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Theorem (B.-B.-D. (1982), see also Psaroudakis-Vitéria (2015))
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@ If a realization functor exists, it is an equivalence if and only if
o Iy y: Extle(X,Y) — 2(X, Y[i]) isisoVi > 0 and
o the t-structure on 7 is bounded (i.e. 7 =), 2<' = U, 27').

9/16 Jan Stovitek Tilting equivalences



Tilting t-structures and derived equivalences

Theorem (Positselski-S. (2016))

Let o/ be a complete abelian category with an injective cogenerator
C

4

10/16 Jan Stovidek Tilting equivalences



Tilting t-structures and derived equivalences

Theorem (Positselski-S. (2016))

Let o/ be a complete abelian category with an injective cogenerator
C and a tilting object T.

4

10/16 Jan Stovidek Tilting equivalences



Tilting t-structures and derived equivalence

Theorem (Positselski-S. (2016))

Let o/ be a complete abelian category with an injective cogenerator
C and a tilting object T.

@ There is a bounded t-structure on D°(.<7) given by

7<% = {X € D°(«) | Homps(, (T, X[il) =0 Vi >0,}
T92° = {X € D°(#) | Homps(, (T, X[1]) =0 Vi < 0.}

4

10/16 Jan Stovidek Tilting equivalences



Tilting t-structures and derived equivalenc

Theorem (Positselski-S. (2016))

Let o7 be a complete abelian category with an injective cogenerator
C and a tilting object T.

@ There is a bounded t-structure on Db(gz% ) given by
7<% = {X € D°(«) | Homps(, (T, X[il) =0 Vi >0,}
T92° = {X € D°(#) | Homps(, (T, X[1]) =0 Vi < 0.}
Q Ifwe put # = "2=0NT9=0 the realization functor
real: D°(#) — D°(«)

is a triangle equivalence.

4

10/16 Jan Stovidek Tilting equivalences



Tilting t-structures and derived equivalenc

Theorem (Positselski-S. (2016))

Let o7 be a complete abelian category with an injective cogenerator
C and a tilting object T.

@ There is a bounded t-structure on Db(sz% ) given by
7<% = {X € D°(«) | Homps(, (T, X[il) =0 Vi >0,}
T92° = {X € D°(#) | Homps(, (T, X[1]) =0 Vi < 0.}
Q Ifwe put # = "2=0NT9=0 the realization functor
real: D°(#) — D°(«)

is a triangle equivalence.
© The same for unbounded derived categories.

4

10/16 Jan Stovidek Tilting equivalences



Tilting t-structures and derived equivalenc

Theorem (Positselski-S. (2016))

Let o7 be a complete abelian category with an injective cogenerator
C and a tilting object T.

@ There is a bounded t-structure on Db(sz% ) given by
7<% = {X € D°(«) | Homps(, (T, X[il) =0 Vi >0,}
T92° = {X € D°(#) | Homps(, (T, X[1]) =0 Vi < 0.}
Q Ifwe put # = "2=0NT9=0 the realization functor
real: D°(#) — D°(«)

is a triangle equivalence.
© The same for unbounded derived categories.
Q@ WehaveT,Ce 2.

4

10/16 Jan Stovidek Tilting equivalences



Tilting t-structures and derived equivale

Theorem (Positselski-S. (2016))

Let o7 be a complete abelian category with an injective cogenerator
C and a tilting object T.

@ There is a bounded t-structure on D°(.<7) given by
7<% = {X € D°(«) | Homps(, (T, X[il) =0 Vi >0,}
T92° = {X € D°(#) | Homps(, (T, X[1]) =0 Vi < 0.}
Q Ifwe put # = "2=0NT9=0 the realization functor
real: D°(#) — D°(«)

is a triangle equivalence.
© The same for unbounded derived categories.

© We have T, C € %. Moreover, % is cocomplete, T is a projective
generator of % and C is cotilting.

4

10/16 Jan Stovidek Tilting equivalences



Tilting t-structures and derived equivalen

Theorem (Positselski-S. (2016))

Let o7 be a complete abelian category with an injective cogenerator
C and a tilting object T.

@ There is a bounded t-structure on Db(sz% ) given by
7<% = {X € D°(«) | Homps(, (T, X[il) =0 Vi >0,}
T92° = {X € D°(#) | Homps(, (T, X[1]) =0 Vi < 0.}
Q Ifwe put # = "2=0NT9=0 the realization functor
real: D°(#) — D°(«)

is a triangle equivalence.
© The same for unbounded derived categories.

© We have T, C € %. Moreover, % is cocomplete, T is a projective
generator of 2 and C is cotilting. Dual versions of (1)—(3) hold.
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The tilting-cotilting correspondence

There is a bijective correspondence between

@ equivalence classes (<7, T, C), &/ complete abelian, T tilting, C
injective cogenerator, and

@ equivalence classes (%, T, C), % cocomplete abelian,
T projective generator, C cotilting.

D(«/) ~ D(2)

o
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Infinitary rings and contramodules

@ Let T € % be a projective generator of % satisfying the
assumptions. Let S = Endg(T).

@ Key observation: We can sum certain infinite families of elements
of S!

@ A family (f;)ic; is summable if

T

fi)i
(fier Uiz

T — = T!
Then we define . fi: T-2SLT() M7

@ A right S-contramodule M is an abelian group with a defined
linear action of summable families.

@ l.e. given any sequence (mj);c; in M and a summable family
(f)ic1, we define what is » ., m;f; € M.

@ Note: We have a forgetful functor ContraS — ModS.
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Derived equivalences revisited

Theorem (Positselski-Rosicky (2015))

Let # be cocomplete abelian with a projective generator T € A
satisfying the assumptions. Then

Homg(T,—): 4 — ContraS

is an equivalence.

Corollary
Let o7 be a Grothendieck category with a tilting object T. Then

| A\

RHomg(T,—-): D(«/) — D(ContraS)

is a triangle equivalence.

\
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The relation to results of Bazzoni-Mantese-Tonolo:

RHomg(T,—)

~

forget

D(#) D(ContraS) D(ModS).
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Relation to previous resulis

The relation to results of Bazzoni-Mantese-Tonolo:

RHomg(T,—)

~

forget

D(#) D(ContraS) D(ModS).

The forgetful functor is fully faithful for good tilting objects.

Thank you for your attention!
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