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Valuation domains

Definition
A valuation domain is a commutative (not necessarily noetherian!)
domain whose ideals are totally ordered by ⊆.

Examples (trivial)
Discrete valuation domains: Z(p) (p a prime number), k [[x ]] (k a field).

The Goal (to be explained)
Classify all smashing localizations of the unbounded derived category
D(ModR) of a valuation domain R. We restrict to valuation domains
with finite Zariski spectrum at the moment.
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More interesting examples
Construction
Let k be a field and (G,+,≤) a totally ordered abelian group. Denote
by G≥0 = {g ∈ G | g ≥ 0} the non-negative cone and by G>0 the
subsemigroup of all positive elements.
Consider the monoid ring S = k [G≥0]: The k -subspace m = k [G>0] is
a maximal ideal of S and the localization R = Sm is a valuation domain.

Examples
1 For (G,+,≤) = (Z,+,≤) we get R ∼= k [x ](x) (a discrete VD).
2 For (G,+,≤) = (Q,+,≤) we get R with Spec R = {0,m}, but

m2 = m! (the ring of Puiseux series has similar properties)
3 For (G,+,≤) = (Qn,+,≤lex) we get R with

Spec R : 0 = p0 ( p1 ( · · · ( pn = m and (∀j)(p2
j = pj).

4 If (G,+,≤) = (Zn,+,≤lex), we get the same Zariski spectrum, but
none of the primes pj , j > 0, is idempotent.
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The structure on D(ModR)

Fact
If R is a commutative ring, then D(ModR) is a compactly generated
tensor triangulated category.

D(ModR) is triangulated, the suspension functor
Σ: D(ModR)→ D(ModR) shifts complexes

X : · · · → X−1 → X 0 → X 1 → . . .

to the left and changes sings of the differentials.
(D(ModR),⊗L

R,R) is a symmetric monoidal category, where ⊗L
R

denotes the left derived functor of the tensor product. Moreover,
⊗L

R is exact in each variable.
There is a set S of objects of D(ModR) such that each S ∈ S is
compact (that is, Hom(S,−) : D(ModR)→ Ab preserves
coproducts) and for each 0 6= X ∈ D(ModR) there exists
0 6= f : S → X with S ∈ S. For instance S = {R[n] | n ∈ Z}.
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Jan Št’ovíček (Charles University) Localizations, valuation domains May 18, 2012 7 / 22



The structure on D(ModR)

Fact
If R is a commutative ring, then D(ModR) is a compactly generated
tensor triangulated category.

D(ModR) is triangulated, the suspension functor
Σ: D(ModR)→ D(ModR) shifts complexes

X : · · · → X−1 → X 0 → X 1 → . . .

to the left and changes sings of the differentials.
(D(ModR),⊗L

R,R) is a symmetric monoidal category, where ⊗L
R

denotes the left derived functor of the tensor product. Moreover,
⊗L

R is exact in each variable.
There is a set S of objects of D(ModR) such that each S ∈ S is
compact (that is, Hom(S,−) : D(ModR)→ Ab preserves
coproducts) and for each 0 6= X ∈ D(ModR) there exists
0 6= f : S → X with S ∈ S. For instance S = {R[n] | n ∈ Z}.
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Types of localization

We would like to understand the structure of D(ModR). It is
hopeless to classify objects, but we may classify kernels of various
triangulated functors.
We have{

Coproduct preserving Verdier localizations
D(ModR)→ D(ModR)/L

}
⋃

{ Bousfield localizations L : D(ModR)→ D(ModR) }⋃
{ Smashing localizations L : D(ModR)→ D(ModR) }⋃{

Compactly generated localizations
L : D(ModR)→ D(ModR)

}
Classifiable!
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Thomason’s classification of finite localizations
Theorem (Thomason, 1997)
Let R be a commutative ring. Then there is a bijection between

1 compactly generated localizations L : D(ModR)→ D(ModR);
2 Thomason subsets of Spec R.

Definition
A subset U ⊆ Spec R is a Thomason set if U is a union of Zariski
closed sets of Spec R with quasi-compact complements.

Example
Let R be a valuation domain with Spec R : 0 = p0 ( p1 ( · · · ( pn = m.
Then the Thomason sets are simply upper sets with respect to ⊆. The
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Jan Št’ovíček (Charles University) Localizations, valuation domains May 18, 2012 9 / 22



Smashing localization
Definition
A functor L : D(ModR)→ D(ModR) is a smashing localization if there
is C ∈ D(ModR) and a morphism η : R → C such that

L ∼= C ⊗L
R −, and

C ⊗L
R η : C → C ⊗L

R C is an isomorphism.

Remarks
1 The term smashing comes from the stable homotopy category,

where the role of ⊗L
R is taken by the smash product ∧.

2 Telescope conjecture (fails in general!): Every smashing
localization is compactly generated.

3 Keller (1994): If R is a valuation domain with Spec R = {0,m} and
m2 = m, then the telescope conjecture fails for D(ModR). A
counterexample is L = R/m⊗L

R −. In fact, the telescope conj. fails
whenever R is a VD with a non-zero idempotent prime.
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The classification of smashing localizations

Theorem (Příhoda-Š.)
Let R be a valuation domain with finite Zariski spectrum, and let
P ⊆ Spec R be the set of idempotent prime ideals. Consider Spec R
and P as topological spaces where

open sets of Spec R are upper (= Thomason) subsets,
open sets of P are lower sets.

Then the following holds:
1 There is an explicitly described subspace X ⊆ Spec R × P and a

bijection between
I smashing localizations L : D(ModR)→ D(ModR);
I open subsets of X .

2 The quotient map π : X → Spec R induces the inclusion
{Compactly generated localizations} ⊆ {Smashing localizations}.
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Jan Št’ovíček (Charles University) Localizations, valuation domains May 18, 2012 11 / 22



The classification of smashing localizations

Theorem (Příhoda-Š.)
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The description of the space X
Suppose Spec R = {0 = p0, p1, . . . , pn = m}.
Let P = {pi0 , . . . , pis} be all idempotent ideals. Here:

0 = i0 < i1 < · · · < is and s ≥ 0.

Then, if we formally put is+1 = n, we have

X = {(pj , pi`) ∈ Spec R × P | 0 ≤ ` ≤ s and i` ≤ j ≤ i`+1}.

Spec R

P

...

...

The topology has “upper left corners” as basic open sets.

Jan Št’ovíček (Charles University) Localizations, valuation domains May 18, 2012 12 / 22



The description of the space X
Suppose Spec R = {0 = p0, p1, . . . , pn = m}.
Let P = {pi0 , . . . , pis} be all idempotent ideals. Here:

0 = i0 < i1 < · · · < is and s ≥ 0.

Then, if we formally put is+1 = n, we have

X = {(pj , pi`) ∈ Spec R × P | 0 ≤ ` ≤ s and i` ≤ j ≤ i`+1}.

Spec R

P

...

...

The topology has “upper left corners” as basic open sets.
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Jan Št’ovíček (Charles University) Localizations, valuation domains May 18, 2012 12 / 22



Outline

1 Valuation domains

2 A hierarchy of triangulated localizations

3 Examples

4 About the proof
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Puiseux series

Suppose that Spec R = {0,m} and m = m2.
That is, P = {0,m} and the elements of X ⊆ Spec R × P are
indicated by crosses:

Spec R

P
0

m

0 m

Except for the empty set, there are four other open subsets of X .
Thus, there are exactly 5 distinct smashing localizations of
D(ModR) (compared to 3 compactly generated localizations!)
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Jan Št’ovíček (Charles University) Localizations, valuation domains May 18, 2012 14 / 22



Puiseux series

Suppose that Spec R = {0,m} and m = m2.
That is, P = {0,m} and the elements of X ⊆ Spec R × P are
indicated by crosses:

Spec R

P
0

m

0 m

Except for the empty set, there are four other open subsets of X .
Thus, there are exactly 5 distinct smashing localizations of
D(ModR) (compared to 3 compactly generated localizations!)
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The value group Zn

Suppose now that Spec R = {0 = p0, p1, . . . , pn = m} and none of
the pi , i ≥ 1, is idempotent. This is the case in the example
constructed from the totally ordered group (Zn,+,≤lex).
Then X is homeomorphic to Spec R and smashing localizations
are precisely the compactly generated ones.
Thus, the telescope conjecture holds for D(ModR).
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The value group Qn

Suppose on the other hand that Spec R = {0 = p0, p1, . . . , pn = m}
and all pi , i ≥ 0, are idempotent. This happens if we start with the
totally ordered group (Qn,+,≤lex).
The set X has the shape:

Spec R

P

. .
.
. .
.

0

m

0 m

As before, the topology has “upper left corners” as basic open
sets.
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Local to global principle

Let T be triangulated compactly generated (e.g. T = D(ModR))
and L : T → T be a compactly generated localization.
Then Ker L and Im L are both localizing subcategories of T (=
triangulated subcategories which are closed under coproducts)
and as triangulated categories they are compactly generated.
If, moreover, (T ,⊗,1⊗) is tensor triangulated and generated by
the tensor unit 1⊗, then any localizing subcategory L is
determined by the intersections L ∩ Ker L and L ∩ Im L.
Moreover, both Ker L and Im L are then tensor triangulated and
generated by the tensor unit. This allows us to iterate the
reduction.
Using the knowledge of finite localizations of D(ModR), our
problem essentially reduces to the following:
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Jan Št’ovíček (Charles University) Localizations, valuation domains May 18, 2012 18 / 22



Local to global principle

Let T be triangulated compactly generated (e.g. T = D(ModR))
and L : T → T be a compactly generated localization.
Then Ker L and Im L are both localizing subcategories of T (=
triangulated subcategories which are closed under coproducts)
and as triangulated categories they are compactly generated.
If, moreover, (T ,⊗,1⊗) is tensor triangulated and generated by
the tensor unit 1⊗, then any localizing subcategory L is
determined by the intersections L ∩ Ker L and L ∩ Im L.
Moreover, both Ker L and Im L are then tensor triangulated and
generated by the tensor unit. This allows us to iterate the
reduction.
Using the knowledge of finite localizations of D(ModR), our
problem essentially reduces to the following:
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The reduced problem

Problem
Let R be a valuation domain with

Spec R : 0 = p0 ( · · · ( pn−1 ( pn = m.

Classify all smashing localizations of

T = {X ∈ D(ModR) | Xpn−1 = 0}
= {X ∈ D(ModR) | Ann(x) % pn−1 for each x ∈ H∗(X )}
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Translation to idempotent ideals

Theorem (Krause, 2005)
Let T be a compactly generated triangulated category. Then there is a
bijective correspondence between

1 smashing localizations of T (up to natural equivalence);
2 exact ideals of the category T c of all compact objects of T .

Definition
A 2-sided ideal I of morphisms of T c is called exact if it satisfies

1 ΣI = I,
2 I = I2,
3 a somewhat technical but important saturation condition.
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The category of compact objects
Let T = {X ∈ D(ModR) | Ann(x) % pn−1 for each x ∈ H∗(X )}
as above.
Then T c ∼= Db(A), where

A = {M ∈ modR | Ann M % pn−1}

Here, modR stands for the category of all finitely presented
R-modules.
One can prove that each M ∈ A is of the form

M ∼=
⊕̀
i=1

R/(ri) forsome ri ∈ R \ pn−1.

It follows that A is an hereditary abelian category and each object
uniquely decomposes into indecomposables (the Krull-Schmidt
property).
Thus, each object of Db(A) is isomorphic to its homology and:
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Ideals in the category compact objects
Observation
There is a bijective correspondence between

suspension invariant idempotent ideals of T c ,
idempotent ideals of the category

indA = {R/(r) | r ∈ R \ pn−1} (⊆ modR)

Remarks
The classification of idempotent ideals in indA is not
straightforward, but doable. They are controlled by what we call
Cauchy sequences of morphisms in indA.
The saturation property does not translate nicely to indA. But
keeping the correspondence above in mind, one gets that there
can only be one non-trivial idempotent ideal corresponding to a
saturated ideal in T c , and this is the case if and only if
m = m2(⊆ R).
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