
On Generalized Spectrum
of Second Order Elliptic Differential Operators
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Hierarchy of linear problems starting at infinite dimension

Problem with bounded invertible operator G on the infinite dimensional
Hilbert space S

G u = f

is approximated on a finite dimensional subspace Sh ⊂ S by a problem with
the finite dimensional operator

Gh uh = fh ,

represented, using an appropriate basis of Sh, by the (sparse?) matrix problem

Ax = b .
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Polynomial (Krylov subspace) methods

(Infinite dimensional) Krylov subspace methods at the step n implicitly construct
the finite dimensional approximation Gn of G which determines the desired
approximate solution un ∈ u0 +Kn(G, r), r = f − Gu0

un := u0 + pn−1(G) r ≈ u = G−1
f .

Here pn−1(λ) is the associated polynomial of degree at most n− 1 and

Gn is obtained by restricting and projecting G onto the nth Krylov subspace

Kn(G, r) := span
{

r,Gr, . . . ,Gn−1
r
}

.

A.N. Krylov (1931), Gantmakher (1934), Hestenes and Stiefel (1952),
Lanczos (1952-53); Karush (1952), Hayes (1954), Stesin (1954), Vorobyev (1958)
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Approximation polynomial for the Krylov subspace method M

From

r
M
n = f − G u

M
n = r − G p

M
n−1(G) r =: ϕ

M
n (G) r

we get the approximation polynomial

ϕ
M
n (λ) = 1 − λ p

M
n−1(λ) ,

which is nonlinear both in G (obvious) and f (through the
orthogonality/optimality property defining the particular method M).
Clearly

ϕ
M
n (0) = 1 .
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Motivation: Class of elliptic PDEs, frequently used example
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− ∇ · ( k(x)∇u ) = 0 ,

Morin, Nocheto, Siebert, SIREV (2002),
linear FE, standard uniform triangulation, N = 3969 DOF.

ICHOL PCG (drop-off tolerance 1e-02), κ ≈ 16;
Laplace operator PCG, κ ≈ 160.
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Outline

1 Spectral information and convergence of the conjugate gradient method

2 Nielsen, Tveito and Hackbusch, Preconditioning by inverting the Laplacian:
An analysis of the eigenvalues (2009)

3 Gergelits et al. (2019), Localization of the eigenvalues of the discrete operator

4 Back to the infinite dimensional problem, tensor case

5 Outlook
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1 Predicting the computational cost?
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Here we will not deal with the algorithmic and computational issues related to
preconditioning. Therefore in the description of convergence we will consider a
preconditioned system of equations.
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Conjugate Gradient (CG) method for Ax = b with A SPD (1952)

r0 = b− Ax0, p0 = r0 . For n = 1, . . . , nmax :

αn−1 =
r∗n−1rn−1

p∗n−1Apn−1

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
r∗nrn

r∗n−1rn−1

pn = rn + βnpn−1

Here αn−1 ensures the minimization of the energy norm ‖x− xn‖A along the line

z(α) = xn−1 + αpn−1 .
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1 Mathematical elegance of CG: orthogonality giving optimality

Provided that

pi ⊥A pj , i 6= j,

the one-dimensional line minimizations at the individual steps 1 to n result in the
n-dimensional minimization over the whole shifted Krylov subspace

x0 +Kn(A, r0) = x0 + span{p0, p1, . . . , pn−1} .

Indeed,

x− x0 =
N−1
∑

ℓ=0

αℓpℓ =
n−1
∑

ℓ=0

αℓpℓ + x− xn ,

where

x− xn ⊥A Kn(A, r0) , or, equivalently, rn ⊥ Kn(A, r0) .
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1 Optimality seen through the CG polynomial ϕCG
n (λ)

‖x− xn‖
2
A = min

ϕ∈Πn

‖ϕ(A)(x− x0)‖
2
A

=
N
∑

j=1

λj ζ
2
j ϕ

CG
n (λj)

2
, j = 1, 2, . . .

Here

ϕ
CG
n (λ) =

(λ− θ
(n)
1 ) · · · (λ− θ

(n)
n )

(−1)n θ
(n)
1 · · · θ

(n)
n

is determined by the eigenvalues of the orthogonally restricted operator,
i.e., by the eigenvalues θ

(n)
1 , . . . , θ

(n)
n of Tn (Ritz values) .
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1 CG (Lanczos) and Gauss quadrature

Let ω(n)(λ) be the distribution function determined by the n-node Gauss
quadrature approximation of the Riemann-Stieltjes integral with the distribution
function ω(λ) determined by the SPD matrix A and r0 . Then

The quadrature nodes λ
(n)
j are the eigenvalues θ

(n)
j of Tn and the weights ω

(n)
j

are the squared first components of the associated normalized eigenvectors.
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1 Size of the error is equal!

At any iteration step n , CG represents the matrix formulation of the n-point
Gauss quadrature of the Riemann-Stieljes integral determined by A and r0 ,

∫ ∞

0

φ(λ) dω(λ) =

n
∑

i=1

ω
(n)
i φ(θ

(n)
i ) + Rn(φ) .

For the function φ(λ) ≡ λ−1 ,

‖x− x0‖
2
A

‖r0‖2
= n-th Gauss quadrature +

‖x− xn‖
2
A

‖r0‖2
.
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This has become the basis for CG error estimation; see Golub, 1994; and, e.g.,
the surveys in S and Tichý, 2002; Meurant and S, 2006; Golub and Meurant, 2010;
Liesen and S, 2013.
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1 Mathematical model of FP CG - perfidious clusters!

Rounding errors seemingly irreparably destroy the underlying mathematical
structure that is based on orthogonality, and therefore the link with Gauss
quadrature seems to be irreparably lost as well. However .......
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quadrature seems to be irreparably lost as well. However .......

Lanczos (with small inaccuracy also CG) in finite precision arithmetic can be seen
as the exact arithmetic Lanczos (CG) for the problem with the slightly modified
distribution function with single eigenvalues replaced by tight clusters.

Paige (1971-80), Greenbaum (1989),
Parlett (1990), S (1991), Greenbaum and S (1992), Notay (1993), ... , Druskin,
Kniznermann, Zemke, Wülling, Meurant, .......

Recent reviews and updates in Meurant and S, Acta Numerica (2006); Meurant
(2006); Liesen and S (2013).
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1 Adaptation as the main principle

Krylov subspace methods are expensive nonlinear alternatives for solving
linear problems.
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Unlike linear methods based on contraction, they adapt to the (hidden)
information present in the problem.

Adaptation can be efficient only when the information is not (almost)
uniformly spread. Spectrum with (tight clusters of) large outlying eigenvalues
may seem most convenient. However ..........

Such cases can be entitled to numerical instabilities that can severely
delay convergence.

Efficient use of Krylov subspace methods requires insight. First look approaches
that do not see adaptation to the data as the basic principle and oversimplify the
situation are not feasible for challenging problems.

Now back to our motivating example.
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1 The convergence behaviour does not match the common wisdom!
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1 Linear “description” of the nonlinear CG method

The CG optimality property

‖x− xn‖A = min
z∈x0+Kn(A,r0)

‖x− z‖A = min
ϕ∈Πn

‖ϕ(A)(x− x0)‖A

yields in two derivation steps the (worst case) linear convergence bound valid
and relevant for the Chebyshev method

‖x− xn‖A
‖x− x0‖A

≤ min
ϕ∈Πn

max
1≤j≤N

|ϕ(λj)| ≤ min
p∈Π

max
λ∈[λ1,λN ]

|p(λ)|

≤ 2

(

√

κ(A)− 1
√

κ(A) + 1

)n

, κ(A) =
λN

λ1
.

The worst-case nonlinear bound is completely determined
by the distribution of the eigenvalues of A.
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1 Spectra and distribution functions for preconditioned systems
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1 Various parts of the spectra and convergence behavior
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1 Ritz values at the 5th CG iteration - LAPL
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0.5
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1.5

 

 

eigenvalues
Ritz values, 5th it

Index 1 – 1922 1923 1924 1925 1926

Eigenvalues 1 28.508 61.384 75.324 λL
1926 = 79.699

Total weight 9× 10−6
≈ 10−3

≈ 10−3
≈ 10−3

≈ 10−3

Index 1927 – 1930 1931 – 2039 2040 – 2047 2048 – 3969

Eigenvalues 80.875 – 81.222 λL
2039 = 81.224 81.226 – 133.94 161.45

Total weight ≈ 10−3 1.8× 10−2 8× 10−10 0.96
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1 Ritz values at the 5th CG iteration - ICHOL
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Ritz values, 5th it

Index 1 2 3 4
Eigenvalues 0.074 0.095 0.231 0.233

Total weight 8× 10−5 6.4× 10−3 8× 10−7 10−8

Index 5 6 7 – 3969

Eigenvalues 0.304 λC
6 = 0.311 0.321 – λC

3969 = 1.1643

Total weight 6× 10−5 1.5× 10−3 0.992
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2 Main analytic result (2009)

Consider the scalar real valued bounded and uniformly positive function
k(x) : Rd → R and the generalized eigenvalue problem

∇ · (k(x)∇u) = λ∆u in Ω ⊂ R
d
,

u = 0 on ∂Ω .

Then

k(x) ∈ sp(L−1A)

for all x ∈ Ω at which k(x) is continuous, where

A : H1
0 (Ω) 7→ H

−1(Ω), 〈Au, v〉 =

∫

Ω

k∇u · ∇v, u, v ∈ H
1
0 (Ω),

L : H1
0 (Ω) 7→ H

−1(Ω), 〈Lu, v〉 =

∫

Ω

∇u · ∇v, u, v ∈ H
1
0 (Ω).
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2 Conjecture (2009)

Consider a standard conforming FE discretization (d = 1, 2 or 3), which yields
the generalized eigenvalue problem in the form

Av = λLv.

Based on numerical observations, the authors conjecture that the spectrum of the
discretized preconditioned algebraic operator

L
−1

A

can be approximated by the nodal values of k(x) .
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3 Main analytic result (2019), discrete problem

Pairing the eigenvalues and the intervals k(Tj) , j = 1, . . . , N .

Let 0 < λ1 ≤ λ2 ≤ . . . ≤ λN be the eigenvalues of L
−1

A . Let k(x) be bounded
and piecewise continuous. Then there exists a (possibly non-unique) permutation π

such that the eigenvalues of the matrix L
−1

A satisfy

λπ(j) ∈ k(Tj), j = 1, . . . , N,

where

k(Tj) ≡ [ inf
x∈Tj

k(x), sup
x∈Tj

k(x)] , Tj = supp(φj) , j = 1, . . . , N.
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3 Corollary

Pairing the eigenvalues and the nodal values

Consider any point x̂j such that x̂j ∈ Tj . Then the associated eigenvalue
λπ(j) of the matrix L

−1
A satisfies

|λπ(j) − k(x̂j)| ≤ sup
x∈Tj

|k(x)− k(x̂j)| , j = 1, . . . , N.

If, in addition, k(x) ∈ C2(Tj) , then

|λπ(j) − k(x̂j)| ≤ sup
x∈Tj

|k(x)− k(x̂j)|

≤ ĥ ‖∇k(x̂j)‖ + 1
2
ĥ
2 sup
x∈Tj

‖D2
k(x)‖ , j = 1, . . . , N, (1)

where ĥ = diam(Tj) and D2k(x) is the second order derivative of k(x) .
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3 Numerical illustration, 4 problems, nodal values, N = 81
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3 Intervals, pairing “defined” by increasing nodal values
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3 Correct pairing illustrating proved results
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Here we use discontinuous function k(x, y) , (problem P4 in the paper).
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4 Infinite dimensional problem with tensor function

Consider the generalized eigenvalue problem

∇ · (K∇u) = λ∆u in Ω ,

u = 0 on ∂Ω .

Here the real valued tensor function K(x, y) : Ω → R
2×2 is symmetric

with its entries being bounded Lebesgue integrable functions and
with the spectral decomposition

K(x, y) = Q(x, y)Λ(x, y)QT (x, y) , (x, y) ∈ Ω ,

where

Λ(x, y) =

[

κ1(x, y) 0
0 κ2(x, y)

]

, QQ
T = Q

T
Q = I .
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4 Theorem with consequences for inverse Laplacian preconditioning

Spectrum of the infinite dimensional preconditioned operator

Consider an open and bounded Lipschitz domain Ω ⊂ R
2. Assume that the

tensor K(x, y) is symmetric and continuous throughout the closure Ω .

Then the spectrum of the operator L−1A equals

sp(L−1A) = Conv(κ1(Ω) ∪ κ2(Ω)) ,

where

Conv(κ1(Ω) ∪ κ2(Ω)) = [ inf
(x,y)∈Ω

min
i=1,2

κi(x, y)} , sup
(x,y)∈Ω

max
i=1,2

κi(x, y)} ] .
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4 Eigenvalues of the discretized problems P1 – P3 in the paper
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5 Work to be done

Eigenvalues in the spectrum of the infinite dimensional operator?

Discretized tensor case?

Extension to 3D?

Generalizations and preconditioning for practical problems?
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Pre-conditioning?

Faber, Manteuffel and Parter, On the theory of equivalent operators and application
to the numerical solution of uniformly elliptic partial differential equations,
Advances in Applied Mathematics 11, 109–163 (1990):

“This work is motivated by the desire to construct a preconditioning strategy that
yields bounds ..... independent of the mesh parameter h. ..... This leads to the
conclusion that while equivalence [of operators] may be necessary to yield bounds
independent of h, it is by no means sufficient to produce a good preconditioning
strategy.”
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yields bounds ..... independent of the mesh parameter h. ..... This leads to the
conclusion that while equivalence [of operators] may be necessary to yield bounds
independent of h, it is by no means sufficient to produce a good preconditioning
strategy.”

Málek, S, Preconditioning and the Conjugate Gradient Method in the Context
of Solving PDEs, SIAM Spotlights, SIAM (2015), Chapter 13:

“Here we do not argue against using condition numbers ... where appropriate.
We argue against using them as general unquestioned tools which are considered
fully descriptive ... as arguments closing the door for further investigation.”
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5 Lanczos, Why Mathematics (1966)

“We will go on pondering and meditating, the great mysteries still ahead of us, we
will err and stumble on the way, and if we win a little victory, we will be jubilant
and thankful, without claiming, however, that we have done something that can
eliminate the contribution of all the millenia before us.”
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5 Wallis, Arithmetica Infinitorium (1656) (see Khruschev 2008)

“There remains this: we beech the skilled in these things, that we thought worth
showing, they will think openly receiving, an whatever it hides, worth imparting
more properly by themselves to the wider mathematical community.”

38 / 39



Thank you very much for your kind patience!
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