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Unexpected mathematical links

Methods used in the 21st century scientific computations can have deep
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The work of Stieltjes (Gauss, Jacobi, ... ) helps in understanding the crucial
problem of rounding error propagation in the Lanczos and conjugate gradient
methods based on short recurrences.

Vice-versa, rounding error propagation in the Lanczos and conjugate gradient
methods reveals the sensitivity of Gauss quadrature to particular modifications
of the distribution function.

We will go through a large and interdisciplinary territory, therefore some
important ideas and results will be mentioned only very briefly.
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Outline

1 Problem of moments: Stieltjes (1894), Vorobyev (1958)

2 Gauss(1814), Lanczos (1950-52), Hestenes and Stiefel (1952):
Lanczos and conjugate gradient methods for solving large systems
of linear (algebraic) equations and approximating eigenvalues

3 Replacing individual points of increase in the associated distribution functions
by tight clusters

4 Krylov subspace methods - mathematical challenge across disciplines
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1 Thomas Jan Stieltjes (1856 - 1894)
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1 Continued fractions - approximation of (not only) irrationals
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1 Analytic theory of continued fractions

The nth convergent

Fn(λ) ≡ 1

λ− γ1 −
δ22

λ− γ2 − δ23

λ− γ3 − . . .

. . .

λ− γn−1 − δ2n
λ− γn

=
Rn(λ)

Pn(λ)
.

Stieltjes (1894): “we shall determine in which cases this convergent tends to a limit

for n → ∞ and we shall investigate more closely the nature of this limit regarded

as a function of λ .”

Here we use notation different from Stieltjes (1894), in particular λ ≡ −z .
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1 Remarkable history

Euclid (300BC), Hippassus from Metapontum (before 400BC), ...... ,

Bhascara II (around 1150), Brouncker and Wallis (1655-56):
Three term recurrences (for numbers)

Euler (1737, 1748), ...... , Brezinski (1991), Khrushchev (2008)

Gauss (1814), Jacobi (1826), Christoffel (1858, 1857), ....... ,
Chebyshev (1855, 1859), Markov (1884), Stieltjes (1884, 1893-94):
Orthogonal polynomials, quadrature, analytic theory of continued fractions,
problem of moments, minimal partial realization, Riemann-Stieltjes integral
Gautschi (1981, 2004), Brezinski (1991), Van Assche (1993), Kjeldsen (1993)

Hilbert (1906, 1912), ...... , Von Neumann (1927, 1932), Wintner (1929):
resolution of unity, integral representation of operator functions, mathematical
foundation of quantum mechanics
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1 Matrix computation and control theory context

Krylov (1931), Lanczos (1950, 1952, 1952c), Hestenes and Stiefel (1952),
Rutishauser (1953), Henrici (1958), Stiefel (1958), Rutishauser (1959), ...... ,
Vorobyev (1954, 1958, 1965), Golub and Welsch (1968), ..... , Laurie (1991 -
2001), ......

Gordon (1968), Schlesinger and Schwartz (1966), Steen (1973), Reinhard
(1979), ... , Horáček (1983 - ...), Simon (2007 - ...)

Paige (1971, 1972, 1976, 1980), Reid (1971), Greenbaum (1989), .......

Magnus (1962a,b), Gragg (1974), Kalman (1979), Gragg, Lindquist (1983),
Gallivan, Grimme, Van Dooren (1994), ....
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1 Moment problem considered by Stieltjes (1894)

Consider an infinite sequence of real numbers m0,m1,m2, . . . .

Find the necessary and sufficient conditions for the existence
of the Riemann-Stieltjes integral with the (positive nondecreasing)
distribution function ω(λ) such that

∫ ∞

0

λℓ dω(λ) = mℓ , ℓ = 0, 1, 2, . . .

and determine ω(λ) .
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Find the necessary and sufficient conditions for the existence
of the Riemann-Stieltjes integral with the (positive nondecreasing)
distribution function ω(λ) such that

∫ ∞

0

λℓ dω(λ) = mℓ , ℓ = 0, 1, 2, . . .

and determine ω(λ) .

Related moment problem can also be formulated while approximating bounded
linear (positive definite self-adjoint) operators in Hilbert spaces;
see Vorobyev (1958, 1965).
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1 Method of moments in Hilbert space

Let B be a bounded linear operator on Hilbert space V . Choosing an initial
element z0, we first form a sequence of elements z1, z2, . . . , zn, . . . such that

z0, z1 = Bz0, z2 = Bz1 = B2z0, . . . , zn = Bzn−1 = Bnzn−1, . . .

At the the present time, z1, . . . , zn are assumed to be linearly independent.
Determine a sequence of operators Bn defined on the sequence of nested
subspaces Vn generated by z0, z1, z2, . . . , zn−1 , n = 1, 2, . . . such that

z1 = Bz0 = Bnz0,

z2 = B2z0 = (Bn)
2z0,

...

zn−1 = Bn−1z0 = (Bn)
n−1z0,

Enzn = EnBnz0 = (Bn)
nz0.
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1 Interpretation as model reduction using Krylov subspaces

Using the projection En onto Vn we can write for the operators constructed
above (here we need the linearity of B )

Bn = En BEn .

The finite dimensional operators Bn can be used to obtain approximate solutions
to various linear problems. The choice of the elements z0, . . . , zn, . . . as above
gives Krylov subspaces that are determined by:

the operator (given by, e.g., a partial differential equation)

and the initial element z0 (given by, e.g., boundary conditions and outer
forces).

Two key ingrediences:

I. Krylov subspaces,
II. Projections that can lead to optimality.

See the method of conjugate gradients using orthogonal projections (to follow).
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2 Conjugate Gradient (CG) method for Ax = b with A SPD (1952)

r0 = b− Ax0, p0 = r0 . For n = 1, . . . , nmax :

αn−1 =
r∗n−1rn−1

p∗n−1Apn−1

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
r∗nrn

r∗n−1rn−1

pn = rn + βnpn−1

Here αn−1 ensures the minimization of the energy norm ‖x− xn‖A along the line

z(α) = xn−1 + αpn−1 .
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2 Mathematical elegance of CG: orthogonality giving optimality

Provided that

pi ⊥A pj , i 6= j,

the one-dimensional line minimizations at the individual steps 1 to n result in the
n-dimensional minimization over the whole shifted Krylov subspace

x0 +Kn(A, r0) = x0 + span{p0, p1, . . . , pn−1} .
Indeed,

x− x0 =
N−1∑

ℓ=0

αℓpℓ =
n−1∑

ℓ=0

αℓpℓ + x− xn ,

where

x− xn ⊥A Kn(A, r0) , or, equivalently, rn ⊥ Kn(A, r0) .
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2 CG, Lanczos and the moment problem (here finite dimensional)

Distribution function ω(λ) associated with Ax = b, r0 = b−Ax0, A SPD,

λi, yi are the eigenpairs of A , ωi = |(yi, w1)|2 , (w1 = r0/‖r0‖)

...

0

1

ω1

ω2

ω3

ω4

ωN

λ1 λ2 λ3
. . . . . . λN
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2 Spectral decomposition A =
∑

N

ℓ=1 λℓ yℓy
∗

ℓ

First moment

w∗
1Aw1 = w∗

1

(
N∑

ℓ=1

λℓ yℓy
∗
ℓ

)

w1 ≡ w∗
1

(∫
λdE(λ)

)
w1

=
N∑

ℓ=1

λℓ |(yℓ, w1)|2 =
N∑

ℓ=1

λℓ ωℓ =

∫
λdω(λ) ,

where the spectral function E(λ) of A is understood to be a nondecreasing family
of projections with increasing λ , symbolically dE(λℓ) ≡ yℓy

∗
ℓ and

I =

N∑

ℓ=1

yℓy
∗
ℓ ≡

∫
dE(λ) .

Hilbert (1906, 1912, 1928), Von Neumann (1927, 1932), Wintner (1929) .
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2 First moment of the resolvent using continued/partial fractions

w∗
1 (zI − A)−1 w1 =

∫ ∞

0

dω(λ)

z − λ
=

N∑

j=1

ωj

z − λj
=

RN (z)

PN(z)
= FN (z)

≈
n∑

j=1

ω
(n)
j

z − λ
(n)
j

=
Rn(z)

Pn(z)
= Fn(z) ,

The denominator Pn(z) corresponding to the nth convergent Fn(z) of FN (z) ,
n = 1, 2, . . . is the nth monic orthogonal polynomial in the sequence determined by
the distribution function ω and the numerator Rn(z) is determined by the same
recurrence started instead of 1 and z with 0 and 1 , see Chebyshev (1855).

17 / 48



2 Gauss quadrature ???

With ω(λ) determined by the SPD A and r0 , solve the finite Stieltjes
moment problem, i.e., determine the distribution function ω(n)(λ) with the
n points of increase such that the first 2n moments are matched, i.e.,

mℓ =

∫ ∞

0

λℓ dω(λ) =

∫ ∞

0

λℓ ω(n)(λ) , ℓ = 0, 1, 2, . . . , 2n− 1 , n < N .
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Apply the Vorobyev method of moments to the vectors z0, z1, . . . , zn given by
r0, Ar0, . . . , A

nr0 , which corresponds to matching the first 2n moments

w∗
1A

ℓw1 = w∗
1A

ℓ
nw1 = e∗1T

ℓ
ne1 , ℓ = 0, 1, . . . , 2n− 1 .

Equivalently, consider the system Ax = b with the initial approximation x0

and compute n iterations of the conjugate gradient/Lanczos method.
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2 Jacobi matrices

Let Wn = [w1, . . . , wn] , AWn = Wn Tn + δn+1wn+1e
T
n , form the Lanczos

orthonormal basis of the Krylov subspace Kn(A, r0) . Here the Jacobi matrix of
the orthonormalization coefficients

Tn =





γ1 δ2

δ2
. . .

. . .

. . .
. . .

. . .

. . .
. . . δn
δn γn





represents, at the same time, the matrix of the restricted and orthogonally
projected operator An = WnW

∗
nA on Kn(A, r0) in the basis Wn .

The CG approximation is determined by

Tn tn = ‖r0‖e1 , xn = x0 + Wn tn .
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2 Summary

The quadrature nodes λ
(n)
j are the eigenvalues θ

(n)
j of Tn and the weights ω

(n)
j

are the squared first components of the associated normalized eigenvectors.
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2 Matching moments equations

n∑

i=1

ω
(n)
i {θ(n)

i }ℓ = mℓ , ℓ = 0, 1, 2, . . . , 2n− 1, n < N.

System of 2n nonlinear equations for 2n unknowns

ω
(n)
i and θ

(n)
i , i = 1, . . . , n .
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2 Errors in CG and Gauss quadrature

At any iteration step n , CG represents the matrix formulation of the n-point
Gauss quadrature of the Riemann-Stieljes integral determined by A and r0 ,

∫ ∞

0

f(λ) dω(λ) =
n∑

i=1

ω
(n)
i f(θ

(n)
i ) + Rn(f) .

For f(λ) ≡ λ−1 ,

‖x− x0‖2A
‖r0‖2

= n-th Gauss quadrature +
‖x− xn‖2A

‖r0‖2
.
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2 Errors in CG and Gauss quadrature

At any iteration step n , CG represents the matrix formulation of the n-point
Gauss quadrature of the Riemann-Stieljes integral determined by A and r0 ,

∫ ∞

0

f(λ) dω(λ) =
n∑

i=1

ω
(n)
i f(θ

(n)
i ) + Rn(f) .

For f(λ) ≡ λ−1 ,

‖x− x0‖2A
‖r0‖2

= n-th Gauss quadrature +
‖x− xn‖2A

‖r0‖2
.

CG was linked with Gauss quadrature and continued fractions in the founding
paper Hestenes and Stiefel (1952)!
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2 Clustering of eigenvalues can make a difference!

④
Mj

−→ ttttt
Mj

single eigenvalue

λj

−→
many close eigenvalues

λ̂j1 , λ̂j2 , . . . , λ̂jℓ

Replacing a single eigenvalue by a tight cluster can make a substantial difference;
Greenbaum (1989); Greenbaum, S (1992); Golub, S (1994). This was revealed due
to the investigation of the propagation of rounding errors; see Part 3 to follow.
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2 Sensitivity of the Gauss quadrature - O’Leary, S, Tichý (2007)

Consider distribution functions ω(x) and ω̃(x) . Let

pn(x) = (x− x1) . . . (x− xn) and p̃n(x) = (x− x̃1) . . . (x− x̃n)

be the nth orthogonal polynomials corresponding to ω and ω̃ respectively,
with their least common multiple

p̂c(x) = (x− ξ1) . . . (x− ξc)

For f ′′ continuous the difference ∆n
ω,ω̃ = |Inω − Inω̃ | between the n-node Gauss

quadrature approximations Inω to Iω and Inω̃ to Iω̃ is bounded as

∆n
ω,ω̃ ≤

∣∣∣∣

∫
p̂c(x)f [ξ1, . . . , ξc, x]dω(x) −

∫
p̂c(x)f [ξ1, . . . , ξc, x] dω̃(x)

∣∣∣∣

+

∣∣∣∣

∫
f(x) dω(x) −

∫
f(x) dω̃(x)

∣∣∣∣ .
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2 Revelation on the Gauss quadrature after two hundred years

1 Gauss-Christoffel quadrature (for a fixed number of quadrature nodes) can be
highly sensitive to changes in the distribution function enlarging its support.
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2 Revelation on the Gauss quadrature after two hundred years

1 Gauss-Christoffel quadrature (for a fixed number of quadrature nodes) can be
highly sensitive to changes in the distribution function enlarging its support.

2 This sensitivity in Gauss-Christoffel quadrature can be observed
for discontinuous, continuous, and even analytic distribution functions,
and for analytic integrands uncorrelated with changes in the distribution
functions, and with no singularity close to the interval of integration.
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Outline
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2 Gauss(1814), Lanczos (1950-52), Hestenes and Stiefel (1952):
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3 FP CG and clustering of eigenvalues in EXACT CG
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Rounding errors in finite precision

CG computations can cause a large

delay of convergence.
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exact computation with clusters
exact comp. with single eigenvalues

Exact CG computation for a matrix,

where each eigenvalue is replaced

by a tight cluster.

Understanding is based on the spectral information in the sequence of the
computed (nested) Jacobi matrices Tn, n = 1, 2, . . . .
Seminal contribution of C.C. Paige (1971–80).
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3 Beautiful idea of A. Greenbaum (1989)

Consider the Jacobi matrix Tn computed in n steps of CG in FP arithmetic.
This matrix can be extended to a larger Jacobi matrix Tn+m(n) having
all its eigenvalues close to the eigenvalues of the matrix A .

Then the EXACT CG (Lanczos) applied to this extended Jacobi matrix and
the initial residual e1 gives in the first n steps Tn.

Tn Tn

Tn+m(n)
FP computation

In this way, finite precision computation is viewed and analyzed as exact
computation for the problem having clusters of eigenvalues.
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3 Why is consideration of rounding errors so fundamental?

1 CG should be used when it has a chance to accelerate its convergence due to
adaptation to the information (hidden) in data, e.g., when the eigenvalues are
far from being uniformly spread throughout the spectral interval. Presence of
large outlying eigenvalues may seem as the most favourable case.
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because convergence is so fast that rounding errors have not enough iterations
to amplify (trivial cases), or CG convergence is hopelessly linear with no
chance to accelerate. In the latter case linear methods would with high
probability be more efficient in terms of computing time (energy consumption).

4 There seems to be no escape from the implications of the presented facts.
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3 In which sense is the CG polynomial ϕCG
n (λ) optimal?

‖x− xn‖2A = min
ϕ∈Πn

‖ϕ(A)(x− x0)‖2A

=
N∑

j=1

λj ζ
2
j ϕ

CG
n (λj)

2 , j = 1, 2, . . .

Here

ϕCG
n (λ) =

(λ− θ
(n)
1 ) · · · (λ− θ

(n)
n )

(−1)n θ
(n)
1 · · · θ(n)

n

is determined by the eigenvalues of the orthogonally restricted operator,
i.e., by the eigenvalues θ

(n)
1 , . . . , θ

(n)
n of Tn (Ritz values) .
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3 Illustration of ϕCG
n (λ) , Ax = b, a single large outlier λN
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3 Replacing λN by a tight cluster significantly affects ϕCG
n (λ)

Since E in the illustration of the slope is enormous,
many roots close to λN are needed.
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Outline

1 Problem of moments: Stieltjes (1894), Vorobyev (1958)

2 Gauss(1814), Lanczos (1950-52), Hestenes and Stiefel (1952):
Lanczos and conjugate gradient methods for solving large systems
of linear (algebraic) equations and approximating eigenvalues

3 Replacing individual points of increase in the associated distribution function
by tight clusters

4 Krylov subspace methods - mathematical challenge across disciplines
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4 Recall the CG polynomial ϕCG
n (λ) is optimal

‖x− xn‖2A = min
ϕ∈Πn

‖ϕ(A)(x− x0)‖2A

=
N∑

j=1

λj ζ
2
j ϕ

CG
n (λj)

2 , j = 1, 2, . . .

Here

ϕCG
n (λ) =

(λ− θ
(n)
1 ) · · · (λ− θ

(n)
n )

(−1)n θ
(n)
1 · · · θ(n)

n

is determined by the eigenvalues of the orthogonally restricted operator,
i.e., by the eigenvalues θ

(n)
1 , . . . , θ

(n)
n of Tn (Ritz values) .
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4 In contrast, linear “description” of the nonlinear CG method

The CG optimality property

‖x− xn‖A = min
z∈x0+Kn(A,r0)

‖x− z‖A = min
ϕ∈Πn

‖ϕ(A)(x− x0)‖A

yields in two derivation steps the (worst case) linear convergence bound valid
and relevant for the Chebyshev method

‖x− xn‖A
‖x− x0‖A

≤ min
ϕ∈Πn

max
1≤j≤N

|ϕ(λj)| ≤ min
p∈Π

max
λ∈[λ1,λN ]

|p(λ)|

≤ 2

(√
κ(A)− 1

√
κ(A) + 1

)n

, κ(A) =
λN

λ1
.

The worst-case nonlinear bound is completely determined
by the distribution of the eigenvalues of A.
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by the distribution of the eigenvalues of A.
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4 Tschebyshev polynomials of the first kind
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4 It grows very fast outside the interval [−1, 1]
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4 Properties

Definition:

Tn(x) = cos(n cos−1(x)), x ∈ [−1, 1]; Tn(x) = cosh(n cosh−1(x)), x 6∈ [−1, 1] .

Recurrence:

T0(x) = 1 , T1(x) = x , Tn+1(x) = 2 Tn(x) − Tn−1(x) .

Orthogonality:

∫ 1

−1

Tn(x)Tm(x) (1− x2)−1/2dx = 0 for m 6= n .

Optimality:

Tschebyshev polynomial is the fastest growing polynomial outside the interval
[−1, 1] from all polynomials of the given degree that are on the interval [−1, 1]
in the absolute value less or equal to one.
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4 Remarkable history, rarely quoted

Markov (1890)

Flanders and Shortley (1950)

Lanczos (1952–53), Kincaid (1947), Young (1954, ... )

Stiefel (1958), Rutishauser (1959)

Meinardus (1963), Kaniel (1966)

Daniel (1967a, 1967b)

Luenberger (1969)

Derivations are repeated in recent textbooks and monographs and the resulting
bound is identified with the convergence of CG without noticing severe limitations.
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4 Statement published in 1952 is right to the point.

C. Lanczos, Solution of systems of linear equations by minimized iterations, J. of
Research of the National Burreau of Standards, 49 (1952), pp. 33–53:

“The principle by which this process [the conjugate gradient method] gives good

attenuation, is quite different from the previous one. [‘Purification’ based on
Tschebyshev polynomials.] Here we take heed of the specific nature of the matrix

A and operate in a selective way. The polynomials of this process ... have the

peculiarity that they attenuate due to the nearness of their zeros to those λ-values
[eigenvalues] which are present in A. These polynomials take advantage of the fact

that the spectrum to be attenuated is a line spectrum and not a continuous spectrum.

They work efficiently in the neighbourhood of the λi of the matrix but not for the

intermediate values.”
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4 Example: Composite bounds considering large outliers

The condition-number-based bound should be used with a great care in connection
with the behaviour of CG unless κ(A) = λN/λ1 is really small or unless
the (very special) distribution of eigenvalues makes the bound tight.
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4 Example: Composite bounds considering large outliers

The condition-number-based bound should be used with a great care in connection
with the behaviour of CG unless κ(A) = λN/λ1 is really small or unless
the (very special) distribution of eigenvalues makes the bound tight.

In particular, one should be very careful while using it as a part of a composite
bound in the presence of large outlying eigenvalues

min
p(0)=1

deg(p)≤n−s

max
1≤j≤N

| qs(λj) p(λj) | ≤ max
1≤j≤N

|qs(λj)|
∣∣∣∣
Tn−s(λj)|
Tn−s(0)

∣∣∣∣

< max
1≤j≤N−s

∣∣∣∣
Tn−s(λj)

Tn−s(0)

∣∣∣∣ .

This Chebyshev method bound for the spectral interval [λ1, λN−s]
is then valid after s initial steps.
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4 Polynomial qs(λ) has the desired root, but look at T4−5(λ)
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A single large outlying eigenvaue:

The shifted and scaled Chebyshev polynomials T4(λ), T5(λ), and the polynomial
q1(λ) , q1(0) = 1 having the root at the large outlying eigenvalue.
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4 Misconception when applied to practical computations

Consider the desired accuracy ǫ , κs(A) ≡ λN−s/λ1 . Then, assuming exact
arithmetic, n CG steps, where

n = s +

⌈
ln(2/ǫ)

2

√
κs(A)

⌉
,

will produce the approximate solution xn satisfying

‖x− xn‖A ≤ ǫ ‖x− x0‖A .

This statement has been used to explain superlinear convergence of CG at the
presence of large outliers in the spectrum. Due to rounding errors, this concept
can not be applied in a meaningful way to practical computations. Recall the
mathematical model of FP computations that is based on replacing large outlying
eigenvalues by large clusters.
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4 Disturbing challenges

Purely algorithmic view ends the story with the finite termination property.
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4 Disturbing challenges

Purely algorithmic view ends the story with the finite termination property.

Oversimplified approximation view replaces nonlinear CG matching moment
problem by Tschebyshev approximation relevant to the Tschebyshev method.

Globally nonlinear CG for solving linear problem is being confused with
CG for solving general nonlinear optimization problems which is based
on local linearizations.

Spectral description is used for interpreting convergence behaviour of Krylov
subspace methods even for highly non-normal operators (matrices) without
careful investigation. See next slide.
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4 Positive results and unexplored research challenges

When the operators (matrices arising from discretization) are far from normal
and the spectral information is descriptive for convergence behavior of Krylov
subspace methods, this points out to some fundamental mathematical,
physical, ... properties of the problem.
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4 Positive results and unexplored research challenges

When the operators (matrices arising from discretization) are far from normal
and the spectral information is descriptive for convergence behavior of Krylov
subspace methods, this points out to some fundamental mathematical,
physical, ... properties of the problem.

In such cases there must be some special inner structure of invariant subspaces
and/or special right hand side (in BVP that means boundary conditions and
outer forces).

Very little has unfortunately been done in that much needed direction of
research. Despite many results proving that information about the spectrum
alone can not be descriptive, in general, for convergence behaviour of Krylov
subspace methods such as GMRES, the challenge is rarely mentioned in
literature.

See the works of Greenbaum, Pták, Arioli, S, Liesen, Eiermann, Ernst, Meurant,
Tichý, Duintjer-Tebbens, ...... with the first paper published in 1994.
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4 Lanczos, Why Mathematics (1966)

“We will go on pondering and meditating, the great mysteries still ahead of us, we

will err and stumble on the way, and if we win a little victory, we will be jubilant

and thankful, without claiming, however, that we have done something that can

eliminate the contribution of all the millenia before us.”
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4 Lanczos, Why Mathematics (1966)

“We will go on pondering and meditating, the great mysteries still ahead of us, we

will err and stumble on the way, and if we win a little victory, we will be jubilant

and thankful, without claiming, however, that we have done something that can

eliminate the contribution of all the millenia before us.”

It can be useful to look on what we do now through the eyes of the great
women and men from the past.

It can be useful to look at the work of the great women and men from the past
within the context of our work now.
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4 Wallis, Arithmetica Infinitorium (1656) (see Khruschev 2008)

“There remains this: we beseech the skilled in these things, that what we thought

worth showing, they will think openly receiving, an whatever it hides, worth

imparting more properly by themselves to the wider mathematical community.”
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Thank you very much for your kind patience!

48 / 48


