CHARLES UNIVERSITY PRAGUE

faculty of mathematics and physics

Jan Šťovíček

Derived equivalences induced by big tilting modules

(joint with Leonid Positselski)

CSASC 2016, Barcelona September 22th, 2016

Motivation

Motivation

2 Tilting derived equivalences

Notation:

• Mod*R* = the category of right *R*-modules,

Notation:

- Mod*R* = the category of right *R*-modules,
- D(Mod*R*) = the unbounded derived category.

Notation:

- ModR = the category of right R-modules,
- D(Mod*R*) = the unbounded derived category.

Theorem (Cline-Parshall-Scott (1986), Happel (1987))

Let $T \in ModR$ be an R-module

Notation:

- Mod*R* = the category of right *R*-modules,
- D(Mod*R*) = the unbounded derived category.

Theorem (Cline-Parshall-Scott (1986), Happel (1987))

Let $T \in ModR$ be an R-module and $S = End_R(T)$.

Notation:

- ModR = the category of right R-modules,
- D(Mod*R*) = the unbounded derived category.

Theorem (Cline-Parshall-Scott (1986), Happel (1987))

Let $T \in ModR$ be an R-module and $S = End_R(T)$. If (and only if) T is a Miyashita tilting module,

Notation:

- Mod*R* = the category of right *R*-modules,
- D(Mod*R*) = the unbounded derived category.

Theorem (Cline-Parshall-Scott (1986), Happel (1987))

Let $T \in ModR$ be an R-module and $S = End_R(T)$. If (and only if) T is a Miyashita tilting module, then

 $\mathbf{R}\mathrm{Hom}_{R}(T,-): \quad \mathsf{D}(\mathsf{Mod}R) \longrightarrow \mathsf{D}(\mathsf{Mod}S)$

is a triangle equivalence.

Notation:

- ModR = the category of right R-modules,
- D(Mod*R*) = the unbounded derived category.

Theorem (Cline-Parshall-Scott (1986), Happel (1987))

Let $T \in ModR$ be an R-module and $S = End_R(T)$. If (and only if) T is a Miyashita tilting module, then

 $\mathbf{R}\mathrm{Hom}_{R}(T,-): \quad \mathsf{D}(\mathsf{Mod}R) \longrightarrow \mathsf{D}(\mathsf{Mod}S)$

is a triangle equivalence.

Definition (Miyashita (1986))

A module $T \in ModR$ is tilting if

Notation:

- ModR = the category of right R-modules,
- D(ModR) = the unbounded derived category.

Theorem (Cline-Parshall-Scott (1986), Happel (1987))

Let $T \in ModR$ be an R-module and $S = End_R(T)$. If (and only if) T is a Miyashita tilting module, then

 $\mathbf{R}\mathrm{Hom}_{R}(T,-): \quad \mathsf{D}(\mathsf{Mod}R) \longrightarrow \mathsf{D}(\mathsf{Mod}S)$

is a triangle equivalence.

Definition (Miyashita (1986))

A module $T \in ModR$ is tilting if

(T1) $\exists 0 \rightarrow P_n \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_0 \rightarrow T \rightarrow 0$ with all $P_i \in \text{add}(R)$,

Notation:

- ModR = the category of right R-modules,
- D(Mod*R*) = the unbounded derived category.

Theorem (Cline-Parshall-Scott (1986), Happel (1987))

Let $T \in ModR$ be an R-module and $S = End_R(T)$. If (and only if) T is a Miyashita tilting module, then

 $\mathbf{R}\mathrm{Hom}_{R}(T,-): \quad \mathsf{D}(\mathsf{Mod}R) \longrightarrow \mathsf{D}(\mathsf{Mod}S)$

is a triangle equivalence.

Definition (Miyashita (1986))

A module $T \in ModR$ is tilting if

$$(\mathsf{T1}) \ \exists \ \mathsf{0} \to \mathit{P}_n \to \mathit{P}_{n-1} \to \dots \to \mathit{P}_{\mathsf{0}} \to \mathit{T} \to \mathsf{0} \text{ with all } \mathit{P}_i \in \mathsf{add}(\mathit{R}),$$

(T2) $\operatorname{Ext}_{R}^{i}(T, T) = 0$ for all i > 0,

Notation:

- ModR = the category of right R-modules,
- D(Mod*R*) = the unbounded derived category.

Theorem (Cline-Parshall-Scott (1986), Happel (1987))

Let $T \in ModR$ be an R-module and $S = End_R(T)$. If (and only if) T is a Miyashita tilting module, then

 $\mathbf{R}\mathrm{Hom}_{R}(T,-): \quad \mathsf{D}(\mathsf{Mod}R) \longrightarrow \mathsf{D}(\mathsf{Mod}S)$

is a triangle equivalence.

Definition (Miyashita (1986))

A module $T \in ModR$ is tilting if

(T1)
$$\exists 0 \rightarrow P_n \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_0 \rightarrow T \rightarrow 0$$
 with all $P_i \in \operatorname{add}(R)$

(T2) $\operatorname{Ext}_{R}^{i}(T, T) = 0$ for all i > 0,

(T3) $\exists 0 \rightarrow R \rightarrow T^0 \rightarrow T^1 \rightarrow \cdots \rightarrow T^r \rightarrow 0$ with all $T^j \in \operatorname{add}(T)$.

Notation:

- ModR = the category of right R-modules,
- D(Mod*R*) = the unbounded derived category.

Theorem (Cline-Parshall-Scott (1986), Happel (1987))

Let $T \in ModR$ be an R-module and $S = End_R(T)$. If (and only if) T is a Miyashita tilting module, then

 $\mathbf{R}\mathrm{Hom}_{R}(T,-): \quad \mathsf{D}(\mathsf{Mod}R) \longrightarrow \mathsf{D}(\mathsf{Mod}S)$

is a triangle equivalence.

Definition (Miyashita (1986))

A module $T \in ModR$ is tilting if

Compact $\exists 0 \rightarrow P_n \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_0 \rightarrow T \rightarrow 0$ with all $P_i \in \operatorname{add}(R)$,

(T2) $\operatorname{Ext}_{R}^{i}(T, T) = 0$ for all i > 0,

(T3) $\exists 0 \rightarrow R \rightarrow T^0 \rightarrow T^1 \rightarrow \cdots \rightarrow T^r \rightarrow 0$ with all $T^j \in add(T)$.

Notation:

- ModR = the category of right R-modules,
- D(Mod*R*) = the unbounded derived category.

Theorem (Cline-Parshall-Scott (1986), Happel (1987))

Let $T \in ModR$ be an R-module and $S = End_R(T)$. If (and only if) T is a Miyashita tilting module, then

 $\mathbf{R}\mathrm{Hom}_{R}(T,-): \quad \mathsf{D}(\mathsf{Mod}R) \longrightarrow \mathsf{D}(\mathsf{Mod}S)$

is a triangle equivalence.

Definition (Miyashita (1986))

A module $T \in ModR$ is tilting if

Compact $\exists 0 \rightarrow P_n \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_0 \rightarrow T \rightarrow 0$ with all $P_i \in \operatorname{add}(R)$,

Rigid $\operatorname{Ext}_{R}^{i}(T, T) = 0$ for all i > 0,

(T3) $\exists 0 \rightarrow R \rightarrow T^0 \rightarrow T^1 \rightarrow \cdots \rightarrow T^r \rightarrow 0$ with all $T^j \in add(T)$.

Notation:

- ModR = the category of right R-modules,
- D(Mod*R*) = the unbounded derived category.

Theorem (Cline-Parshall-Scott (1986), Happel (1987))

Let $T \in ModR$ be an R-module and $S = End_R(T)$. If (and only if) T is a Miyashita tilting module, then

 $\mathbf{R}\mathrm{Hom}_{R}(T,-): \quad \mathsf{D}(\mathsf{Mod}R) \longrightarrow \mathsf{D}(\mathsf{Mod}S)$

is a triangle equivalence.

Definition (Miyashita (1986))

A module $T \in ModR$ is tilting if

Compact $\exists 0 \rightarrow P_n \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_0 \rightarrow T \rightarrow 0$ with all $P_i \in \operatorname{add}(R)$,

Rigid $\operatorname{Ext}_{R}^{i}(T, T) = 0$ for all i > 0,

Generator $\exists 0 \rightarrow R \rightarrow T^0 \rightarrow T^1 \rightarrow \cdots \rightarrow T^r \rightarrow 0$ with all $T^j \in add(T)$.

Definition (Angeleri Hügel-Coelho (2001))

A module $T \in ModR$ is big tilting if

Definition (Angeleri Hügel-Coelho (2001))

A module $T \in ModR$ is big tilting if

(T1') $\exists 0 \rightarrow P_n \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_0 \rightarrow T \rightarrow 0$ with all $P_i \in \operatorname{Add}(R)$,

Definition (Angeleri Hügel-Coelho (2001))

A module $T \in ModR$ is big tilting if (T1') $\exists 0 \rightarrow P_n \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_0 \rightarrow T \rightarrow 0$ with all $P_i \in Add(R)$, (T2') $Ext_R^i(T, T^{(I)}) = 0$ for all i > 0 and all sets I,

Definition (Angeleri Hügel-Coelho (2001))

A module $T \in ModR$ is big tilting if (T1') $\exists 0 \to P_n \to P_{n-1} \to \cdots \to P_0 \to T \to 0$ with all $P_i \in Add(R)$, (T2') $Ext_R^i(T, T^{(I)}) = 0$ for all i > 0 and all sets I, (T3') $\exists 0 \to R \to T^0 \to T^1 \to \cdots \to T^r \to 0$ with all $T^j \in Add(T)$.

Definition (Angeleri Hügel-Coelho (2001))

A module $T \in ModR$ is big tilting if

$$(\mathsf{T1'}) \ \exists \ \mathsf{0} \to P_n \to P_{n-1} \to \dots \to P_0 \to T \to \mathsf{0} \text{ with all } P_i \in \mathsf{Add}(R),$$

(T2') $\operatorname{Ext}_{R}^{i}(T, T^{(l)}) = 0$ for all i > 0 and all sets l,

(T3') $\exists 0 \rightarrow R \rightarrow T^0 \rightarrow T^1 \rightarrow \cdots \rightarrow T^r \rightarrow 0$ with all $T^j \in \operatorname{Add}(T)$.

Question

Do big tilting modules induce triangle equivalences?

Definition (Angeleri Hügel-Coelho (2001))

A module $T \in ModR$ is big tilting if

(T1') $\exists 0 \rightarrow P_n \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_0 \rightarrow T \rightarrow 0$ with all $P_i \in Add(R)$,

(T2') $\operatorname{Ext}_{R}^{i}(T, T^{(l)}) = 0$ for all i > 0 and all sets l,

(T3') $\exists 0 \rightarrow R \rightarrow T^0 \rightarrow T^1 \rightarrow \cdots \rightarrow T^r \rightarrow 0$ with all $T^j \in \operatorname{Add}(T)$.

Question

Do big tilting modules induce triangle equivalences?

Theorem (Bazzoni (2010), Bazzoni-Mantese-Tonolo (2011))

Upon possibly replacing T by $T^{(I)}$ for I "big enough",

Definition (Angeleri Hügel-Coelho (2001))

A module $T \in ModR$ is big tilting if

(T1') $\exists 0 \rightarrow P_n \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_0 \rightarrow T \rightarrow 0$ with all $P_i \in Add(R)$,

(T2') $\operatorname{Ext}_{R}^{i}(T, T^{(l)}) = 0$ for all i > 0 and all sets l,

(T3') $\exists 0 \rightarrow R \rightarrow T^0 \rightarrow T^1 \rightarrow \cdots \rightarrow T^r \rightarrow 0$ with all $T^j \in \operatorname{Add}(T)$.

Question

Do big tilting modules induce triangle equivalences?

Theorem (Bazzoni (2010), Bazzoni-Mantese-Tonolo (2011))

Upon possibly replacing T by $T^{(I)}$ for I "big enough",

 $\mathbf{R}\mathrm{Hom}_{R}(T,-)\colon \quad \mathsf{D}(\mathsf{Mod}R)\longrightarrow \mathsf{D}(\mathsf{Mod}S)$

is fully faithful

Definition (Angeleri Hügel-Coelho (2001))

A module $T \in ModR$ is big tilting if

$$(\mathsf{T1'}) \ \exists \ \mathsf{0} \to \mathsf{P}_n \to \mathsf{P}_{n-1} \to \dots \to \mathsf{P}_0 \to \mathsf{T} \to \mathsf{0} \text{ with all } \mathsf{P}_i \in \mathsf{Add}(\mathsf{R}),$$

(T2') $\operatorname{Ext}_{R}^{i}(T, T^{(l)}) = 0$ for all i > 0 and all sets l,

(T3') $\exists 0 \rightarrow R \rightarrow T^0 \rightarrow T^1 \rightarrow \cdots \rightarrow T^r \rightarrow 0$ with all $T^j \in Add(T)$.

Question

Do big tilting modules induce triangle equivalences?

Theorem (Bazzoni (2010), Bazzoni-Mantese-Tonolo (2011))

Upon possibly replacing T by $T^{(I)}$ for I "big enough",

 $\mathbf{R}\mathrm{Hom}_{R}(T,-)\colon \quad \mathsf{D}(\mathsf{Mod}R)\longrightarrow \mathsf{D}(\mathsf{Mod}S)$

Definition (Angeleri Hügel-Coelho (2001))

A module $T \in ModR$ is big tilting if

$$(\mathsf{T1'}) \ \exists \ \mathsf{0} \to P_n \to P_{n-1} \to \dots \to P_0 \to T \to \mathsf{0} \text{ with all } P_i \in \mathsf{Add}(R),$$

(T2') $\operatorname{Ext}_{R}^{i}(T, T^{(l)}) = 0$ for all i > 0 and all sets l,

(T3') $\exists 0 \rightarrow R \rightarrow T^0 \rightarrow T^1 \rightarrow \cdots \rightarrow T^r \rightarrow 0$ with all $T^j \in \operatorname{Add}(T)$.

Question

Do big tilting modules induce triangle equivalences?

Theorem (Bazzoni (2010), Bazzoni-Mantese-Tonolo (2011))

Upon possibly replacing T by $T^{(I)}$ for I "big enough",

 $\mathbf{R}\mathrm{Hom}_{R}(T,-)\colon \quad \mathsf{D}(\mathsf{Mod}R)\longrightarrow \mathsf{D}(\mathsf{Mod}S)$

 The definition of a tilting object makes sense much more generally.

- The definition of a tilting object makes sense much more generally.
- Let *A* be a complete abelian category with an injective cogenerator

- The definition of a tilting object makes sense much more generally.
- Let *A* be a complete abelian category with an injective cogenerator (e.g. a Grothendieck category).

- The definition of a tilting object makes sense much more generally.
- Let *A* be a complete abelian category with an injective cogenerator (e.g. a Grothendieck category).
- Then 𝒜 is also cocomplete

- The definition of a tilting object makes sense much more generally.
- Let *A* be a complete abelian category with an injective cogenerator (e.g. a Grothendieck category).
- Then *A* is also cocomplete (∏_i *A*(X_i, −): *A* → Ab has a left adjoint *L* by SAFT

- The definition of a tilting object makes sense much more generally.
- Let *A* be a complete abelian category with an injective cogenerator (e.g. a Grothendieck category).
- Then *A* is also cocomplete (∏_i *A*(X_i, −): *A* → Ab has a left adjoint *L* by SAFT and *L*(*Z*) = ∐_i X_i).

- The definition of a tilting object makes sense much more generally.
- Let *A* be a complete abelian category with an injective cogenerator (e.g. a Grothendieck category).
- Then *A* is also cocomplete (∏_i *A*(X_i, −): *A* → Ab has a left adjoint *L* by SAFT and *L*(ℤ) = ∐_i X_i). Moreover, coproducts are exact

- The definition of a tilting object makes sense much more generally.
- Let *A* be a complete abelian category with an injective cogenerator (e.g. a Grothendieck category).
- Then *A* is also cocomplete (∏_i A(X_i, −): A → Ab has a left adjoint *L* by SAFT and L(Z) = ∐_i X_i). Moreover, coproducts are exact (A is AB4).

- The definition of a tilting object makes sense much more generally.
- Let *A* be a complete abelian category with an injective cogenerator (e.g. a Grothendieck category).
- Then *A* is also cocomplete (∏_i *A*(X_i, -): *A* → Ab has a left adjoint *L* by SAFT and *L*(ℤ) = ∐_i X_i). Moreover, coproducts are exact (*A* is AB4).

Definition

An object $T \in \mathscr{A}$ is tilting if

- The definition of a tilting object makes sense much more generally.
- Let *A* be a complete abelian category with an injective cogenerator (e.g. a Grothendieck category).
- Then *A* is also cocomplete (∏_i *A*(X_i, -): *A* → Ab has a left adjoint *L* by SAFT and *L*(ℤ) = ∐_i X_i). Moreover, coproducts are exact (*A* is AB4).

Definition

An object $T \in \mathscr{A}$ is tilting if

```
(T1") proj. dim. T < \infty
```
- The definition of a tilting object makes sense much more generally.
- Let *A* be a complete abelian category with an injective cogenerator (e.g. a Grothendieck category).
- Then *A* is also cocomplete (∏_i *A*(X_i, -): *A* → Ab has a left adjoint *L* by SAFT and *L*(ℤ) = ∐_i X_i). Moreover, coproducts are exact (*A* is AB4).

Definition

An object $T \in \mathscr{A}$ is tilting if

(T1") proj. dim. $T < \infty$ (i.e. $\exists n \in \mathbb{N}$ such that $\operatorname{Ext}_{\mathscr{A}}^{n}(T, -) \equiv 0$),

- The definition of a tilting object makes sense much more generally.
- Let *A* be a complete abelian category with an injective cogenerator (e.g. a Grothendieck category).
- Then *A* is also cocomplete (∏_i *A*(X_i, -): *A* → Ab has a left adjoint *L* by SAFT and *L*(ℤ) = ∐_i X_i). Moreover, coproducts are exact (*A* is AB4).

Definition

An object $T \in \mathscr{A}$ is tilting if

(T1") proj. dim. $T < \infty$ (i.e. $\exists n \in \mathbb{N}$ such that $\operatorname{Ext}_{\mathscr{A}}^{n}(T, -) \equiv 0$),

(T2") $\operatorname{Ext}_{\mathscr{A}}^{i}(T, T^{(l)}) = 0$ for all i > 0 and all sets l,

- The definition of a tilting object makes sense much more generally.
- Let *A* be a complete abelian category with an injective cogenerator (e.g. a Grothendieck category).
- Then *A* is also cocomplete (∏_i *A*(X_i, -): *A* → Ab has a left adjoint *L* by SAFT and *L*(ℤ) = ∐_i X_i). Moreover, coproducts are exact (*A* is AB4).

Definition

An object $T \in \mathscr{A}$ is tilting if (T1") proj. dim. $T < \infty$ (i.e. $\exists n \in \mathbb{N}$ such that $\operatorname{Ext}_{\mathscr{A}}^{n}(T, -) \equiv 0$), (T2") $\operatorname{Ext}_{\mathscr{A}}^{i}(T, T^{(l)}) = 0$ for all i > 0 and all sets l, (T3") $\operatorname{Hom}_{\mathbb{D}(\mathscr{A})}(T, X[j]) = 0$ for all $j \in \mathbb{Z}$ implies X = 0.

t-structures

Definition (Beilinson-Bernstein-Deligne (1982))

Let $\ensuremath{\mathscr{D}}$ be a triangulated category.

Let \mathscr{D} be a triangulated category. A pair $(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 0})$ is a t-structure on \mathscr{D} if

• Hom
$$_{\mathscr{D}}(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 1}) = 0,$$

(Here: $\mathscr{D}^{\leq n} = \mathscr{D}^{\leq 0}[-n]$ and $\mathscr{D}^{\geq n} = \mathscr{D}^{\geq 0}[-n]$).

Let \mathscr{D} be a triangulated category. A pair $(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 0})$ is a t-structure on \mathscr{D} if

• Hom
$$_{\mathscr{D}}(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 1}) = 0,$$

(Here:
$$\mathscr{D}^{\leq n} = \mathscr{D}^{\leq 0}[-n]$$
 and $\mathscr{D}^{\geq n} = \mathscr{D}^{\geq 0}[-n]$).

Let \mathscr{D} be a triangulated category. A pair $(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 0})$ is a t-structure on \mathscr{D} if

• Hom
$$\mathscr{D}(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 1}) = 0$$
,

③ For each $X \in \mathscr{D}$ there exists $\tau_{\leq 0}X \to X \to \tau_{\geq 1}X \to (\tau_{\leq 0}X)[1]$ with $\tau_{\leq 0}X \in \mathscr{D}^{\leq 0}$ and $\tau_{\geq 1}X \in \mathscr{D}^{\geq 1}$.

(Here: $\mathscr{D}^{\leq n} = \mathscr{D}^{\leq 0}[-n]$ and $\mathscr{D}^{\geq n} = \mathscr{D}^{\geq 0}[-n]$).

Let \mathscr{D} be a triangulated category. A pair $(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 0})$ is a t-structure on \mathscr{D} if

• Hom
$$\mathscr{D}(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 1}) = 0$$
,

③ For each $X \in \mathscr{D}$ there exists $\tau_{\leq 0}X \to X \to \tau_{\geq 1}X \to (\tau_{\leq 0}X)[1]$ with $\tau_{\leq 0}X \in \mathscr{D}^{\leq 0}$ and $\tau_{\geq 1}X \in \mathscr{D}^{\geq 1}$.

(Here: $\mathscr{D}^{\leq n} = \mathscr{D}^{\leq 0}[-n]$ and $\mathscr{D}^{\geq n} = \mathscr{D}^{\geq 0}[-n]$).

Facts:

• $\mathscr{H} = \mathscr{D}^{\leq 0} \cap \mathscr{D}^{\geq 0}$ is an abelian category

Let \mathscr{D} be a triangulated category. A pair $(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 0})$ is a t-structure on \mathscr{D} if

• Hom
$$\mathscr{D}(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 1}) = 0$$
,

③ For each $X \in \mathscr{D}$ there exists $\tau_{\leq 0}X \to X \to \tau_{\geq 1}X \to (\tau_{\leq 0}X)[1]$ with $\tau_{\leq 0}X \in \mathscr{D}^{\leq 0}$ and $\tau_{\geq 1}X \in \mathscr{D}^{\geq 1}$.

(Here: $\mathscr{D}^{\leq n} = \mathscr{D}^{\leq 0}[-n]$ and $\mathscr{D}^{\geq n} = \mathscr{D}^{\geq 0}[-n]$).

Facts:

() $\mathscr{H} = \mathscr{D}^{\leq 0} \cap \mathscr{D}^{\geq 0}$ is an abelian category (the heart of the t-str.),

Let \mathscr{D} be a triangulated category. A pair $(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 0})$ is a t-structure on \mathscr{D} if

• Hom
$$\mathscr{D}(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 1}) = 0$$
,

③ For each $X \in \mathscr{D}$ there exists $\tau_{\leq 0}X \to X \to \tau_{\geq 1}X \to (\tau_{\leq 0}X)[1]$ with $\tau_{\leq 0}X \in \mathscr{D}^{\leq 0}$ and $\tau_{\geq 1}X \in \mathscr{D}^{\geq 1}$.

(Here: $\mathscr{D}^{\leq n} = \mathscr{D}^{\leq 0}[-n]$ and $\mathscr{D}^{\geq n} = \mathscr{D}^{\geq 0}[-n]$).

Facts:

ℋ = 𝒴^{≤0} ∩ 𝒴^{≥0} is an abelian category (the heart of the t-str.),
g for each *i* ≥ 0 there is a natural transformations

 $\vartheta^i_{X,Y} \colon \operatorname{Ext}^i_{\mathscr{H}}(X,Y) \to \mathscr{D}(X,Y[i]),$

Let \mathscr{D} be a triangulated category. A pair $(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 0})$ is a t-structure on \mathscr{D} if

• Hom
$$\mathscr{D}(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 1}) = 0$$
,

So For each $X \in \mathscr{D}$ there exists $\tau_{\leq 0}X \to X \to \tau_{\geq 1}X \to (\tau_{\leq 0}X)[1]$ with $\tau_{\leq 0}X \in \mathscr{D}^{\leq 0}$ and $\tau_{\geq 1}X \in \mathscr{D}^{\geq 1}$.

(Here: $\mathscr{D}^{\leq n} = \mathscr{D}^{\leq 0}[-n]$ and $\mathscr{D}^{\geq n} = \mathscr{D}^{\geq 0}[-n]$).

Facts:

ℋ = 𝒴^{≤0} ∩ 𝒴^{≥0} is an abelian category (the heart of the t-str.),
g for each *i* ≥ 0 there is a natural transformations

 $\vartheta^i_{X,Y} \colon \operatorname{\mathsf{Ext}}^i_{\mathscr{H}}(X,Y) o \mathscr{D}(X,Y[i]),$

3 $\vartheta^0_{X,Y}$ and $\vartheta^1_{X,Y}$ are iso's, $\vartheta^2_{X,Y}$ is mono.

Question

Let $(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 0})$ be a t-structure on \mathscr{D} and $\mathscr{H} = \mathscr{D}^{\leq 0} \cap \mathscr{D}^{\geq 0}$:

Question

Let $(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 0})$ be a t-structure on \mathscr{D} and $\mathscr{H} = \mathscr{D}^{\leq 0} \cap \mathscr{D}^{\geq 0}$:

Question

Let $(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 0})$ be a t-structure on \mathscr{D} and $\mathscr{H} = \mathscr{D}^{\leq 0} \cap \mathscr{D}^{\geq 0}$:

Question

Let $(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 0})$ be a t-structure on \mathscr{D} and $\mathscr{H} = \mathscr{D}^{\leq 0} \cap \mathscr{D}^{\geq 0}$:

Theorem (B.-B.-D. (1982), see also Psaroudakis-Vitória (2015))

• A realization functor real: $D^{b}(\mathscr{H}) \to \mathscr{D}$ exists if $\mathscr{D} = D^{b}(\mathscr{A})$.

Question

Let $(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 0})$ be a t-structure on \mathscr{D} and $\mathscr{H} = \mathscr{D}^{\leq 0} \cap \mathscr{D}^{\geq 0}$:

Theorem (B.-B.-D. (1982), see also Psaroudakis-Vitória (2015))

• A realization functor real: $D^{b}(\mathscr{H}) \to \mathscr{D}$ exists if $\mathscr{D} = D^{b}(\mathscr{A})$.

If a realization functor exists, it is an equivalence if and only if

Question

Let $(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 0})$ be a t-structure on \mathscr{D} and $\mathscr{H} = \mathscr{D}^{\leq 0} \cap \mathscr{D}^{\geq 0}$:

Theorem (B.-B.-D. (1982), see also Psaroudakis-Vitória (2015))

• A realization functor real: $D^{b}(\mathscr{H}) \to \mathscr{D}$ exists if $\mathscr{D} = D^{b}(\mathscr{A})$.

If a realization functor exists, it is an equivalence if and only if

• $\vartheta_{X,Y}^{i}$: $\mathsf{Ext}_{\mathscr{H}}^{i}(X,Y) \to \mathscr{D}(X,Y[i])$ is iso $\forall i \geq 0$ and

Question

Let $(\mathscr{D}^{\leq 0}, \mathscr{D}^{\geq 0})$ be a t-structure on \mathscr{D} and $\mathscr{H} = \mathscr{D}^{\leq 0} \cap \mathscr{D}^{\geq 0}$:

Theorem (B.-B.-D. (1982), see also Psaroudakis-Vitória (2015))

• A realization functor real: $D^{b}(\mathscr{H}) \to \mathscr{D}$ exists if $\mathscr{D} = D^{b}(\mathscr{A})$.

If a realization functor exists, it is an equivalence if and only if

• $\vartheta^i_{X,Y}$: $\mathsf{Ext}^i_{\mathscr{H}}(X,Y) \to \mathscr{D}(X,Y[i])$ is iso $\forall i \ge 0$ and

• the t-structure on \mathcal{D} is bounded (i.e. $\mathcal{D} = \bigcup_{i} \mathcal{D}^{\leq i} = \bigcup_{i} \mathcal{D}^{\geq i}$).

Tilting t-structures and derived equivalences

Theorem (Positselski-Š. (2016))

Let \mathscr{A} be a complete abelian category with an injective cogenerator C

Let \mathscr{A} be a complete abelian category with an injective cogenerator *C* and a tilting object *T*.

Let \mathscr{A} be a complete abelian category with an injective cogenerator *C* and a tilting object *T*.

• There is a bounded t-structure on $D^{b}(\mathscr{A})$ given by

 ${}^{T}\mathscr{D}^{\leq 0} = \{ X \in \mathsf{D}^{\mathsf{b}}(\mathscr{A}) \mid \mathsf{Hom}_{\mathsf{D}^{\mathsf{b}}(\mathscr{A})}(T, X[i]) = 0 \,\,\forall \, i > 0, \}$ ${}^{T}\mathscr{D}^{\geq 0} = \{ X \in \mathsf{D}^{\mathsf{b}}(\mathscr{A}) \mid \mathsf{Hom}_{\mathsf{D}^{\mathsf{b}}(\mathscr{A})}(T, X[i]) = 0 \,\,\forall \, i < 0. \}$

Let \mathscr{A} be a complete abelian category with an injective cogenerator *C* and a tilting object *T*.

• There is a bounded t-structure on $D^{b}(\mathscr{A})$ given by

 ${}^{T}\mathscr{D}^{\leq 0} = \{ X \in \mathsf{D}^{\mathsf{b}}(\mathscr{A}) \mid \mathsf{Hom}_{\mathsf{D}^{\mathsf{b}}(\mathscr{A})}(T, X[i]) = 0 \,\,\forall \, i > 0, \}$ ${}^{T}\mathscr{D}^{\geq 0} = \{ X \in \mathsf{D}^{\mathsf{b}}(\mathscr{A}) \mid \mathsf{Hom}_{\mathsf{D}^{\mathsf{b}}(\mathscr{A})}(T, X[i]) = 0 \,\,\forall \, i < 0. \}$

2 If we put $\mathscr{B} = {}^{T}\mathscr{D}^{\leq 0} \cap {}^{T}\mathscr{D}^{\leq 0}$, the realization functor

 $\text{real}\colon\,\text{D}^{\text{b}}(\mathscr{B})\to\text{D}^{\text{b}}(\mathscr{A})$

Let \mathscr{A} be a complete abelian category with an injective cogenerator *C* and a tilting object *T*.

• There is a bounded t-structure on $D^{b}(\mathscr{A})$ given by

 ${}^{T}\mathscr{D}^{\leq 0} = \{ X \in \mathsf{D}^{\mathsf{b}}(\mathscr{A}) \mid \mathsf{Hom}_{\mathsf{D}^{\mathsf{b}}(\mathscr{A})}(T, X[i]) = 0 \,\,\forall \, i > 0, \}$ ${}^{T}\mathscr{D}^{\geq 0} = \{ X \in \mathsf{D}^{\mathsf{b}}(\mathscr{A}) \mid \mathsf{Hom}_{\mathsf{D}^{\mathsf{b}}(\mathscr{A})}(T, X[i]) = 0 \,\,\forall \, i < 0. \}$

2 If we put $\mathscr{B} = {}^{T} \mathscr{D}^{\leq 0} \cap {}^{T} \mathscr{D}^{\leq 0}$, the realization functor

 $\text{real}\colon\,\text{D}^{\text{b}}(\mathscr{B})\to\text{D}^{\text{b}}(\mathscr{A})$

Let \mathscr{A} be a complete abelian category with an injective cogenerator *C* and a tilting object *T*.

• There is a bounded t-structure on $D^{b}(\mathscr{A})$ given by

 ${}^{T}\mathscr{D}^{\leq 0} = \{ X \in \mathsf{D}^{\mathsf{b}}(\mathscr{A}) \mid \mathsf{Hom}_{\mathsf{D}^{\mathsf{b}}(\mathscr{A})}(T, X[i]) = 0 \,\,\forall \, i > 0, \}$ ${}^{T}\mathscr{D}^{\geq 0} = \{ X \in \mathsf{D}^{\mathsf{b}}(\mathscr{A}) \mid \mathsf{Hom}_{\mathsf{D}^{\mathsf{b}}(\mathscr{A})}(T, X[i]) = 0 \,\,\forall \, i < 0. \}$

2 If we put $\mathscr{B} = {}^{T}\mathscr{D}^{\leq 0} \cap {}^{T}\mathscr{D}^{\leq 0}$, the realization functor

 $\text{real}\colon\,\text{D}^{\text{b}}(\mathscr{B})\to\text{D}^{\text{b}}(\mathscr{A})$

- The same for unbounded derived categories.
- We have $T, C \in \mathscr{B}$.

Let \mathscr{A} be a complete abelian category with an injective cogenerator *C* and a tilting object *T*.

• There is a bounded t-structure on $D^{b}(\mathscr{A})$ given by

 ${}^{T}\mathscr{D}^{\leq 0} = \{ X \in \mathsf{D}^{\mathsf{b}}(\mathscr{A}) \mid \mathsf{Hom}_{\mathsf{D}^{\mathsf{b}}(\mathscr{A})}(T, X[i]) = 0 \,\,\forall \, i > 0, \}$ ${}^{T}\mathscr{D}^{\geq 0} = \{ X \in \mathsf{D}^{\mathsf{b}}(\mathscr{A}) \mid \mathsf{Hom}_{\mathsf{D}^{\mathsf{b}}(\mathscr{A})}(T, X[i]) = 0 \,\,\forall \, i < 0. \}$

If we put $\mathscr{B} = {}^{T}\mathscr{D}^{\leq 0} \cap {}^{T}\mathscr{D}^{\leq 0}$, the realization functor

 $\text{real:} \ D^b(\mathscr{B}) \to D^b(\mathscr{A})$

- The same for unbounded derived categories.
- Solution We have $T, C \in \mathcal{B}$. Moreover, \mathcal{B} is cocomplete, T is a projective generator of \mathcal{B} and C is cotilting.

Let \mathscr{A} be a complete abelian category with an injective cogenerator *C* and a tilting object *T*.

• There is a bounded t-structure on $D^{b}(\mathscr{A})$ given by

 ${}^{T}\mathscr{D}^{\leq 0} = \{ X \in \mathsf{D}^{\mathsf{b}}(\mathscr{A}) \mid \mathsf{Hom}_{\mathsf{D}^{\mathsf{b}}(\mathscr{A})}(T, X[i]) = 0 \,\,\forall \, i > 0, \}$ ${}^{T}\mathscr{D}^{\geq 0} = \{ X \in \mathsf{D}^{\mathsf{b}}(\mathscr{A}) \mid \mathsf{Hom}_{\mathsf{D}^{\mathsf{b}}(\mathscr{A})}(T, X[i]) = 0 \,\,\forall \, i < 0. \}$

If we put $\mathscr{B} = {}^{T}\mathscr{D}^{\leq 0} \cap {}^{T}\mathscr{D}^{\leq 0}$, the realization functor

 $\text{real:} \ D^b(\mathscr{B}) \to D^b(\mathscr{A})$

- The same for unbounded derived categories.
- We have $T, C \in \mathcal{B}$. Moreover, \mathcal{B} is cocomplete, T is a projective generator of \mathcal{B} and C is cotilting. Dual versions of (1)–(3) hold.

The tilting-cotilting correspondence

Corollary

There is a bijective correspondence between

equivalence classes (A, T, C), A complete abelian, T tilting, C injective cogenerator, and

The tilting-cotilting correspondence

Corollary

There is a bijective correspondence between

- equivalence classes (A, T, C), A complete abelian, T tilting, C injective cogenerator, and
- equivalence classes (B, T, C), B cocomplete abelian, T projective generator, C cotilting.

The tilting-cotilting correspondence

Corollary

There is a bijective correspondence between

equivalence classes (A, T, C), A complete abelian, T tilting, C injective cogenerator, and

equivalence classes (B, T, C), B cocomplete abelian, T projective generator, C cotilting.

 $\mathsf{D}(\mathscr{A})\simeq\mathsf{D}(\mathscr{B})$

1 Motivation

2 Tilting derived equivalences

Abelian categories with a projective generator

Question

Examples of complete abelian categories \mathscr{A} with an injective generator are familiar

Abelian categories with a projective generator

Question

Examples of complete abelian categories \mathscr{A} with an injective generator are familiar (Grothendieck categories).

Examples of complete abelian categories \mathscr{A} with an injective generator are familiar (Grothendieck categories).

What do we know about cocomplete abelian categories \mathscr{B} with a projective generator T?

Examples of complete abelian categories \mathscr{A} with an injective generator are familiar (Grothendieck categories).

What do we know about cocomplete abelian categories \mathscr{B} with a projective generator T?

Assumptions

• Given any set *I*, the map $T^{(I)} \rightarrow T^{I}$ is injective.

Examples of complete abelian categories \mathscr{A} with an injective generator are familiar (Grothendieck categories).

What do we know about cocomplete abelian categories \mathscr{B} with a projective generator T?

Assumptions

• Given any set *I*, the map $T^{(I)} \rightarrow T^{I}$ is injective.

2 The object *T* is κ -small for some regular cardinal κ .

Examples of complete abelian categories \mathscr{A} with an injective generator are familiar (Grothendieck categories).

What do we know about cocomplete abelian categories \mathscr{B} with a projective generator T?

Assumptions

- Given any set *I*, the map $T^{(I)} \rightarrow T^{I}$ is injective.
- **2** The object *T* is κ -small for some regular cardinal κ .

(Ok if *B* is tilted from a Grothendieck category *A*.)
Question

Examples of complete abelian categories \mathscr{A} with an injective generator are familiar (Grothendieck categories).

What do we know about cocomplete abelian categories \mathscr{B} with a projective generator T?

Assumptions

- Given any set *I*, the map $T^{(I)} \rightarrow T^{I}$ is injective.
- **2** The object T is κ -small for some regular cardinal κ .

(Ok if *B* is tilted from a Grothendieck category *A*.)

Let *T* ∈ ℬ be a projective generator of ℬ satisfying the assumptions.

Let *T* ∈ ℬ be a projective generator of ℬ satisfying the assumptions. Let *S* = End_ℬ(*T*).

- Let *T* ∈ ℬ be a projective generator of ℬ satisfying the assumptions. Let *S* = End_ℬ(*T*).
- Key observation: We can sum certain infinite families of elements of *S*!

- Let *T* ∈ ℬ be a projective generator of ℬ satisfying the assumptions. Let *S* = End_ℬ(*T*).
- Key observation: We can sum certain infinite families of elements of *S*!
- A family $(f_i)_{i \in I}$ is summable if

- Let *T* ∈ ℬ be a projective generator of ℬ satisfying the assumptions. Let *S* = End_ℬ(*T*).
- Key observation: We can sum certain infinite families of elements of *S*!
- A family $(f_i)_{i \in I}$ is summable if

- Let *T* ∈ ℬ be a projective generator of ℬ satisfying the assumptions. Let *S* = End_ℬ(*T*).
- Key observation: We can sum certain infinite families of elements of S!
- A family $(f_i)_{i \in I}$ is summable if

Then we define $\sum_{i \in I} f_i: T \xrightarrow{(f_i)_{i \in I}} T^{(I)} \xrightarrow{\text{sum}} T$.

- Let *T* ∈ ℬ be a projective generator of ℬ satisfying the assumptions. Let *S* = End_ℬ(*T*).
- Key observation: We can sum certain infinite families of elements of S!
- A family $(f_i)_{i \in I}$ is summable if

Then we define $\sum_{i \in I} f_i$: $T \xrightarrow{(f_i)_{i \in I}} T^{(I)} \xrightarrow{\text{sum}} T$.

• A right *S*-contramodule *M* is an abelian group with a defined linear action of summable families.

- Let *T* ∈ ℬ be a projective generator of ℬ satisfying the assumptions. Let *S* = End_ℬ(*T*).
- Key observation: We can sum certain infinite families of elements of *S*!
- A family $(f_i)_{i \in I}$ is summable if

Then we define $\sum_{i \in I} f_i$: $T \xrightarrow{(f_i)_{i \in I}} T^{(I)} \xrightarrow{\text{sum}} T$.

- A right *S*-contramodule *M* is an abelian group with a defined linear action of summable families.
- I.e. given any sequence (m_i)_{i∈1} in M and a summable family (f_i)_{i∈1}, we define what is ∑_{i∈1} m_if_i ∈ M.

- Let *T* ∈ ℬ be a projective generator of ℬ satisfying the assumptions. Let *S* = End_ℬ(*T*).
- Key observation: We can sum certain infinite families of elements of *S*!
- A family $(f_i)_{i \in I}$ is summable if

Then we define $\sum_{i \in I} f_i$: $T \xrightarrow{(f_i)_{i \in I}} T^{(I)} \xrightarrow{\text{sum}} T$.

- A right *S*-contramodule *M* is an abelian group with a defined linear action of summable families.
- I.e. given any sequence (m_i)_{i∈1} in M and a summable family (f_i)_{i∈1}, we define what is ∑_{i∈1} m_if_i ∈ M.
- Note: We have a forgetful functor $Contra S \rightarrow ModS$.

Let \mathscr{B} be cocomplete abelian with a projective generator $T \in \mathscr{B}$ satisfying the assumptions.

Let \mathscr{B} be cocomplete abelian with a projective generator $T \in \mathscr{B}$ satisfying the assumptions. Then

 $\operatorname{Hom}_{\mathscr{B}}(T,-)\colon \mathscr{B}\longrightarrow \operatorname{Contra} S$

is an equivalence.

Let \mathscr{B} be cocomplete abelian with a projective generator $T \in \mathscr{B}$ satisfying the assumptions. Then

$$\operatorname{Hom}_{\mathscr{B}}(\mathcal{T},-)\colon \mathscr{B}\longrightarrow \operatorname{Contra}\mathcal{S}$$

is an equivalence.

Corollary

Let \mathscr{A} be a Grothendieck category with a tilting object T.

Let \mathscr{B} be cocomplete abelian with a projective generator $T \in \mathscr{B}$ satisfying the assumptions. Then

$$\operatorname{Hom}_{\mathscr{B}}(\mathcal{T},-)\colon \mathscr{B}\longrightarrow \operatorname{Contra}\mathcal{S}$$

is an equivalence.

Corollary

Let *A* be a Grothendieck category with a tilting object T. Then

RHom_{*R*}(*T*, -): $D(\mathscr{A}) \longrightarrow D(ContraS)$

is a triangle equivalence.

Relation to previous results

Remark

The relation to results of Bazzoni-Mantese-Tonolo: • to motivation

$$\mathsf{D}(\mathscr{A}) \xrightarrow{\mathsf{R}\mathsf{Hom}_{\mathcal{B}}(\mathcal{T},-)} \to \mathsf{D}(\mathsf{Contra}S) \xrightarrow{\mathsf{forget}} \to \mathsf{D}(\mathsf{Mod}S).$$

Remark

The relation to results of Bazzoni-Mantese-Tonolo: • to motivation

$$\mathsf{D}(\mathscr{A}) \xrightarrow{\mathsf{R}\mathsf{Hom}_{\mathcal{B}}(\mathcal{T},-)} \to \mathsf{D}(\mathsf{Contra}S) \xrightarrow{\mathsf{forget}} \to \mathsf{D}(\mathsf{Mod}S).$$

The forgetful functor is fully faithful for good tilting objects.

Remark

The relation to results of Bazzoni-Mantese-Tonolo: • to motivation

$$\mathsf{D}(\mathscr{A}) \xrightarrow{\mathsf{R}\mathsf{Hom}_{\mathcal{B}}(\mathcal{T},-)} \to \mathsf{D}(\mathsf{Contra}S) \xrightarrow{\mathsf{forget}} \to \mathsf{D}(\mathsf{Mod}S).$$

The forgetful functor is fully faithful for good tilting objects.

Thank you for your attention!