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Classical tilting equivalences
Notation:

ModR = the category of right R-modules,

D(ModR) = the unbounded derived category.

Theorem (Cline-Parshall-Scott (1986), Happel (1987))

Let T ∈ ModR be an R-module and S = EndR(T ). If (and only if) T is
a Miyashita tilting module, then

RHomR(T ,−) : D(ModR) −→ D(ModS)

is a triangle equivalence.

Definition (Miyashita (1986))

A module T ∈ ModR is tilting if
(T1) ∃ 0→ Pn → Pn−1 → · · · → P0 → T → 0 with all Pi ∈ add(R),

(T2) ExtiR(T ,T ) = 0 for all i > 0,
(T3) ∃ 0→ R → T 0 → T 1 → · · · → T r → 0 with all T j ∈ add(T ).
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4/16 Jan Št’ovı́ček Tilting equivalences



Classical tilting equivalences
Notation:

ModR = the category of right R-modules,
D(ModR) = the unbounded derived category.

Theorem (Cline-Parshall-Scott (1986), Happel (1987))

Let T ∈ ModR be an R-module and S = EndR(T ). If (and only if) T is
a Miyashita tilting module, then

RHomR(T ,−) : D(ModR) −→ D(ModS)

is a triangle equivalence.

Definition (Miyashita (1986))

A module T ∈ ModR is tilting if
(T1) ∃ 0→ Pn → Pn−1 → · · · → P0 → T → 0 with all Pi ∈ add(R),

(T2) ExtiR(T ,T ) = 0 for all i > 0,

(T3) ∃ 0→ R → T 0 → T 1 → · · · → T r → 0 with all T j ∈ add(T ).
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Big tilting modules

Definition (Angeleri Hügel-Coelho (2001))

A module T ∈ ModR is big tilting if

(T1’) ∃ 0→ Pn → Pn−1 → · · · → P0 → T → 0 with all Pi ∈ Add(R),

(T2’) ExtiR(T ,T (I)) = 0 for all i > 0 and all sets I,
(T3’) ∃ 0→ R → T 0 → T 1 → · · · → T r → 0 with all T j ∈ Add(T ).

Question
Do big tilting modules induce triangle equivalences?

Theorem (Bazzoni (2010), Bazzoni-Mantese-Tonolo (2011))

Upon possibly replacing T by T (I) for I “big enough”,

RHomR(T ,−) : D(ModR) −→ D(ModS)

is fully faithful (so its left adjoint −⊗L
S T is a localization). to results
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5/16 Jan Št’ovı́ček Tilting equivalences



Big tilting modules

Definition (Angeleri Hügel-Coelho (2001))
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General tilting objects

The definition of a tilting object makes sense much more
generally.

Let A be a complete abelian category with an injective
cogenerator (e.g. a Grothendieck category).
Then A is also cocomplete (

∏
i A (Xi ,−) : A → Ab has a left

adjoint L by SAFT and L(Z) =
∐

i Xi ). Moreover, coproducts are
exact (A is AB4).

Definition
An object T ∈ A is tilting if
(T1”) proj.dim.T <∞ (i.e. ∃n ∈ N such that ExtnA (T ,−) ≡ 0),

(T2”) ExtiA (T ,T (I)) = 0 for all i > 0 and all sets I,
(T3”) HomD(A )(T ,X [j]) = 0 for all j ∈ Z implies X = 0.
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7/16 Jan Št’ovı́ček Tilting equivalences



General tilting objects

The definition of a tilting object makes sense much more
generally.
Let A be a complete abelian category with an injective
cogenerator (e.g. a Grothendieck category).
Then A is also cocomplete (

∏
i A (Xi ,−) : A → Ab has a left

adjoint L by SAFT and L(Z) =
∐

i Xi ). Moreover, coproducts are
exact (A is AB4).

Definition
An object T ∈ A is tilting if
(T1”) proj.dim.T <∞ (i.e. ∃n ∈ N such that ExtnA (T ,−) ≡ 0),

(T2”) ExtiA (T ,T (I)) = 0 for all i > 0 and all sets I,

(T3”) HomD(A )(T ,X [j]) = 0 for all j ∈ Z implies X = 0.
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t-structures

Definition (Beilinson-Bernstein-Deligne (1982))

Let D be a triangulated category.

A pair (D≤0,D≥0) is a t-structure
on D if

1 HomD(D≤0,D≥1) = 0,

2 D≤0 ⊆ D≤1 and D≥0 ⊇ D≥1,
3 For each X ∈ D there exists τ≤0X → X → τ≥1X → (τ≤0X )[1]

with τ≤0X ∈ D≤0 and τ≥1X ∈ D≥1.

(Here: D≤n = D≤0[−n] and D≥n = D≥0[−n]).

Facts:
1 H = D≤0 ∩D≥0 is an abelian category (the heart of the t-str.),
2 for each i ≥ 0 there is a natural transformations

ϑi
X ,Y : ExtiH (X ,Y )→ D(X ,Y [i]),

3 ϑ0
X ,Y and ϑ1

X ,Y are iso’s, ϑ2
X ,Y is mono.
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Derived equivalences via realization functors

Question

Let (D≤0,D≥0) be a t-structure on D and H = D≤0 ∩D≥0:

H
⊆ //

⊆
##

Db(H )

D

Theorem (B.-B.-D. (1982), see also Psaroudakis-Vitória (2015))

1 A realization functor real : Db(H )→ D exists if D = Db(A ).
2 If a realization functor exists, it is an equivalence if and only if

ϑi
X ,Y : ExtiH (X ,Y )→ D(X ,Y [i]) is iso ∀i ≥ 0 and

the t-structure on D is bounded (i.e. D =
⋃

i D
≤i =

⋃
i D

≥i ).
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Tilting t-structures and derived equivalences

Theorem (Positselski-Š. (2016))

Let A be a complete abelian category with an injective cogenerator
C

and a tilting object T .

1 There is a bounded t-structure on Db(A ) given by

TD≤0 = {X ∈ Db(A ) | HomDb(A )(T ,X [i]) = 0 ∀ i > 0, }
TD≥0 = {X ∈ Db(A ) | HomDb(A )(T ,X [i]) = 0 ∀ i < 0.}

2 If we put B = TD≤0 ∩ TD≤0, the realization functor

real : Db(B)→ Db(A )

is a triangle equivalence.
3 The same for unbounded derived categories.
4 We have T ,C ∈ B. Moreover, B is cocomplete, T is a projective

generator of B and C is cotilting. Dual versions of (1)–(3) hold.
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Let A be a complete abelian category with an injective cogenerator
C and a tilting object T .

1 There is a bounded t-structure on Db(A ) given by

TD≤0 = {X ∈ Db(A ) | HomDb(A )(T ,X [i]) = 0 ∀ i > 0, }
TD≥0 = {X ∈ Db(A ) | HomDb(A )(T ,X [i]) = 0 ∀ i < 0.}

2 If we put B = TD≤0 ∩ TD≤0, the realization functor

real : Db(B)→ Db(A )

is a triangle equivalence.
3 The same for unbounded derived categories.

4 We have T ,C ∈ B. Moreover, B is cocomplete, T is a projective
generator of B and C is cotilting. Dual versions of (1)–(3) hold.
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The tilting-cotilting correspondence

Corollary

There is a bijective correspondence between
1 equivalence classes (A ,T ,C), A complete abelian, T tilting, C

injective cogenerator, and

2 equivalence classes (B,T ,C), B cocomplete abelian,
T projective generator, C cotilting.

D(A ) ' D(B)

A B

•T • C
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Abelian categories with a projective generator

Question
Examples of complete abelian categories A with an injective
generator are familiar

(Grothendieck categories).
What do we know about cocomplete abelian categories B with a
projective generator T ?

Assumptions
1 Given any set I, the map T (I) → T I is injective.
2 The object T is κ-small for some regular cardinal κ.

(Ok if B is tilted from a Grothendieck category A .)
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13/16 Jan Št’ovı́ček Tilting equivalences



Abelian categories with a projective generator

Question
Examples of complete abelian categories A with an injective
generator are familiar (Grothendieck categories).
What do we know about cocomplete abelian categories B with a
projective generator T ?

Assumptions
1 Given any set I, the map T (I) → T I is injective.

2 The object T is κ-small for some regular cardinal κ.

(Ok if B is tilted from a Grothendieck category A .)
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Infinitary rings and contramodules

Let T ∈ B be a projective generator of B satisfying the
assumptions.

Let S = EndB(T ).
Key observation: We can sum certain infinite families of elements
of S!
A family (fi)i∈I is summable if

T
(fi )i∈I

!!
T (I) // T I

Then we define
∑

i∈I fi : T
(fi )i∈I //T (I) sum //T .

A right S-contramodule M is an abelian group with a defined
linear action of summable families.
I.e. given any sequence (mi)i∈I in M and a summable family
(fi)i∈I , we define what is

∑
i∈I mi fi ∈ M.

Note: We have a forgetful functor ContraS → ModS.
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Derived equivalences revisited

Theorem (Positselski-Rosický (2015))

Let B be cocomplete abelian with a projective generator T ∈ B
satisfying the assumptions.

Then

HomB(T ,−) : B −→ ContraS

is an equivalence.

Corollary

Let A be a Grothendieck category with a tilting object T . Then

RHomR(T ,−) : D(A ) −→ D(ContraS)

is a triangle equivalence.
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Let B be cocomplete abelian with a projective generator T ∈ B
satisfying the assumptions. Then

HomB(T ,−) : B −→ ContraS

is an equivalence.

Corollary

Let A be a Grothendieck category with a tilting object T . Then

RHomR(T ,−) : D(A ) −→ D(ContraS)

is a triangle equivalence.
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Relation to previous results

Remark

The relation to results of Bazzoni-Mantese-Tonolo: to motivation

D(A )
RHomR(T ,−)

'
//D(ContraS)

forget //D(ModS).

The forgetful functor is fully faithful for good tilting objects.

Thank you for your attention!
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