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I. Questions beyond matrix computations. Numerical PDE (PCG):

Ax = b, A : V → V #, x ∈ V, b ∈ V #, approximations x0, x1, .... to x
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I. Questions beyond matrix computations. Numerical PDE (PCG):

Ax = b, A : V → V #, x ∈ V, b ∈ V #, approximations x0, x1, .... to x

Common approach: A, b → Ah,bh → preconditioner → xn ≈ xh → xn ≈ x

{A, b, τ} → {Ah, bh, τ} → {Ah,bh,Mh} → xn ≈ xh → xn ≈ x
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II. Criteria: Adaptivity and Cost(acceptable accuracy). PCG:

A nested nonlinear hierarchy of problems based on projections onto Krylov
subspaces. The essence can be formulated through the link with the Stieltjes
problem of moments and Gauss quadrature, recall Hestenes and Stiefel (1952):
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Spectral decomposition determines the distribution function and moments

mℓ = w∗
1(τA)ℓ w1 = w∗

1

(∫
λℓ dE(λ)

)
w1 =

∫
λℓ dω(λ) , ℓ = 0, 1, 2, . . .
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1

(∫
λℓ dE(λ)

)
w1 =

∫
λℓ dω(λ) , ℓ = 0, 1, 2, . . .

CG at step n implicitly solves system of 2n nonlinear equations for 2n unknowns
(it matches the first 2n moments)

∑n

i=1 ω
(n)
i {θ

(n)
i }ℓ = mℓ , ℓ = 0, 1, 2, . . . , 2n− 1,
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(it matches the first 2n moments)

∑n

i=1 ω
(n)
i {θ

(n)
i }ℓ = mℓ , ℓ = 0, 1, 2, . . . , 2n− 1,

and provides the minimal energy norm of the error over the shifted n-th Krylov
subspace x0 +Kn(τA, τr0) = x0 + span{τr0, τA τr0, . . . , (τA)n−1τr0}
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III. “a way that does justice to the inner nature of the problem.”

Lanczos to Einstein, March 1947. Nine days later Einstein writes in his reply:
“ importance of adapted approximation methods ... a fruitful mathematical aspect,

and not just a utilitarian one”.
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III. “a way that does justice to the inner nature of the problem.”

Lanczos to Einstein, March 1947. Nine days later Einstein writes in his reply:
“ importance of adapted approximation methods ... a fruitful mathematical aspect,

and not just a utilitarian one”.

A quest for the (near to) best choice involves very complex issues, e.g.:

Interplay of infinite and finite dimensional. Approximation of possibly
continuous spectra of operators by matrix eigenvalues. Operator
preconditioning, discretization and algebraic preconditioning.

Analysis based on spectral information ... t tight clusters of eigenvalues do not
necessarily mean reaching good approximation to the solution x in t steps.
Smaller condition number does not necessarily mean faster decrease of error
and lower computational cost. Analysis in the non-normal case is intriguing.

Long vs. short recurrences dilemma.

Rounding errors do matter.
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Matching moments model reduction
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Analytic theory of continued fractions

The nth convergent

Fn(λ) ≡
1

λ− γ1 −
δ22

λ− γ2 −
δ23

λ− γ3 − . . .

. . .

λ− γn−1 −
δ2n

λ− γn

=
Rn(λ)

Pn(λ)
.

Stieltjes (1894): “we shall determine in which cases this convergent tends to a limit

for n → ∞ and we shall investigate more closely the nature of this limit regarded

as a function of λ .”

Here we use notation different from Stieltjes (1894), in particular λ ≡ −z .
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Remarkable history

Euclid (300BC), Hippassus from Metapontum (before 400BC), ...... ,

Bhascara II (around 1150), Brouncker and Wallis (1655-56):
Three term recurrences (for numbers)

Euler (1737, 1748), ...... , Brezinski (1991), Khrushchev (2008)

Gauss (1814), Jacobi (1826), Christoffel (1858, 1857), ....... ,
Chebyshev (1855, 1859), Markov (1884), Stieltjes (1884, 1893-94):
Orthogonal polynomials, quadrature, analytic theory of continued fractions,
problem of moments, minimal partial realization, Riemann-Stieltjes integral
Gautschi (1981, 2004), Brezinski (1991), Van Assche (1993), Kjeldsen (1993)

Hilbert (1906, 1912), ...... , Von Neumann (1927, 1932), Wintner (1929):
resolution of unity, integral representation of operator functions, mathematical
foundation of quantum mechanics
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Matrix computation and control theory context

Krylov (1931), Lanczos (1950, 1952, 1952c), Hestenes and Stiefel (1952),
Rutishauser (1953), Henrici (1958), Stiefel (1958), Rutishauser (1959), ...... ,
Vorobyev (1954, 1958, 1965), Golub and Welsch (1968), ..... , Laurie (1991 -
2001), ......

Gordon (1968), Schlesinger and Schwartz (1966), Steen (1973), Reinhard
(1979), ... , Horáček (1983 - ...), Simon (2007 - ...)

Paige (1971, 1972, 1976, 1980), Reid (1971), Greenbaum (1989), .......

Magnus (1962a,b), Gragg (1974), Kalman (1979), Gragg, Lindquist (1983),
Gallivan, Grimme, Van Dooren (1994), ....
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Moment problem considered by Stieltjes (1894)

Consider an infinite sequence of real numbers m0,m1,m2, . . . .

Find the necessary and sufficient conditions for the existence
of the Riemann-Stieltjes integral with the (positive nondecreasing)
distribution function ω(λ) such that

∫ ∞

0

λℓ dω(λ) = mℓ , ℓ = 0, 1, 2, . . .

and determine ω(λ) .
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Moment problem considered by Stieltjes (1894)

Consider an infinite sequence of real numbers m0,m1,m2, . . . .

Find the necessary and sufficient conditions for the existence
of the Riemann-Stieltjes integral with the (positive nondecreasing)
distribution function ω(λ) such that

∫ ∞

0

λℓ dω(λ) = mℓ , ℓ = 0, 1, 2, . . .

and determine ω(λ) .

Related moment problem can also be formulated while approximating bounded
linear (positive definite self-adjoint) operators in Hilbert spaces;
see Vorobyev (1958, 1965).
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Method of moments in Hilbert space

Let B be a bounded linear operator on Hilbert space V . Choosing an initial
element z0, we first form a sequence of elements z1, z2, . . . , zn, . . . such that

z0, z1 = Bz0, z2 = Bz1 = B2z0, . . . , zn = Bzn−1 = Bnzn−1, . . .

At the the present time, z1, . . . , zn are assumed to be linearly independent.
Determine a sequence of operators Bn defined on the sequence of nested
subspaces Vn generated by z0, z1, z2, . . . , zn−1 , n = 1, 2, . . . such that

z1 = Bz0 = Bnz0,

z2 = B2z0 = (Bn)
2z0,

...

zn−1 = Bn−1z0 = (Bn)
n−1z0,

Enzn = EnB
nz0 = (Bn)

nz0.
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Interpretation as model reduction using Krylov subspaces

Using the projection En onto Vn we can write for the operators constructed
above (here we need the linearity of B )

Bn = En BEn .

The finite dimensional operators Bn can be used to obtain approximate solutions
to various linear problems. The choice of the elements z0, . . . , zn, . . . as above
gives Krylov subspaces that are determined by:

the operator (given by, e.g., a partial differential equation)

and the initial element z0 (given by, e.g., boundary conditions and outer
forces).

Two key ingrediences:

I. Krylov subspaces,
II. Projections that can lead to optimality.

See the method of conjugate gradients using orthogonal projections (to follow).
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Outlying eigenvalues and the clustering argument
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clustering of eigenvalues can make a difference

④
Mj

−→ ttttt
Mj

single eigenvalue

λj

−→
many close eigenvalues

λ̂j1 , λ̂j2 , . . . , λ̂jℓ

Replacing a single eigenvalue by a tight cluster can make a substantial difference;
Greenbaum (1989); Greenbaum, S (1992); Golub, S (1994). This was revealed due
to the investigation of the propagation of rounding errors.
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FP CG and clustering of eigenvalues in EXACT CG
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FP computation
exact computation

Rounding errors in finite precision

CG computations can cause a large

delay of convergence.
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exact computation with clusters
exact comp. with single eigenvalues

Exact CG computation for a matrix,

where each eigenvalue is replaced

by a tight cluster.

Understanding is based on the spectral information in the sequence of the
computed (nested) Jacobi matrices Tn, n = 1, 2, . . . .
Seminal contribution of C.C. Paige (1971–80).
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Beautiful idea of A. Greenbaum (1989)

Consider the Jacobi matrix Tn computed in n steps of CG in FP arithmetic.
This matrix can be extended to a larger Jacobi matrix Tn+m(n) having
all its eigenvalues close to the eigenvalues of the matrix A .

Then the EXACT CG (Lanczos) applied to this extended Jacobi matrix and
the initial residual e1 gives in the first n steps Tn.

Tn Tn

Tn+m(n)
FP computation

In this way, finite precision computation is viewed and analyzed as exact
computation for the problem having clusters of eigenvalues.
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Why is consideration of rounding errors so fundamental?

1 CG should be used when it has a chance to accelerate its convergence due to
adaptation to the information (hidden) in data, e.g., when the eigenvalues are
far from being uniformly spread throughout the spectral interval. Presence of
large outlying eigenvalues may seem as the most favourable case.

2 Hovewer, apart from the trivial situation mentioned next, in such cases CG
convergence behaviour is typically substantially affected by rounding errors
due to the loss of orthogonality among the direction vectors (and residuals).

3 If CG behaviour is not affected by rounding errors, then either we are lucky
because convergence is so fast that rounding errors have not enough iterations
to amplify (trivial cases), or CG convergence is hopelessly linear with no
chance to accelerate. In the latter case linear methods would with high
probability be more efficient in terms of computing time (energy consumption).
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2 Hovewer, apart from the trivial situation mentioned next, in such cases CG
convergence behaviour is typically substantially affected by rounding errors
due to the loss of orthogonality among the direction vectors (and residuals).

3 If CG behaviour is not affected by rounding errors, then either we are lucky
because convergence is so fast that rounding errors have not enough iterations
to amplify (trivial cases), or CG convergence is hopelessly linear with no
chance to accelerate. In the latter case linear methods would with high
probability be more efficient in terms of computing time (energy consumption).

4 There seems to be no escape from the implications of the presented facts.
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In which sense is the CG polynomial ϕCG
n (λ) optimal?

‖x− xn‖
2
A = min

ϕ∈Πn

‖ϕ(A)(x− x0)‖
2
A

=
N∑

j=1

λj ζ
2
j ϕ

CG
n (λj)

2 , j = 1, 2, . . .

Here

ϕCG
n (λ) =

(λ− θ
(n)
1 ) · · · (λ− θ

(n)
n )

(−1)n θ
(n)
1 · · · θ

(n)
n

is determined by the eigenvalues of the orthogonally restricted operator,
i.e., by the eigenvalues θ

(n)
1 , . . . , θ

(n)
n of Tn (Ritz values) .
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Illustration of ϕCG
n (λ) , Ax = b, a single large outlier λN
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Replacing λN by a tight cluster significantly affects ϕCG
n (λ)

Since E in the illustration of the slope is enormous,
many roots close to λN are needed.
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Chebyshev polynomial bound for CG ... remarkable history

r

Markov (1890)

Flanders and Shortley (1950)

Lanczos (1952–53), Kincaid (1947), Young (1954, ... )

Stiefel (1958), Rutishauser (1959)

Meinardus (1963), Kaniel (1966)

Daniel (1967a, 1967b)

Luenberger (1969)

Derivations are repeated in recent textbooks and monographs and the resulting
bound is identified with the convergence of CG without noticing severe limitations.
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Statement published in 1952 is right to the point.

C. Lanczos, Solution of systems of linear equations by minimized iterations, J. of
Research of the National Burreau of Standards, 49 (1952), pp. 33–53:

“The principle by which this process [the conjugate gradient method] gives good

attenuation, is quite different from the previous one. [‘Purification’ based on
Tschebyshev polynomials.] Here we take heed of the specific nature of the matrix

A and operate in a selective way. The polynomials of this process ... have the

peculiarity that they attenuate due to the nearness of their zeros to those λ-values
[eigenvalues] which are present in A. These polynomials take advantage of the fact

that the spectrum to be attenuated is a line spectrum and not a continuous spectrum.

They work efficiently in the neighbourhood of the λi of the matrix but not for the

intermediate values.”
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Composite bounds considering large outliers

The condition-number-based bound should be used with a great care in connection
with the behaviour of CG unless κ(A) = λN/λ1 is really small or unless
the (very special) distribution of eigenvalues makes the bound tight.

In particular, one should be very careful while using it as a part of a composite
bound in the presence of large outlying eigenvalues

min
p(0)=1

deg(p)≤n−s

max
1≤j≤N

| qs(λj) p(λj) | ≤ max
1≤j≤N

|qs(λj)|

∣∣∣∣
Tn−s(λj)|

Tn−s(0)

∣∣∣∣

< max
1≤j≤N−s

∣∣∣∣
Tn−s(λj)

Tn−s(0)

∣∣∣∣ .

This Chebyshev method bound for the spectral interval [λ1, λN−s]
is then valid after s initial steps.
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Polynomial qs(λ) has the desired root, but look at T4−5(λ)
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T
5
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A single large outlying eigenvaue:

The shifted and scaled Chebyshev polynomials T4(λ), T5(λ), and the polynomial
q1(λ) , q1(0) = 1 having the root at the large outlying eigenvalue.
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Misconception when applied to practical computations

Consider the desired accuracy ǫ , κs(A) ≡ λN−s/λ1 . Then, assuming exact
arithmetic, n CG steps, where

n = s +

⌈
ln(2/ǫ)

2

√
κs(A)

⌉
,

will produce the approximate solution xn satisfying

‖x− xn‖A ≤ ǫ ‖x− x0‖A .

This statement has been used to explain superlinear convergence of CG at the
presence of large outliers in the spectrum. Due to rounding errors, this concept
can not be applied in a meaningful way to practical computations. Recall the
mathematical model of FP computations that is based on replacing large outlying
eigenvalues by large clusters.
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Condition number does not tell the story
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Class of elliptic PDEs, frequently used example
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Morin, Nocheto, Siebert, SIREV (2002),
linear FE, standard uniform triangulation, N = 3969 DOF.

ICHOL PCG (drop-off tolerance 1e-02), κ ≈ 16;
Laplace operator PCG, κ ≈ 160.
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1 Parts of the spectra and convergence behavior
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(The horizontal scales are different.)
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1 Ritz values at the 5th CG iteration - LAPL

0 20 40 60 80 100 120 140 160
0.5

1

1.5

 

 

eigenvalues
Ritz values, 5th it

Index 1 – 1922 1923 1924 1925 1926

Eigenvalues 1 28.508 61.384 75.324 λL
1926 = 79.699

Total weight 9× 10−6
≈ 10−3

≈ 10−3
≈ 10−3

≈ 10−3

Index 1927 – 1930 1931 – 2039 2040 – 2047 2048 – 3969

Eigenvalues 80.875 – 81.222 λ
L
2039 = 81.224 81.226 – 133.94 161.45

Total weight ≈ 10−3 1.8× 10−2 8× 10−10 0.96
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1 Ritz values at the 5th CG iteration - ICHOL
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eigenvalues
Ritz values, 5th it

Index 1 2 3 4
Eigenvalues 0.074 0.095 0.231 0.233

Total weight 8× 10−5 6.4× 10−3 8× 10−7 10−8

Index 5 6 7 – 3969

Eigenvalues 0.304 λ
C
6 = 0.311 0.321 – λ

C
3969 = 1.1643

Total weight 6× 10−5 1.5× 10−3 0.992
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Thank you very much for your kind patience!
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