Stiefel (1952), Lanczos (1952-53); Karush (1952), Hayes (1954), Stesin (1954), Vorobyev (1958)

Algebraic CG for $A x=b$ with A HPD (1952)

$$
r_{0}=b-A x_{0}, p_{0}=r_{0} . \text { For } n=1, \ldots, n_{\max }:
$$

$$
\begin{aligned}
\alpha_{n-1} & =\frac{r_{n-1}^{*} r_{n-1}}{p_{n-1}^{*} A p_{n-1}} \\
x_{n} & =x_{n-1}+\alpha_{n-1} p_{n-1}, \quad \text { stop when the stopping criterion is satisfied } \\
r_{n} & =r_{n-1}-\alpha_{n-1} A p_{n-1} \\
\beta_{n} & =\frac{r_{n}^{*} r_{n}}{r_{n-1}^{*} r_{n-1}} \\
p_{n} & =r_{n}+\beta_{n} p_{n-1}
\end{aligned}
$$

Here α_{n-1} ensures the minimization of the energy norm $\left\|x-x_{n}\right\|_{A} \quad$ along the line

$$
z(\alpha)=x_{n-1}+\alpha p_{n-1}
$$

Mathematical elegance of CG: Galerkin orthogonality gives optimality

Provided that

$$
p_{i} \perp_{A} p_{j}, \quad i \neq j
$$

the one-dimensional line minimizations at the individual steps 1 to n result in the n-dimensional minimization over the whole shifted Krylov subspace

$$
x_{0}+\mathcal{K}_{n}\left(A, r_{0}\right)=x_{0}+\operatorname{span}\left\{p_{0}, p_{1}, \ldots, p_{n-1}\right\}
$$

Indeed,

$$
x-x_{0}=\sum_{\ell=0}^{N-1} \alpha_{\ell} p_{\ell}=\sum_{\ell=0}^{n-1} \alpha_{\ell} p_{\ell}+x-x_{n}
$$

where

$$
x-x_{n} \perp_{A} K_{n}\left(A, r_{0}\right), \quad \text { or, equivalently, } \quad r_{n} \perp K_{n}\left(A, r_{0}\right) .
$$

Cornelius Lanczos, March 9, 1947

On (what are now called) the Lanczos and CG methods:

The reason why I am strongly drawn to such approximation mathematics problems is ... the fact that a very "economical" solution is possible only when it is very "adequate".

To obtain a solution in very few steps means nearly always that one has found a way that does justice to the inner nature of the problem.

Albert Einstein, March 18, 1947

Your remark on the importance of adapted approximation methods makes very good sense to me, and I am convinced that this is a fruitful mathematical aspect, and not just a utilitarian one.

Albert Einstein, March 18, 1947

Your remark on the importance of adapted approximation methods makes very good sense to me, and I am convinced that this is a fruitful mathematical aspect, and not just a utilitarian one.

Nonlinear and globally optimal adaptation of the iterations within Krylov subspaces of increasing dimensionality to the problem data.

Magnus R. Hestenes and Eduard Stiefel (1952)

- Abstract. An iterative algorithm is given for solving a system $A x=k$ of n linear equations in n unknowns. The solution is given in n steps. [...] Connections are made with the theory of orthogonal polynomials and continued fractions.
- Section 3. At each step the residual $r_{i}=k-A x_{i}$ is computed. Normally this vector can be used as a measure of the "goodness" of the estimate x_{i}. However, this measure is not a reliable one because [...] it is possible to construct cases in which the squared residual $\left|r_{i}\right|^{2}$ increases at each step (except for the last) while the length of the error vector decreases monotonically.
- Section 8. Propagation of Rounding-Off Errors in the cg-Method.
- Sections 14. - 17. Orthogonal polynomials, (Riemann)-Stieltjes integral, mass distribution on the positive axis. [...] During the following investigations we use the Gauss mechanical quadrature as a basic tool ...

Gauss quadrature is equivalent to solving the simplified Stieltjes problem of moments.

- Section 18. Continued fractions.

Cornelius Lanczos (1952)

- Title. Solution of Systems of Linear Equations by Minimized Iterations.
- In principle we have obtained a method for the solution of sets of linear equations which is simple and logical in structure. Yet from numerical standpoint we must not overlooked the danger of the possible accumulation of rounding errors.
- Algorithm I: purification of the initial vector of the components in the direction of the eigenvectors corresponding to large eigenvalues using Chebyshev polynomials.
- Algorithm II: minimized iterations equivalent to CG.
- The principle by which this process [meant CG] gives good attenuation is quite different from the previous one [meant the purification using Chebyshev polynomials]. The polynomials of this process have the peculiarity that they attenuate due to the nearness of their zeros to those λ-values which are present in A. The advantage of the process is its great economy.
- The price we have to pay is that the successive iterations of this process are more complicated than those of algorithm 1. Another difficulty arises from the inevitable accumulation of rounding errors.

How does our presence match the visions in these papers?

- The papers by Lanczos, Hestenes and Stiefel, Karush, Hayes, and the book by Vorobyev (1958R, 1965E, not discussed here), made many fundamental points.
- Some were painfully rediscovered (often through computational failures) decades later, other remain unnoticed in literature, including textbooks and monographs, until now.
- The common knowledge on CG has been reduced to an algorithmic description without broader context. Convergence rate is viewed through the two-D projection resulting in the linear Chebyshev-polynomial-based upper bound, which is sometimes combined with misguided or even plainly wrong arguments on clustering of eigenvalues.
- Rounding errors are typically excluded from theoretical considerations, while the derived results are subsequently applied to practical computations.
- Examples: Attenuation using the (composite) Chebyshev polynomials and attenuation given by the CG polynomials based on the Galerkin orthogonality, superlinear convergence.

Attenuation using Chebyshev polynomials and the CG polynomials

composite shifted Chebyshev: $\quad\left(1-\frac{\lambda}{\lambda_{N}}\right) \min _{p \in \mathcal{P}_{n}(0)} \max _{\lambda \in\left[\lambda_{1}, \lambda_{N-1}\right]}|p(\lambda)|$

Attenuation using Chebyshev polynomials and the CG polynomials

composite shifted Chebyshev: $\quad\left(1-\frac{\lambda}{\lambda_{N}}\right) \min _{p \in \mathcal{P}_{n}(0)} \max _{\lambda \in\left[\lambda_{1}, \lambda_{N-1}\right]}|p(\lambda)|$

conjugate gradients: $\quad\left\|x-x_{j}\right\|^{2}=\left\|r_{0}\right\|^{2} \sum_{\ell=1}^{N} \omega_{\ell} \frac{\left(\varphi_{j}\left(\lambda_{\ell}\right)\right)^{2}}{\lambda_{\ell}}$

Let $\mathcal{G}=\mathcal{I}+\mathcal{F}$ be self-adjoint, bounded and coercive, with \mathcal{F} being compact.

W. Karush (1952) and R. M. Hayes (1954), Superlinear convergence

Let $\mathcal{G}=\mathcal{I}+\mathcal{F}$ be self-adjoint, bounded and coercive, with \mathcal{F} being compact.

Then the rate of convergence of the conjugate gradient method for a linear problem with the operator \mathcal{G} is accelerating and it is asymptotically faster than any geometric progression.

Lanczos, Hestenes, Stiefel - phrases from the papers, Liesen, S (2013)

Numerical analysis

An example of warnings: Mesh independent condition numbers

Hiptmair, CMA (2006):

Operator preconditioning is a very general recipe [...]. It is simple to apply, but may not be particularly efficient, because in case of the [condition number] bound of Theorem [...] is too large, the operator preconditioning offers no hint how to improve the preconditioner. Hence, operator preconditioner may often achieve [...] the much-vaunted mesh independence of the preconditioner, but it may not perform satisfactorily on a given mesh.

An example of warnings: Spectral equivalence and asymptotic behavior

Faber, Manteuffel and Parter, Adv. in Appl. Math. (1990):

For a fixed h, using a preconditioning strategy based on an equivalent operator may not be superior to classical methods [...] Equivalence alone is not sufficient for a good preconditioning strategy. One must also choose an equivalent operator for which the bound is small.

There is no flaw in the analysis, only a flaw in the conclusions drawn from the analysis [...] asymptotic estimates ignore the constant multiplier. Methods with similar asymptotic work estimates may behave quite differently in practice.

The state of the art opinions often do not follow the foundations

Referee report: The only new items presented here have to do with analysis involving floating point operations [...]. These are likely to bear very little interest to the audience of [this Journal] ...
... the authors give a misguided argument. The main advantage of iterative methods over direct methods does not primarily lie in the fact that the iteration can be stopped early (whatever this means), but that their memory (mostly) and computational requirements are moderate.

It appears obvious to the authors that the A-norm is the quantity to measure to stop the iteration. In some case [...] it is the residual norm (yes) that matters. For example, in nonlinear iterations, it is important to monitor the decrease of the residual norm - because the nonlinear iteration looks at the non-linear residual to build globally convergent strategies. This is known to practitioners, yet it is vehemently rejected by the authors.

And they even refer to the nonexistent and principally wrong results

A quote from a very influential paper:

And they even refer to the nonexistent and principally wrong results

A quote from a very influential paper:

Soon after the introduction of $\kappa(A)$ for error analysis, Hestenes and Stiefel showed that this quantity also played a role in complexity analysis. More precisely, they showed that the number of iterations of the conjugate gradient method (assuming infinite precision) needed to ensure that the current approximation to the solution of a linear system attained a given accuracy is proportional to $\sqrt{\kappa(A)}$.

It seems to be time to humbly return to the founding authors

Cornelius Lanczos, Why Mathematics, Dublin, 1966
In a recent comment on mathematical preparation an educator wanted to characterize our backwardness by the following statement: "Is it not astonishing that a person graduating in mathematics today knows hardly more than what Euler knew already at the end of the eighteenth century?". On its face value this sounds a convincing argument. Yet it misses the point completely. Personally I would not hesitate not only to graduate with first class honors, but to give the Ph.D. (and with summa cum laude) without asking any further questions, to anybody who knew only one quarter of what Euler knew, provided that he knew it in the way in which Euler knew it.

Some references

- Liesen,S, Krylov subspace methods: principles and analysis, Oxford University Press (2013)
- Málek, S, Preconditioning and the conjugate gradient method in the context of solving PDEs, SIAM (2015)
- Carson, S, On the cost of iterative computations, Phil. Trans. R. Soc. A 378:20190050

Some references

- Liesen,S, Krylov subspace methods: principles and analysis, Oxford University Press (2013)
- Málek, S, Preconditioning and the conjugate gradient method in the context of solving PDEs, SIAM (2015)
- Carson, S, On the cost of iterative computations, Phil. Trans. R. Soc. A 378:20190050

Thank you very much for your kind attention.

