CHARLES UNIVERSITY PRAGUE

faculty of mathematics and physics

Jan Šťovíček

Representability of functors and Gorenstein homological algebra

(joint with Ivo Dell'Ambrogio and Greg Stevenson)

ECI Workshop, Třešť October 9th, 2015

Gorenstein homological algebra

Main results

Table of Contents

Universal coefficient theorems

Gorenstein homological algebra

• Let \mathcal{T} be a triangulated category with coproducts,

Let 𝒯 be a triangulated category with coproducts, e.g.
 𝒯 = D(𝔐od 𝑘) for a ring 𝑘

Let 𝔅 be a triangulated category with coproducts, e.g.
 𝔅 = D(𝔐od 𝑘) for a ring 𝑘 or 𝔅 is the stable homotopy category.

- Let 𝒯 be a triangulated category with coproducts, e.g.
 𝒯 = D(𝔐od 𝑘) for a ring 𝑘 or 𝒯 is the stable homotopy category.
- Denote by $\mathscr{T}^{comp} \subseteq \mathscr{T}$ the full subcategory of compact objects

- Let 𝔅 be a triangulated category with coproducts, e.g.
 𝔅 = D(𝔅 d 𝔅) for a ring 𝔅 or 𝔅 is the stable homotopy category.
- Denote by $\mathscr{T}^{comp} \subseteq \mathscr{T}$ the full subcategory of compact objects $(\mathcal{C} \in \mathscr{T} \text{ is compact if } \mathscr{T}(\mathcal{C}, -) \colon \mathscr{T} \to \mathscr{A}_b$ preserves coproducts).

- Let 𝔅 be a triangulated category with coproducts, e.g.
 𝔅 = D(𝔅 d 𝔅) for a ring 𝔅 or 𝔅 is the stable homotopy category.
- Denote by $\mathscr{T}^{comp} \subseteq \mathscr{T}$ the full subcategory of compact objects $(C \in \mathscr{T} \text{ is compact if } \mathscr{T}(C, -) \colon \mathscr{T} \to \mathscr{A}b \text{ preserves coproducts}).$
- Let $\mathscr{C} \subseteq \mathscr{T}^{comp}$ be a full subcategory such that $\Sigma \mathscr{C} = \mathscr{C}$.

- Let 𝔅 be a triangulated category with coproducts, e.g.
 𝔅 = D(𝔅 d 𝔅) for a ring 𝔅 or 𝔅 is the stable homotopy category.
- Denote by $\mathscr{T}^{comp} \subseteq \mathscr{T}$ the full subcategory of compact objects $(C \in \mathscr{T} \text{ is compact if } \mathscr{T}(C, -) \colon \mathscr{T} \to \mathscr{A}b \text{ preserves coproducts}).$
- Let C ⊆ T^{comp} be a full subcategory such that ΣC = C.
 Important: C is not required to be a triangulated subcategory.

- Let 𝔅 be a triangulated category with coproducts, e.g.
 𝔅 = D(𝔅 d 𝔅) for a ring 𝔅 or 𝔅 is the stable homotopy category.
- Denote by $\mathscr{T}^{comp} \subseteq \mathscr{T}$ the full subcategory of compact objects $(C \in \mathscr{T} \text{ is compact if } \mathscr{T}(C, -) \colon \mathscr{T} \to \mathscr{A}b \text{ preserves coproducts}).$
- Let 𝒞 ⊆ 𝒯^{comp} be a full subcategory such that Σ𝒞 = 𝒞.
 Important: 𝒞 is not required to be a triangulated subcategory.
- Recall: If % is a small preadditive category,

- Let 𝔅 be a triangulated category with coproducts, e.g.
 𝔅 = D(𝔅 d 𝔅) for a ring 𝔅 or 𝔅 is the stable homotopy category.
- Denote by $\mathscr{T}^{comp} \subseteq \mathscr{T}$ the full subcategory of compact objects $(C \in \mathscr{T} \text{ is compact if } \mathscr{T}(C, -) \colon \mathscr{T} \to \mathscr{A}b \text{ preserves coproducts}).$
- Let C ⊆ T^{comp} be a full subcategory such that ΣC = C.
 Important: C is not required to be a triangulated subcategory.
- Recall: If 𝒞 is a small preadditive category, then a 𝒞-module is a an additive functor 𝒞^{op} → 𝖈.

- Let 𝔅 be a triangulated category with coproducts, e.g.
 𝔅 = D(𝔅 d 𝔅) for a ring 𝔅 or 𝔅 is the stable homotopy category.
- Denote by $\mathscr{T}^{comp} \subseteq \mathscr{T}$ the full subcategory of compact objects $(C \in \mathscr{T} \text{ is compact if } \mathscr{T}(C, -) \colon \mathscr{T} \to \mathscr{A}b \text{ preserves coproducts}).$
- Let C ⊆ T^{comp} be a full subcategory such that ΣC = C.
 Important: C is not required to be a triangulated subcategory.
- Recall: If 𝒞 is a small preadditive category, then a 𝒞-module is a an additive functor 𝒞^{op} → 𝖈.
- Given the data above, we have a the restricted Yoneda functor

 $\begin{array}{c}h\colon \mathscr{T} \longrightarrow \mathscr{M}\!\mathit{od}\,\mathscr{C}\\ X\longmapsto \mathscr{T}(-,X)|_{\mathscr{C}}\end{array}$

- Let 𝔅 be a triangulated category with coproducts, e.g.
 𝔅 = D(𝔅 d 𝔅) for a ring 𝔅 or 𝔅 is the stable homotopy category.
- Denote by *S*^{comp} ⊆ *S* the full subcategory of compact objects (*C* ∈ *S* is compact if *S*(*C*, −): *S* → *Ab* preserves coproducts).
- Let 𝒞 ⊆ 𝒯^{comp} be a full subcategory such that Σ𝒞 = 𝒞.
 Important: 𝒞 is not required to be a triangulated subcategory.
- Recall: If 𝒞 is a small preadditive category, then a 𝒞-module is a an additive functor 𝒞^{op} → 𝖈.
- Given the data above, we have a the restricted Yoneda functor

 $\begin{array}{c} h \colon \mathscr{T} \longrightarrow \mathscr{M} od \, \mathscr{C} \\ X \longmapsto \mathscr{T}(-, X)|_{\mathscr{C}} \end{array}$

I.e. *h* maps $C \in \mathscr{C}$ to $\mathscr{T}(C, X)$.

- Let 𝔅 be a triangulated category with coproducts, e.g.
 𝔅 = D(𝔅 d 𝔅) for a ring 𝔅 or 𝔅 is the stable homotopy category.
- Denote by *S*^{comp} ⊆ *S* the full subcategory of compact objects (*C* ∈ *S* is compact if *S*(*C*, −): *S* → *Ab* preserves coproducts).
- Let 𝒞 ⊆ 𝒯^{comp} be a full subcategory such that Σ𝒞 = 𝒞.
 Important: 𝒞 is not required to be a triangulated subcategory.
- Recall: If *C* is a small preadditive category, then a *C*-module is a an additive functor *C*^{op} → *Ab*.
- Given the data above, we have a the restricted Yoneda functor

 $\begin{array}{c}h\colon \mathscr{T}\longrightarrow \mathscr{M}\!\mathit{od}\,\mathscr{C}\\ X\longmapsto \mathscr{T}(-,X)|_{\mathscr{C}}\end{array}$

I.e. *h* maps $C \in \mathscr{C}$ to $\mathscr{T}(C, X)$.

• Question: How much do we learn about \mathscr{T} from $\mathscr{M}od\,\mathscr{C}$?

to representability

• In general, we only get an Adams-type spectral sequence,

 In general, we only get an Adams-type spectral sequence, but in some cases, we can do better.

- In general, we only get an Adams-type spectral sequence, but in some cases, we can do better.
- One might hope for $h: \mathscr{T} \to \mathscr{M}od \mathscr{C}$ being an equivalence,

- In general, we only get an Adams-type spectral sequence, but in some cases, we can do better.
- One might hope for h: *T* → *Mod* C being an equivalence, but then *T* is semisimple.

- In general, we only get an Adams-type spectral sequence, but in some cases, we can do better.
- One might hope for h: *T* → *Mod* C being an equivalence, but then *T* is semisimple. Hence this is not a very interesting case.

- In general, we only get an Adams-type spectral sequence, but in some cases, we can do better.
- One might hope for h: 𝒴 → 𝔐od𝔅 being an equivalence, but then 𝒴 is semisimple. Hence this is not a very interesting case.
- The next easiest case is when a so-called Universal coefficient theorem holds

- In general, we only get an Adams-type spectral sequence, but in some cases, we can do better.
- One might hope for h: 𝒴 → 𝔐od𝔅 being an equivalence, but then 𝒴 is semisimple. Hence this is not a very interesting case.
- The next easiest case is when a so-called Universal coefficient theorem holds—we have a canonical short exact sequence

 $0 \to \mathsf{Ext}^1_{\mathscr{C}}(h\Sigma X, hY) \to \mathscr{T}(X, Y) \to \mathsf{Hom}_{\mathscr{C}}(hX, hY) \to 0$

- In general, we only get an Adams-type spectral sequence, but in some cases, we can do better.
- One might hope for h: 𝒴 → 𝔐od𝔅 being an equivalence, but then 𝒴 is semisimple. Hence this is not a very interesting case.
- The next easiest case is when a so-called Universal coefficient theorem holds—we have a canonical short exact sequence

 $0 \to \mathsf{Ext}^1_{\mathscr{C}}(h\Sigma X, hY) \to \mathscr{T}(X, Y) \to \mathsf{Hom}_{\mathscr{C}}(hX, hY) \to 0$

for all (or just some) pairs $X, Y \in \mathscr{T}$.

- In general, we only get an Adams-type spectral sequence, but in some cases, we can do better.
- One might hope for h: 𝒴 → 𝔐od𝔅 being an equivalence, but then 𝒴 is semisimple. Hence this is not a very interesting case.
- The next easiest case is when a so-called Universal coefficient theorem holds—we have a canonical short exact sequence

 $0 \to \mathsf{Ext}^1_{\mathscr{C}}(h\Sigma X, hY) \to \mathscr{T}(X, Y) \to \mathsf{Hom}_{\mathscr{C}}(hX, hY) \to 0$

for all (or just some) pairs $X, Y \in \mathscr{T}$.

Example

Let *R* be a right hereditary ring,

- In general, we only get an Adams-type spectral sequence, but in some cases, we can do better.
- One might hope for h: 𝒴 → 𝔐od𝔅 being an equivalence, but then 𝒴 is semisimple. Hence this is not a very interesting case.
- The next easiest case is when a so-called Universal coefficient theorem holds—we have a canonical short exact sequence

 $0 \to \mathsf{Ext}^1_{\mathscr{C}}(h\Sigma X, hY) \to \mathscr{T}(X, Y) \to \mathsf{Hom}_{\mathscr{C}}(hX, hY) \to 0$

for all (or just some) pairs $X, Y \in \mathscr{T}$.

Example

Let *R* be a right hereditary ring, $\mathcal{T} = \mathsf{D}(\mathcal{M}od R)$,

- In general, we only get an Adams-type spectral sequence, but in some cases, we can do better.
- One might hope for h: 𝒴 → 𝔐od𝔅 being an equivalence, but then 𝒴 is semisimple. Hence this is not a very interesting case.
- The next easiest case is when a so-called Universal coefficient theorem holds—we have a canonical short exact sequence

 $0 \to \mathsf{Ext}^1_{\mathscr{C}}(h\Sigma X, hY) \to \mathscr{T}(X, Y) \to \mathsf{Hom}_{\mathscr{C}}(hX, hY) \to 0$

for all (or just some) pairs $X, Y \in \mathscr{T}$.

Example

Let *R* be a right hereditary ring, $\mathscr{T} = \mathsf{D}(\mathscr{M}od R)$, and $\mathscr{C} = \{\Sigma^n R \mid n \in \mathbb{Z}\}.$

- In general, we only get an Adams-type spectral sequence, but in some cases, we can do better.
- One might hope for h: 𝒴 → 𝔐od𝔅 being an equivalence, but then 𝒴 is semisimple. Hence this is not a very interesting case.
- The next easiest case is when a so-called Universal coefficient theorem holds—we have a canonical short exact sequence

 $0 \to \mathsf{Ext}^1_{\mathscr{C}}(h\Sigma X, hY) \to \mathscr{T}(X, Y) \to \mathsf{Hom}_{\mathscr{C}}(hX, hY) \to 0$

for all (or just some) pairs $X, Y \in \mathscr{T}$.

Example

Let *R* be a right hereditary ring, $\mathscr{T} = \mathsf{D}(\mathscr{M}od R)$, and $\mathscr{C} = \{\Sigma^n R \mid n \in \mathbb{Z}\}$. Then *h* is the cohomology functor

 H^* : $\mathsf{D}(\mathscr{M}od \ \mathsf{R}) \longrightarrow \mathscr{M}od^{\mathbb{Z}}\mathsf{R},$

- In general, we only get an Adams-type spectral sequence, but in some cases, we can do better.
- One might hope for h: 𝒴 → 𝔐od𝔅 being an equivalence, but then 𝒴 is semisimple. Hence this is not a very interesting case.
- The next easiest case is when a so-called Universal coefficient theorem holds—we have a canonical short exact sequence

 $0 \to \mathsf{Ext}^1_{\mathscr{C}}(h\Sigma X, hY) \to \mathscr{T}(X, Y) \to \mathsf{Hom}_{\mathscr{C}}(hX, hY) \to 0$

for all (or just some) pairs $X, Y \in \mathscr{T}$.

Example

Let *R* be a right hereditary ring, $\mathscr{T} = \mathsf{D}(\mathscr{M}od R)$, and $\mathscr{C} = \{\Sigma^n R \mid n \in \mathbb{Z}\}$. Then *h* is the cohomology functor

 H^* : $\mathsf{D}(\mathscr{M}od \ \mathsf{R}) \longrightarrow \mathscr{M}od^{\mathbb{Z}}\mathsf{R},$

a UCT holds for each pair $X, Y \in \mathscr{T}$,

- In general, we only get an Adams-type spectral sequence, but in some cases, we can do better.
- One might hope for h: 𝒴 → 𝔐od𝔅 being an equivalence, but then 𝒴 is semisimple. Hence this is not a very interesting case.
- The next easiest case is when a so-called Universal coefficient theorem holds—we have a canonical short exact sequence

 $0 \to \mathsf{Ext}^1_{\mathscr{C}}(h\Sigma X, hY) \to \mathscr{T}(X, Y) \to \mathsf{Hom}_{\mathscr{C}}(hX, hY) \to 0$

for all (or just some) pairs $X, Y \in \mathscr{T}$.

Example

Let *R* be a right hereditary ring, $\mathscr{T} = \mathsf{D}(\mathscr{M}od R)$, and $\mathscr{C} = \{\Sigma^n R \mid n \in \mathbb{Z}\}$. Then *h* is the cohomology functor

 H^* : $\mathsf{D}(\mathscr{M}od \ \mathsf{R}) \longrightarrow \mathscr{M}od^{\mathbb{Z}}\mathsf{R},$

a UCT holds for each pair $X, Y \in \mathcal{T}$, and H^* reflects isomorphisms.

• The UCT's are closely related to representability of functors $\mathscr{C}^{\mathrm{op}} \to \mathscr{A}b.$

- The UCT's are closely related to representability of functors $\mathscr{C}^{\rm op} \to \mathscr{A}\!\mathit{b}.$
- If the UCT holds for $X, Y \in \mathscr{T}$,

- The UCT's are closely related to representability of functors $\mathscr{C}^{op} \to \mathscr{A}_{b}$.
- If the UCT holds for $X, Y \in \mathcal{T}$, then every transformation

$$\eta \colon \mathscr{T}(-,X)|_{\mathscr{C}} o \mathscr{T}(-,Y)|_{\mathscr{C}}$$

is equal to $\mathscr{T}(-, f)|_{\mathscr{C}}$ for some (non-unique) $f: X \to Y$.

- The UCT's are closely related to representability of functors $\mathscr{C}^{op} \to \mathscr{A}_{b}$.
- If the UCT holds for $X, Y \in \mathcal{T}$, then every transformation

 $\eta \colon \mathscr{T}(-,X)|_{\mathscr{C}} o \mathscr{T}(-,Y)|_{\mathscr{C}}$

is equal to $\mathscr{T}(-, f)|_{\mathscr{C}}$ for some (non-unique) $f \colon X \to Y$.

• We can also ask what the essential image of $h: \mathscr{T} \to \mathscr{M}od \mathscr{C}$ is,

- The UCT's are closely related to representability of functors $\mathscr{C}^{op} \to \mathscr{A}_{b}.$
- If the UCT holds for $X, Y \in \mathcal{T}$, then every transformation

 $\eta \colon \mathscr{T}(-, X)|_{\mathscr{C}} \to \mathscr{T}(-, Y)|_{\mathscr{C}}$

is equal to $\mathscr{T}(-, f)|_{\mathscr{C}}$ for some (non-unique) $f: X \to Y$.

We can also ask what the essential image of h: 𝔅 → Mod 𝔅 is, i.e. which functors F: 𝔅^{op} → 𝔅 b are isomorphic to some 𝔅(-, X)|_𝔅.

- The UCT's are closely related to representability of functors $\mathscr{C}^{op} \to \mathscr{A}_{b}.$
- If the UCT holds for $X, Y \in \mathcal{T}$, then every transformation

 $\eta \colon \mathscr{T}(-, X)|_{\mathscr{C}} \to \mathscr{T}(-, Y)|_{\mathscr{C}}$

is equal to $\mathscr{T}(-, f)|_{\mathscr{C}}$ for some (non-unique) $f: X \to Y$.

We can also ask what the essential image of h: 𝔅 → Mod 𝔅 is, i.e. which functors F: 𝔅^{op} → 𝔅 are isomorphic to some 𝔅(-, X)|𝔅. Non-trivial necessary condition:

- The UCT's are closely related to representability of functors $\mathscr{C}^{op} \to \mathscr{A}_{b}.$
- If the UCT holds for $X, Y \in \mathcal{T}$, then every transformation

 $\eta \colon \mathscr{T}(-,X)|_{\mathscr{C}} \to \mathscr{T}(-,Y)|_{\mathscr{C}}$

is equal to $\mathscr{T}(-, f)|_{\mathscr{C}}$ for some (non-unique) $f: X \to Y$.

We can also ask what the essential image of h: 𝔅 → Mod 𝔅 is, i.e. which functors F: 𝔅^{op} → 𝔅 are isomorphic to some 𝔅(-, X)|𝔅. Non-trivial necessary condition:

 $\cdots \rightarrow F(\Sigma C_1) \rightarrow F(C_3) \rightarrow F(C_2) \rightarrow F(C_1) \rightarrow F(\Sigma^{-1}C_3) \rightarrow \cdots$

for each triangle $C_1 \to C_2 \to C_3 \to \Sigma C_1$ with all three terms in add \mathscr{C} .
Representability of functors

- The UCT's are closely related to representability of functors $\mathscr{C}^{op} \to \mathscr{A}_{b}.$
- If the UCT holds for $X, Y \in \mathcal{T}$, then every transformation

 $\eta \colon \mathscr{T}(-, X)|_{\mathscr{C}} \to \mathscr{T}(-, Y)|_{\mathscr{C}}$

is equal to $\mathscr{T}(-, f)|_{\mathscr{C}}$ for some (non-unique) $f \colon X \to Y$.

We can also ask what the essential image of h: 𝔅 → Mod 𝔅 is, i.e. which functors F: 𝔅^{op} → 𝔅 are isomorphic to some 𝔅(-, X)|𝔅. Non-trivial necessary condition:

 $\cdots \rightarrow F(\Sigma C_1) \rightarrow F(C_3) \rightarrow F(C_2) \rightarrow F(C_1) \rightarrow F(\Sigma^{-1}C_3) \rightarrow \cdots$

for each triangle $C_1 \to C_2 \to C_3 \to \Sigma C_1$ with all three terms in add \mathscr{C} .

 Aim: Develop methods to establish the UCT and the representability of functors satisfying the above condition in our setup.

▶ to the setup ► to fin.hom.dim

Lemma

Let $h: \mathscr{T} \to \mathscr{M} od \mathscr{C}$ be as above.

Lemma

Let $h: \mathscr{T} \to \mathscr{M}od \mathscr{C}$ be as above. If proj. dim. $hX \leq 1$ and X is in the localizing class generated by \mathscr{C} ,

Lemma

Let $h: \mathscr{T} \to \mathscr{M}od \mathscr{C}$ be as above. If proj. dim. $hX \leq 1$ and X is in the localizing class generated by \mathscr{C} , then the UCT holds for all $Y \in \mathscr{T}$:

 $0 \to \mathsf{Ext}^1_{\mathscr{C}}(h\Sigma X, hY) \to \mathscr{T}(X, Y) \to \mathsf{Hom}_{\mathscr{C}}(hX, hY) \to 0.$

Lemma

Let $h: \mathscr{T} \to \mathscr{M}od \mathscr{C}$ be as above. If proj. dim. $hX \leq 1$ and X is in the localizing class generated by \mathscr{C} , then the UCT holds for all $Y \in \mathscr{T}$:

 $0 \to \mathsf{Ext}^1_{\mathscr{C}}(h\Sigma X, hY) \to \mathscr{T}(X, Y) \to \mathsf{Hom}_{\mathscr{C}}(hX, hY) \to 0.$

Proof.

• *h* restricts to Add $\mathscr{C} \xrightarrow{\simeq} \operatorname{Proj} \mathscr{C}$

Lemma

Let $h: \mathscr{T} \to \mathscr{M}od \mathscr{C}$ be as above. If proj. dim. $hX \leq 1$ and X is in the localizing class generated by \mathscr{C} , then the UCT holds for all $Y \in \mathscr{T}$:

 $0 \to \mathsf{Ext}^1_{\mathscr{C}}(h\Sigma X, hY) \to \mathscr{T}(X, Y) \to \mathsf{Hom}_{\mathscr{C}}(hX, hY) \to 0.$

Proof.

• *h* restricts to Add $\mathscr{C} \xrightarrow{\simeq}$ Proj \mathscr{C} (Yoneda and compactness).

Lemma

Let $h: \mathscr{T} \to \mathscr{M}od \mathscr{C}$ be as above. If proj. dim. $hX \leq 1$ and X is in the localizing class generated by \mathscr{C} , then the UCT holds for all $Y \in \mathscr{T}$:

 $0 \to \mathsf{Ext}^1_{\mathscr{C}}(h\Sigma X, hY) \to \mathscr{T}(X, Y) \to \mathsf{Hom}_{\mathscr{C}}(hX, hY) \to 0.$

Proof.

- *h* restricts to Add $\mathscr{C} \xrightarrow{\simeq}$ Proj \mathscr{C} (Yoneda and compactness).
- Thus, we have projective presentation $0 \rightarrow h(C_1) \stackrel{h(f)}{\rightarrow} h(C_0) \stackrel{h(p)}{\rightarrow} h(X) \rightarrow 0 \text{ in } \mathcal{M}od \, \mathscr{C} \text{ with}$ $C_1, C_0 \in \mathsf{Add} \, \mathscr{C} \subseteq \mathscr{T},$

Lemma

Let $h: \mathscr{T} \to \mathscr{M}od\,\mathscr{C}$ be as above. If proj. dim. $hX \leq 1$ and X is in the localizing class generated by \mathscr{C} , then the UCT holds for all $Y \in \mathscr{T}$:

 $0 \to \mathsf{Ext}^1_{\mathscr{C}}(h\Sigma X, hY) \to \mathscr{T}(X, Y) \to \mathsf{Hom}_{\mathscr{C}}(hX, hY) \to 0.$

Proof.

- *h* restricts to Add $\mathscr{C} \xrightarrow{\simeq}$ Proj \mathscr{C} (Yoneda and compactness).
- Thus, we have projective presentation $0 \rightarrow h(C_1) \stackrel{h(f)}{\rightarrow} h(C_0) \stackrel{h(p)}{\rightarrow} h(X) \rightarrow 0$ in $\mathscr{M}od \mathscr{C}$ with $C_1, C_0 \in \mathsf{Add} \mathscr{C} \subseteq \mathscr{T}$, and a corresponding triangle

$$C_1 \stackrel{f}{\longrightarrow} C_0 \stackrel{p}{\longrightarrow} X \longrightarrow \Sigma C_1.$$

Lemma

Let $h: \mathscr{T} \to \mathscr{M}od \mathscr{C}$ be as above. If proj. dim. $hX \leq 1$ and X is in the localizing class generated by \mathscr{C} , then the UCT holds for all $Y \in \mathscr{T}$:

 $0 \to \mathsf{Ext}^1_{\mathscr{C}}(h\Sigma X, hY) \to \mathscr{T}(X, Y) \to \mathsf{Hom}_{\mathscr{C}}(hX, hY) \to 0.$

Proof.

- *h* restricts to Add $\mathscr{C} \xrightarrow{\simeq}$ Proj \mathscr{C} (Yoneda and compactness).
- Thus, we have projective presentation $0 \rightarrow h(C_1) \stackrel{h(f)}{\rightarrow} h(C_0) \stackrel{h(p)}{\rightarrow} h(X) \rightarrow 0$ in $\mathscr{M}od \mathscr{C}$ with $C_1, C_0 \in \operatorname{Add} \mathscr{C} \subseteq \mathscr{T}$, and a corresponding triangle

$$C_1 \stackrel{f}{\longrightarrow} C_0 \stackrel{p}{\longrightarrow} X \longrightarrow \Sigma C_1.$$

• Now just apply $\mathscr{T}(-, Y)$ to this triangle.

Table of Contents

Gorenstein homological algebra

In all cases where we knew about a UCT,

In all cases where we knew about a UCT, it was because of the lemma

In all cases where we knew about a UCT, it was because of the lemma and the category $\mathcal{M}od\,\mathscr{C}$ was 1-Gorenstein.

In all cases where we knew about a UCT, it was because of the lemma and the category $\mathcal{M}od\,\mathscr{C}$ was 1-Gorenstein.

Definition (Enochs, Estrada, García-Rozas)

The category *Mod* C is Gorenstein if

So For any module X, proj. dim. $X < \infty$ iff inj. dim. $X < \infty$, and

In all cases where we knew about a UCT, it was because of the lemma and the category $\mathcal{M}od\,\mathscr{C}$ was 1-Gorenstein.

Definition (Enochs, Estrada, García-Rozas)

The category *Mod* C is Gorenstein if

- So For any module X, proj. dim. $X < \infty$ iff inj. dim. $X < \infty$, and
- Interpreter and injective dimensions are finite.

In all cases where we knew about a UCT, it was because of the lemma and the category $\mathcal{M}od\,\mathscr{C}$ was 1-Gorenstein.

Definition (Enochs, Estrada, García-Rozas)

The category *Mod* C is Gorenstein if

So For any module X, proj. dim. $X < \infty$ iff inj. dim. $X < \infty$, and

Interpretation of the second secon

Finitary global dimensions:

fin. proj. gl. dim. $\mathcal{M}od \mathscr{C} = \max\{\text{proj. dim. } X \mid \text{proj. dim. } X < \infty\}.$

In all cases where we knew about a UCT, it was because of the lemma and the category $\mathcal{M}od\,\mathscr{C}$ was 1-Gorenstein.

Definition (Enochs, Estrada, García-Rozas)

The category *Mod* C is Gorenstein if

So For any module X, proj. dim. $X < \infty$ iff inj. dim. $X < \infty$, and

Interpreter and injective dimensions are finite.

Finitary global dimensions:

fin. proj. gl. dim. $\mathcal{M}od \mathscr{C} = \max\{\text{proj. dim. } X \mid \text{proj. dim. } X < \infty\}.$

The finitary injective dimension fin. inj. gl. dim. $Mod \ \mathscr{C}$ is defined dually.

In all cases where we knew about a UCT, it was because of the lemma and the category $\mathcal{M}od\,\mathscr{C}$ was 1-Gorenstein.

Definition (Enochs, Estrada, García-Rozas)

The category Mod C is Gorenstein if

So For any module X, proj. dim. $X < \infty$ iff inj. dim. $X < \infty$, and

Interpreter and injective dimensions are finite.

Finitary global dimensions:

fin. proj. gl. dim. $\mathcal{M}od \mathscr{C} = \max\{\text{proj. dim. } X \mid \text{proj. dim. } X < \infty\}.$

The finitary injective dimension fin. inj. gl. dim. *Mod C* is defined dually.

Definition (Gorenstein dimension)

If Mod & is Gorenstein, the Gorenstein dimension is the value

 $n := \text{fin. proj. gl. dim. } \mathscr{M} od \mathscr{C} = \text{fin. inj. gl. dim. } \mathscr{M} od \mathscr{C}.$

Rings, for which *Mod R* is Gorenstein:

rings of finite global dimension (trivial),

- rings of finite global dimension (trivial),
- coordinate rings of various singularities,

- rings of finite global dimension (trivial),
- coordinate rings of various singularities,
- group rings such as $\mathbb{Z}G$, where $|G| < \infty$,

- rings of finite global dimension (trivial),
- coordinate rings of various singularities,
- group rings such as $\mathbb{Z}G$, where $|G| < \infty$,
- cluster tilted algebras,

- rings of finite global dimension (trivial),
- coordinate rings of various singularities,
- group rings such as $\mathbb{Z}G$, where $|G| < \infty$,
- cluster tilted algebras,
- 5 ...

Rings, for which *Mod R* is Gorenstein:

- rings of finite global dimension (trivial),
- coordinate rings of various singularities,
- group rings such as $\mathbb{Z}G$, where $|G| < \infty$,
- cluster tilted algebras,

5 ...

[Bass, '63]: On the ubiquity of Gorenstein rings.

• Recall the setup:

• Recall the setup: \mathcal{T} is triangulated with coproducts,

Recall the setup: *T* is triangulated with coproducts, *C* = Σ*C* is a small full subcategory of compact objects,

Recall the setup: *T* is triangulated with coproducts, *C* = Σ*C* is a small full subcategory of compact objects, and we study the functor

$$egin{aligned} h\colon \mathscr{T} & \longrightarrow \mathscr{M}\!od\,\mathscr{C} \ X & \longmapsto \mathscr{T}(-,X)|_{\mathscr{C}} \end{aligned}$$

Recall the setup: *T* is triangulated with coproducts, *C* = Σ*C* is a small full subcategory of compact objects, and we study the functor

 $\begin{array}{c}h\colon \mathscr{T} \longrightarrow \mathscr{M}\!\mathit{od}\,\mathscr{C}\\ X\longmapsto \mathscr{T}(-,X)|_{\mathscr{C}}\end{array}$

 As it turned out, all instances of UCT's which we were aware of followed once we could answer:

Questions

Q1 How can we tell that *Mod* C is 1-Gorenstein?

Recall the setup: *T* is triangulated with coproducts, *C* = Σ*C* is a small full subcategory of compact objects, and we study the functor

 $\begin{array}{c}h\colon \mathscr{T} \longrightarrow \mathscr{M}\!\mathit{od}\,\mathscr{C}\\ X\longmapsto \mathscr{T}(-,X)|_{\mathscr{C}}\end{array}$

 As it turned out, all instances of UCT's which we were aware of followed once we could answer:

Questions

Q1 How can we tell that *Mod C* is 1-Gorenstein? (This problem depends only on *C*, not the ambient category *T*).

Recall the setup: *T* is triangulated with coproducts, *C* = Σ*C* is a small full subcategory of compact objects, and we study the functor

 $\begin{array}{c}h\colon \mathscr{T} \longrightarrow \mathscr{M}\!\mathit{od}\,\mathscr{C}\\ X\longmapsto \mathscr{T}(-,X)|_{\mathscr{C}}\end{array}$

 As it turned out, all instances of UCT's which we were aware of followed once we could answer:

Questions

- Q1 How can we tell that *Mod C* is 1-Gorenstein? (This problem depends only on *C*, not the ambient category *T*).
- Q2 How can we make sure that im h is contained in FD \mathscr{C} ?

Recall the setup: *T* is triangulated with coproducts, *C* = Σ*C* is a small full subcategory of compact objects, and we study the functor

 $\begin{array}{c}h\colon \mathscr{T} \longrightarrow \mathscr{M} od\, \mathscr{C}\\ X\longmapsto \mathscr{T}(-,X)|_{\mathscr{C}}\end{array}$

 As it turned out, all instances of UCT's which we were aware of followed once we could answer:

Questions

- Q1 How can we tell that $\mathscr{M}od \mathscr{C}$ is 1-Gorenstein? (This problem depends only on \mathscr{C} , not the ambient category \mathscr{T}).
- Q2 How can we make sure that im h is contained in FD \mathscr{C} ? Here:

$$\mathsf{FD}\,\mathscr{C} = \{X \in \mathscr{M}od\,\mathscr{C} \mid \mathsf{proj.\,dim.\,} X < \infty\} \\ = \{X \in \mathscr{M}od\,\mathscr{C} \mid \mathsf{inj.\,dim.\,} X < \infty\}.$$

▶ to fin.hom.dim.

• In this case, we start with ${\mathscr T}$ compactly generated triangulated,

 In this case, we start with *𝔅* compactly generated triangulated, and put 𝔅 = 𝔅^{comp}

 In this case, we start with 𝒯 compactly generated triangulated, and put 𝒞 = 𝒯^{comp}

 $h \colon \mathscr{T} \longrightarrow \mathscr{M}\!\mathit{od} \ \mathscr{T}^{\mathsf{comp}}$

 In this case, we start with *T* compactly generated triangulated, and put *C* = *T*^{comp}

 $h: \mathscr{T} \longrightarrow \mathscr{M}od \ \mathscr{T}^{\mathsf{comp}}$

• Suppose that % has a countable skeleton,
In this case, we start with *T* compactly generated triangulated, and put *C* = *T*^{comp}

 $h: \mathscr{T} \longrightarrow \mathscr{M}od \ \mathscr{T}^{\mathsf{comp}}$

Suppose that *C* has a countable skeleton, e.g. *T* = D(*Mod R*) for a countable ring *R*

 In this case, we start with *𝔅* compactly generated triangulated, and put 𝔅 = 𝔅^{comp}

 $h: \mathscr{T} \longrightarrow \mathscr{M}od \ \mathscr{T}^{\mathsf{comp}}$

Suppose that 𝒞 has a countable skeleton, e.g. 𝒴 = D(ℳod R) for a countable ring R or 𝒴 is the stable homotopy category.

 In this case, we start with *𝔅* compactly generated triangulated, and put 𝔅 = 𝔅^{comp}

 $h: \mathscr{T} \longrightarrow \mathscr{M}od \ \mathscr{T}^{\mathsf{comp}}$

Suppose that *C* has a countable skeleton, e.g. *T* = D(*Mod R*) for a countable ring *R* or *T* is the stable homotopy category.

Theorem (Osofsky, Simson)

If \mathscr{D} is a triangulated category with $\leq \aleph_n$ morphisms, then $\mathscr{M}od \mathscr{D}$ has Gorenstein dimension $\leq n + 1$.

 In this case, we start with *𝔅* compactly generated triangulated, and put 𝔅 = 𝔅^{comp}

 $h: \mathscr{T} \longrightarrow \mathscr{M}od \ \mathscr{T}^{\mathsf{comp}}$

Suppose that *C* has a countable skeleton, e.g. *T* = D(*Mod R*) for a countable ring *R* or *T* is the stable homotopy category.

Theorem (Osofsky, Simson)

If \mathscr{D} is a triangulated category with $\leq \aleph_n$ morphisms, then $\mathscr{M}od \mathscr{D}$ has Gorenstein dimension $\leq n + 1$. In particular, $\mathscr{M}od \mathscr{T}^{comp}$ has Gorenstein dimension ≤ 1 .

 In this case, we start with *𝔅* compactly generated triangulated, and put 𝔅 = 𝔅^{comp}

 $h: \mathscr{T} \longrightarrow \mathscr{M}\!\mathit{od} \ \mathscr{T}^{\mathsf{comp}}$

Suppose that *C* has a countable skeleton, e.g. *T* = D(*Mod R*) for a countable ring *R* or *T* is the stable homotopy category.

Theorem (Osofsky, Simson)

If \mathscr{D} is a triangulated category with $\leq \aleph_n$ morphisms, then $\mathscr{M}od \mathscr{D}$ has Gorenstein dimension $\leq n + 1$. In particular, $\mathscr{M}od \mathscr{T}^{comp}$ has Gorenstein dimension ≤ 1 .

Theorem (Beligiannis, Krause, Simson)

The following are equivalent for $F: (\mathscr{T}^{comp})^{op} \to \mathscr{A}b$:

F is cohomological,

 In this case, we start with *𝔅* compactly generated triangulated, and put 𝔅 = 𝔅^{comp}

 $h: \mathscr{T} \longrightarrow \mathscr{M}od \ \mathscr{T}^{\mathsf{comp}}$

Suppose that *C* has a countable skeleton, e.g. *T* = D(*Mod R*) for a countable ring *R* or *T* is the stable homotopy category.

Theorem (Osofsky, Simson)

If \mathscr{D} is a triangulated category with $\leq \aleph_n$ morphisms, then $\mathscr{M}od \mathscr{D}$ has Gorenstein dimension $\leq n + 1$. In particular, $\mathscr{M}od \mathscr{T}^{comp}$ has Gorenstein dimension < 1.

Theorem (Beligiannis, Krause, Simson)

The following are equivalent for $F: (\mathscr{T}^{comp})^{op} \to \mathscr{A}b$:

- F is cohomological,
- Is flat in Mod T^{comp},

 In this case, we start with *𝔅* compactly generated triangulated, and put 𝔅 = 𝔅^{comp}

 $h: \mathscr{T} \longrightarrow \mathscr{M}\!\mathit{od} \ \mathscr{T}^{\mathsf{comp}}$

Suppose that *C* has a countable skeleton, e.g. *T* = D(*Mod R*) for a countable ring *R* or *T* is the stable homotopy category.

Theorem (Osofsky, Simson)

If \mathscr{D} is a triangulated category with $\leq \aleph_n$ morphisms, then $\mathscr{M}od \mathscr{D}$ has Gorenstein dimension $\leq n + 1$. In particular, $\mathscr{M}od \mathscr{T}^{comp}$ has Gorenstein dimension < 1.

Theorem (Beligiannis, Krause, Simson)

The following are equivalent for $F: (\mathscr{T}^{comp})^{op} \to \mathscr{A}b$:

- F is cohomological,
- F is flat in Mod T^{comp},
- proj. dim. $F \leq 1$.

• Aim: To answer Q2:

 Aim: To answer Q2: How can we make sure that the essential image of h: *T* → *Mod C* is contained in FD *C*?

- Aim: To answer Q2: How can we make sure that the essential image of h: *T* → *Mod C* is contained in FD *C*?
- If *Mod* C is Gorenstein, we have two complete hereditary cotorsion pairs:

 $(\operatorname{\mathsf{GProj}}\nolimits \mathscr{C},\operatorname{\mathsf{FD}}\nolimits \mathscr{C})$ and $(\operatorname{\mathsf{FD}}\nolimits \mathscr{C},\operatorname{\mathsf{Glnj}}\nolimits \mathscr{C}).$

- Aim: To answer Q2: How can we make sure that the essential image of h: *T* → *Mod C* is contained in FD *C*?
- If *Mod C* is Gorenstein, we have two complete hereditary cotorsion pairs:

 $(\operatorname{GProj} \mathscr{C}, \operatorname{FD} \mathscr{C})$ and $(\operatorname{FD} \mathscr{C}, \operatorname{GInj} \mathscr{C}).$

• Here, GProj % is the category of Gorenstein projective modules.

- Aim: To answer Q2: How can we make sure that the essential image of h: *T* → *Mod C* is contained in FD *C*?
- If *Mod C* is Gorenstein, we have two complete hereditary cotorsion pairs:

 $(\operatorname{GProj} \mathscr{C}, \operatorname{FD} \mathscr{C})$ and $(\operatorname{FD} \mathscr{C}, \operatorname{Glnj} \mathscr{C})$.

 Here, GProj 𝒞 is the category of Gorenstein projective modules. Moreover, X ∈ Mod 𝒞 is Gorenstein projective iff X ≅ im d for an exact complex of projective modules

 $\cdots \to P_1 \to P_0 \xrightarrow{d} P^0 \to P^1 \to \cdots$

- Aim: To answer Q2: How can we make sure that the essential image of h: *T* → *Mod C* is contained in FD *C*?
- If *Mod C* is Gorenstein, we have two complete hereditary cotorsion pairs:

 $(\operatorname{GProj} \mathscr{C}, \operatorname{FD} \mathscr{C})$ and $(\operatorname{FD} \mathscr{C}, \operatorname{Glnj} \mathscr{C})$.

 Here, GProj 𝒞 is the category of Gorenstein projective modules. Moreover, X ∈ Mod 𝒞 is Gorenstein projective iff X ≅ im d for an exact complex of projective modules

 $\cdots \to P_1 \to P_0 \stackrel{d}{\to} P^0 \to P^1 \to \cdots$

● Fact: GProj 𝒞 is a Frobenius exact category,

- Aim: To answer Q2: How can we make sure that the essential image of h: *T* → *Mod C* is contained in FD *C*?
- If *Mod C* is Gorenstein, we have two complete hereditary cotorsion pairs:

 $(\operatorname{GProj} \mathscr{C}, \operatorname{FD} \mathscr{C})$ and $(\operatorname{FD} \mathscr{C}, \operatorname{Glnj} \mathscr{C})$.

Here, GProj ℰ is the category of Gorenstein projective modules.
Moreover, X ∈ Mod ℰ is Gorenstein projective iff X ≅ im d for an exact complex of projective modules

 $\cdots \to P_1 \to P_0 \xrightarrow{d} P^0 \to P^1 \to \cdots$

Fact: GProj 𝒞 is a Frobenius exact category, so

 $\underline{\mathsf{GProj}}\mathscr{C}:=\mathsf{GProj}\,\mathscr{C}/[\mathsf{Proj}\,\mathscr{C}]$

is a triangulated category.

- Aim: To answer Q2: How can we make sure that the essential image of h: *T* → *Mod C* is contained in FD *C*?
- If *Mod C* is Gorenstein, we have two complete hereditary cotorsion pairs:

 $(\operatorname{GProj} \mathscr{C}, \operatorname{FD} \mathscr{C})$ and $(\operatorname{FD} \mathscr{C}, \operatorname{Glnj} \mathscr{C})$.

Here, GProj ℰ is the category of Gorenstein projective modules.
Moreover, X ∈ Mod ℰ is Gorenstein projective iff X ≅ im d for an exact complex of projective modules

 $\cdots \to P_1 \to P_0 \xrightarrow{d} P^0 \to P^1 \to \cdots$

Fact: GProj 𝒞 is a Frobenius exact category, so

 $\underline{\mathsf{GProj}}\mathscr{C}:=\mathsf{GProj}\,\mathscr{C}/[\mathsf{Proj}\,\mathscr{C}]$

is a triangulated category.

• The situation with GInj &, Gorenstein injective modules, is dual.

There are two Quillen equivalent model structures on $\mathcal{M}od\,\mathscr{C}$ based on Gorenstein projective and Gorenstein injective modules.

There are two Quillen equivalent model structures on *Mod C* based on Gorenstein projective and Gorenstein injective modules. In particular

 $\underline{\operatorname{GProj}}\mathscr{C} \simeq \operatorname{\mathscr{M}od} \mathscr{C}[W^{-1}] \simeq \overline{\operatorname{GInj}}\mathscr{C}.$

There are two Quillen equivalent model structures on *Mod C* based on Gorenstein projective and Gorenstein injective modules. In particular

$$\underline{\mathsf{GProj}}\mathscr{C}\simeq \mathscr{M}od\,\mathscr{C}[W^{-1}]\simeq \overline{\mathsf{GInj}}\mathscr{C}.$$

Definition

The latter category is called the singularity category of \mathscr{C} .

There are two Quillen equivalent model structures on *Mod C* based on Gorenstein projective and Gorenstein injective modules. In particular

$$\underline{\mathsf{GProj}}\mathscr{C}\simeq \mathscr{M}od\,\mathscr{C}[W^{-1}]\simeq \overline{\mathsf{GInj}}\mathscr{C}.$$

Definition

The latter category is called the singularity category of \mathscr{C} . (Also: stable module category, stable derived category, ...)

There are two Quillen equivalent model structures on *Mod C* based on Gorenstein projective and Gorenstein injective modules. In particular

$$\underline{\mathsf{GProj}}\mathscr{C}\simeq \mathscr{M}od\,\mathscr{C}[W^{-1}]\simeq \overline{\mathsf{GInj}}\mathscr{C}.$$

Definition

The latter category is called the singularity category of \mathscr{C} . (Also: stable module category, stable derived category, ...)

Theorem

If Mod C is locally coherent

There are two Quillen equivalent model structures on *Mod C* based on Gorenstein projective and Gorenstein injective modules. In particular

 $\operatorname{\mathsf{GProj}} \mathscr{C} \simeq \operatorname{\mathscr{M}od} \mathscr{C}[W^{-1}] \simeq \overline{\operatorname{\mathsf{GInj}}} \mathscr{C}.$

Definition

The latter category is called the singularity category of \mathscr{C} . (Also: stable module category, stable derived category, ...)

Theorem

If $\mathscr{M}od\,\mathscr{C}$ is locally coherent (equivalently add \mathscr{C} has weak kernels)

There are two Quillen equivalent model structures on *Mod C* based on Gorenstein projective and Gorenstein injective modules. In particular

 $\underline{\operatorname{GProj}}\mathscr{C}\simeq \operatorname{\mathscr{M}od}\mathscr{C}[W^{-1}]\simeq \overline{\operatorname{GInj}}\mathscr{C}.$

Definition

The latter category is called the singularity category of \mathscr{C} . (Also: stable module category, stable derived category, ...)

Theorem

If $Mod \mathcal{C}$ is locally coherent (equivalently add \mathcal{C} has weak kernels) then GProj \mathcal{C} is compactly generated.

There are two Quillen equivalent model structures on *Mod C* based on Gorenstein projective and Gorenstein injective modules. In particular

 $\underline{\operatorname{GProj}}\mathscr{C}\simeq \operatorname{\mathscr{M}od}\mathscr{C}[W^{-1}]\simeq \overline{\operatorname{GInj}}\mathscr{C}.$

Definition

The latter category is called the singularity category of \mathscr{C} . (Also: stable module category, stable derived category, ...)

Theorem

If *Mod C* is locally coherent (equivalently add *C* has weak kernels) then <u>GProj</u>*C* is compactly generated. The compact objects are precisely those isomorphic to finitely presented Gorenstein projective modules.

Corollary

If Mod C is Gorenstein and locally coherent,

Corollary

If $Mod \mathscr{C}$ is Gorenstein and locally coherent, the following are equivalent for $X \in Mod \mathscr{C}$:

• proj. dim. $X < \infty$,

Corollary

If $Mod \mathscr{C}$ is Gorenstein and locally coherent, the following are equivalent for $X \in Mod \mathscr{C}$:

- proj. dim. $X < \infty$,
- Set $\mathsf{Ext}^1_{\mathscr{C}}(G,X) = 0$ for all $G \in \mathsf{GProj} \mathscr{C}$ finitely presented.

Corollary

If $Mod \mathscr{C}$ is Gorenstein and locally coherent, the following are equivalent for $X \in Mod \mathscr{C}$:

- proj. dim. $X < \infty$,
- Set $\mathsf{Ext}^1_{\mathscr{C}}(G,X) = 0$ for all $G \in \mathsf{GProj} \mathscr{C}$ finitely presented.
 - If $C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow \Sigma C_1$ triangle in \mathscr{T} with all terms in add \mathscr{C} ,

Corollary

If $Mod \mathscr{C}$ is Gorenstein and locally coherent, the following are equivalent for $X \in Mod \mathscr{C}$:

• proj. dim. $X < \infty$,

So $\operatorname{Ext}^{1}_{\mathscr{C}}(G,X) = 0$ for all $G \in \operatorname{GProj} \mathscr{C}$ finitely presented.

• If $C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow \Sigma C_1$ triangle in \mathscr{T} with all terms in add \mathscr{C} ,

 $\cdots \rightarrow h\Sigma^{-1}C_3 \rightarrow hC_1 \stackrel{d}{\rightarrow} hC_2 \rightarrow hC_3 \rightarrow h\Sigma C_1 \rightarrow \cdots$

is exact in Mod C,

Corollary

If $Mod \mathscr{C}$ is Gorenstein and locally coherent, the following are equivalent for $X \in Mod \mathscr{C}$:

• proj. dim. $X < \infty$,

So $\operatorname{Ext}^{1}_{\mathscr{C}}(G,X) = 0$ for all $G \in \operatorname{GProj} \mathscr{C}$ finitely presented.

• If $C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow \Sigma C_1$ triangle in \mathscr{T} with all terms in add \mathscr{C} ,

 $\cdots \rightarrow h\Sigma^{-1}C_3 \rightarrow hC_1 \xrightarrow{d} hC_2 \rightarrow hC_3 \rightarrow h\Sigma C_1 \rightarrow \cdots$

is exact in $Mod \mathscr{C}$, so $G := \operatorname{im} d$ is finitely presented Gor. proj.

Corollary

If $Mod \mathscr{C}$ is Gorenstein and locally coherent, the following are equivalent for $X \in Mod \mathscr{C}$:

• proj. dim. $X < \infty$,

So $\operatorname{Ext}^{1}_{\mathscr{C}}(G,X) = 0$ for all $G \in \operatorname{GProj} \mathscr{C}$ finitely presented.

• If $C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow \Sigma C_1$ triangle in \mathscr{T} with all terms in add \mathscr{C} ,

 $\cdots \rightarrow h\Sigma^{-1}C_3 \rightarrow hC_1 \stackrel{d}{\rightarrow} hC_2 \rightarrow hC_3 \rightarrow h\Sigma C_1 \rightarrow \cdots$

is exact in $\mathcal{M}od \mathscr{C}$, so $G := \operatorname{im} d$ is finitely presented Gor. proj. • Observation: Given $X : \mathscr{C}^{\operatorname{op}} \to \mathscr{A}b$,

Corollary

If $Mod \mathscr{C}$ is Gorenstein and locally coherent, the following are equivalent for $X \in Mod \mathscr{C}$:

• proj. dim. $X < \infty$,

So $\operatorname{Ext}^{1}_{\mathscr{C}}(G,X) = 0$ for all $G \in \operatorname{GProj} \mathscr{C}$ finitely presented.

• If $C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow \Sigma C_1$ triangle in \mathscr{T} with all terms in add \mathscr{C} ,

 $\cdots \rightarrow h\Sigma^{-1}C_3 \rightarrow hC_1 \xrightarrow{d} hC_2 \rightarrow hC_3 \rightarrow h\Sigma C_1 \rightarrow \cdots$

is exact in $\mathcal{M}od \mathscr{C}$, so $G := \operatorname{im} d$ is finitely presented Gor. proj. • Observation: Given $X : \mathscr{C}^{\operatorname{op}} \to \mathscr{A}b$, then $\operatorname{Ext}^{1}_{\mathscr{T}}(G, X) = 0$ iff

 $\cdots \to X(\Sigma C_1) \to X(C_3) \to X(C_2) \to X(C_1) \to X(\Sigma^{-1}C_3) \to \cdots$ is exact at $X(C_1)$.

Corollary

If $Mod \mathscr{C}$ is Gorenstein and locally coherent, the following are equivalent for $X \in Mod \mathscr{C}$:

• proj. dim. $X < \infty$,

So $\operatorname{Ext}^{1}_{\mathscr{C}}(G,X) = 0$ for all $G \in \operatorname{GProj} \mathscr{C}$ finitely presented.

• If $C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow \Sigma C_1$ triangle in \mathscr{T} with all terms in add \mathscr{C} ,

 $\cdots \rightarrow h\Sigma^{-1}C_3 \rightarrow hC_1 \xrightarrow{d} hC_2 \rightarrow hC_3 \rightarrow h\Sigma C_1 \rightarrow \cdots$

is exact in $\mathcal{M}od \,\mathscr{C}$, so $G := \operatorname{im} d$ is finitely presented Gor. proj. • Observation: Given $X : \mathscr{C}^{\operatorname{op}} \to \mathscr{A}b$, then $\operatorname{Ext}^{1}_{\mathscr{T}}(G, X) = 0$ iff

 $\cdots \rightarrow X(\Sigma C_1) \rightarrow X(C_3) \rightarrow X(C_2) \rightarrow X(C_1) \rightarrow X(\Sigma^{-1}C_3) \rightarrow \cdots$

is exact at $X(C_1)$.

• The latter is true for any X in the image of $h: \mathscr{T} \to \mathscr{M}od \mathscr{C}!$

Corollary

If $Mod \mathscr{C}$ is Gorenstein and locally coherent, the following are equivalent for $X \in Mod \mathscr{C}$:

• proj. dim. $X < \infty$,

Solution $\mathsf{Ext}^1_{\mathscr{C}}(G,X) = 0$ for all $G \in \mathsf{GProj}\,\mathscr{C}$ finitely presented.

• If $C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow \Sigma C_1$ triangle in \mathscr{T} with all terms in add \mathscr{C} ,

 $\cdots \rightarrow h\Sigma^{-1}C_3 \rightarrow hC_1 \xrightarrow{d} hC_2 \rightarrow hC_3 \rightarrow h\Sigma C_1 \rightarrow \cdots$

is exact in $\mathcal{M}od \mathscr{C}$, so $G := \operatorname{im} d$ is finitely presented Gor. proj.

• Observation: Given $X : \mathscr{C}^{op} \to \mathscr{A}b$, then $\operatorname{Ext}^{1}_{\mathscr{T}}(G, X) = 0$ iff

 $\cdots \rightarrow X(\Sigma C_1) \rightarrow X(C_3) \rightarrow X(C_2) \rightarrow X(C_1) \rightarrow X(\Sigma^{-1}C_3) \rightarrow \cdots$

is exact at $X(C_1)$.

- The latter is true for any X in the image of $h: \mathscr{T} \to \mathscr{M}od \mathscr{C}!$
- Thus, to answer Q2, it suffices to decide whether we have enough triangles in add \mathscr{C} .

to questions
to representability

Table of Contents

Universal coefficient theorems

Gorenstein homological algebra

Gorenstein closed subcategories

Theorem

Suppose that $\mathscr{C} = \Sigma \mathscr{C}$ is a set of compact objects in \mathscr{T} ,

Gorenstein closed subcategories

Theorem

Suppose that $\mathscr{C} = \Sigma \mathscr{C}$ is a set of compact objects in \mathscr{T} , and that $\mathscr{M}od \mathscr{C}$ is Gorenstein and locally coherent.
Theorem

Suppose that $\mathscr{C} = \Sigma \mathscr{C}$ is a set of compact objects in \mathscr{T} , and that $\mathscr{M}od \mathscr{C}$ is Gorenstein and locally coherent. Then TFAE:

Every finitely presented Gor. proj. C-module is a syzygy of a triangle with terms in add C.

Theorem

Suppose that $\mathscr{C} = \Sigma \mathscr{C}$ is a set of compact objects in \mathscr{T} , and that $\mathscr{M}od \mathscr{C}$ is Gorenstein and locally coherent. Then TFAE:

- Every finitely presented Gor. proj. C-module is a syzygy of a triangle with terms in add C.
- **2** Whenever $f: C_1 \to C_2$ is a map in add \mathscr{C} and im $h(f) \in \operatorname{GProj} \mathscr{C}$, then the cone of f belongs to add \mathscr{C} .

Theorem

Suppose that $\mathscr{C} = \Sigma \mathscr{C}$ is a set of compact objects in \mathscr{T} , and that $\mathscr{M}od \mathscr{C}$ is Gorenstein and locally coherent. Then TFAE:

- Every finitely presented Gor. proj. &-module is a syzygy of a triangle with terms in add &.
- **2** Whenever $f: C_1 \to C_2$ is a map in add \mathscr{C} and im $h(f) \in \operatorname{GProj} \mathscr{C}$, then the cone of f belongs to add \mathscr{C} .

Definition

A subcategory \mathscr{C} of \mathscr{T} above is called Gorenstein closed in \mathscr{T} .

Theorem

Suppose that $\mathscr{C} = \Sigma \mathscr{C}$ is a set of compact objects in \mathscr{T} , and that $\mathscr{M}od \mathscr{C}$ is Gorenstein and locally coherent. Then TFAE:

- Every finitely presented Gor. proj. &-module is a syzygy of a triangle with terms in add &.
- **2** Whenever $f: C_1 \to C_2$ is a map in add \mathscr{C} and im $h(f) \in \operatorname{GProj} \mathscr{C}$, then the cone of f belongs to add \mathscr{C} .

Definition

A subcategory \mathscr{C} of \mathscr{T} above is called Gorenstein closed in \mathscr{T} .

Corollary (Answer to Q2)

TFAE for % as in the theorem:

Theorem

Suppose that $\mathscr{C} = \Sigma \mathscr{C}$ is a set of compact objects in \mathscr{T} , and that $\mathscr{M}od \mathscr{C}$ is Gorenstein and locally coherent. Then TFAE:

- Every finitely presented Gor. proj. &-module is a syzygy of a triangle with terms in add &.
- **2** Whenever $f: C_1 \to C_2$ is a map in add \mathscr{C} and im $h(f) \in \operatorname{GProj} \mathscr{C}$, then the cone of f belongs to add \mathscr{C} .

Definition

A subcategory \mathscr{C} of \mathscr{T} above is called Gorenstein closed in \mathscr{T} .

Corollary (Answer to Q2)

TFAE for % as in the theorem:

- **2** The essential image of $h: \mathscr{T} \to \mathscr{M}od \mathscr{C}$ takes values in FD \mathscr{C} .

A general universal coefficient theorem

A general universal coefficient theorem

Theorem

Let $\mathscr{C} = \Sigma \mathscr{C}$ be a set of compact objects in \mathscr{T} such that $\mathscr{M}od \mathscr{C}$ is 1-Gorenstein

A general universal coefficient theorem

Theorem

Let $\mathscr{C} = \Sigma \mathscr{C}$ be a set of compact objects in \mathscr{T} such that $\mathscr{M}od \mathscr{C}$ is 1-Gorenstein and \mathscr{C} Gorenstein closed in \mathscr{T} .

Let $\mathscr{C} = \Sigma \mathscr{C}$ be a set of compact objects in \mathscr{T} such that $\mathscr{M}od \mathscr{C}$ is 1-Gorenstein and \mathscr{C} Gorenstein closed in \mathscr{T} . Then for each $X, Y \in \mathscr{T}$ with X in the localizing class generated by \mathscr{C} we have

 $0 \to \mathsf{Ext}^1_{\mathscr{C}}(h\Sigma X, hY) \to \mathscr{T}(X, Y) \to \mathsf{Hom}_{\mathscr{C}}(hX, hY) \to 0$

Let $\mathscr{C} = \Sigma \mathscr{C}$ be a set of compact objects in \mathscr{T} such that $\mathscr{M}od \mathscr{C}$ is 1-Gorenstein and \mathscr{C} Gorenstein closed in \mathscr{T} . Then for each $X, Y \in \mathscr{T}$ with X in the localizing class generated by \mathscr{C} we have

 $0 \to \mathsf{Ext}^1_{\mathscr{C}}(h\Sigma X, hY) \to \mathscr{T}(X, Y) \to \mathsf{Hom}_{\mathscr{C}}(hX, hY) \to 0$

Moreover, we have the following dichotomy for a C-module F:

Let $\mathscr{C} = \Sigma \mathscr{C}$ be a set of compact objects in \mathscr{T} such that $\mathscr{M}od \mathscr{C}$ is 1-Gorenstein and \mathscr{C} Gorenstein closed in \mathscr{T} . Then for each $X, Y \in \mathscr{T}$ with X in the localizing class generated by \mathscr{C} we have

 $0 \to \mathsf{Ext}^1_{\mathscr{C}}(h\Sigma X, hY) \to \mathscr{T}(X, Y) \to \mathsf{Hom}_{\mathscr{C}}(hX, hY) \to 0$

Moreover, we have the following dichotomy for a \mathscr{C} -module F:

either proj. dim. F ≤ 1 and F ≅ hX for some X in the localizing class generated by 𝒞,

Let $\mathscr{C} = \Sigma \mathscr{C}$ be a set of compact objects in \mathscr{T} such that $\mathscr{M}od \mathscr{C}$ is 1-Gorenstein and \mathscr{C} Gorenstein closed in \mathscr{T} . Then for each $X, Y \in \mathscr{T}$ with X in the localizing class generated by \mathscr{C} we have

 $0 \to \mathsf{Ext}^1_{\mathscr{C}}(h\Sigma X, hY) \to \mathscr{T}(X, Y) \to \mathsf{Hom}_{\mathscr{C}}(hX, hY) \to 0$

Moreover, we have the following dichotomy for a *C*-module F:

- either proj. dim. F ≤ 1 and F ≅ hX for some X in the localizing class generated by 𝒞,
- or proj. dim. $F = \infty$ and F is not of the form hX for any $X \in \mathcal{T}$.

• Kasparov's bivariant K-theory KK—a monoidal triangulated category with $\Sigma^2\cong id$

 Kasparov's bivariant *K*-theory KK—a monoidal triangulated category with Σ² ≅ id and for a C*-algebra X we have *K_i*(X) = KK(ΣⁱC, X).

- Kasparov's bivariant *K*-theory KK—a monoidal triangulated category with Σ² ≅ id and for a C*-algebra X we have K_i(X) = KK(ΣⁱC, X).
- More generally, one can consider variants (diagrams of C*-algebra)

- Kasparov's bivariant *K*-theory KK—a monoidal triangulated category with Σ² ≅ id and for a C*-algebra X we have K_i(X) = KK(ΣⁱC, X).
- More generally, one can consider variants (diagrams of C*-algebra)—equivariant K-theory KK^G, filtrated K-theory, ...

- Kasparov's bivariant *K*-theory KK—a monoidal triangulated category with Σ² ≅ id and for a C*-algebra X we have K_i(X) = KK(ΣⁱC, X).
- More generally, one can consider variants (diagrams of C*-algebra)—equivariant K-theory KK^G, filtrated K-theory, ...
- Various UCT's available in the literature (Rosenberg-Schochet, Dadarlat-Loring, Meyer-Nest, Köhler, ...).

- Kasparov's bivariant *K*-theory KK—a monoidal triangulated category with Σ² ≅ id and for a C*-algebra X we have K_i(X) = KK(ΣⁱC, X).
- More generally, one can consider variants (diagrams of C*-algebra)—equivariant K-theory KK^G, filtrated K-theory, ...
- Various UCT's available in the literature (Rosenberg-Schochet, Dadarlat-Loring, Meyer-Nest, Köhler, ...).
- Technical nuance:

- Kasparov's bivariant *K*-theory KK—a monoidal triangulated category with Σ² ≅ id and for a C*-algebra X we have K_i(X) = KK(ΣⁱC, X).
- More generally, one can consider variants (diagrams of C*-algebra)—equivariant K-theory KK^G, filtrated K-theory, ...
- Various UCT's available in the literature (Rosenberg-Schochet, Dadarlat-Loring, Meyer-Nest, Köhler, ...).
- Technical nuance: KK[?] has only countable coproducts (all C*-algebras are separable).

- Kasparov's bivariant *K*-theory KK—a monoidal triangulated category with Σ² ≅ id and for a C*-algebra X we have K_i(X) = KK(ΣⁱC, X).
- More generally, one can consider variants (diagrams of C*-algebra)—equivariant K-theory KK^G, filtrated K-theory, ...
- Various UCT's available in the literature (Rosenberg-Schochet, Dadarlat-Loring, Meyer-Nest, Köhler, ...).
- Technical nuance: KK[?] has only countable coproducts (all C*-algebras are separable). So one needs a modification of the previous theory which works "below ℵ₁".

C(p)-equivariant KK-theory

Example

 $\mathscr{T} = \mathsf{KK}^{\mathcal{C}(p)}$ ($\mathcal{C}(p)$ = cyclic group of prime order) contains a 1-Gorenstein and Gorenstein closed subcategory generated by the following quiver

