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General setup

Let T be a triangulated category with coproducts,

e.g.
T = D(ModR) for a ring R or T is the stable homotopy
category.
Denote by T comp ⊆ T the full subcategory of compact objects
(C ∈ T is compact if T (C,−) : T → Ab preserves coproducts).
Let C ⊆ T comp be a full subcategory such that ΣC = C .
Important: C is not required to be a triangulated subcategory.
Recall: If C is a small preadditive category, then a C -module is a
an additive functor C op → Ab.
Given the data above, we have a the restricted Yoneda functor

h : T −→ModC

X 7−→ T (−,X )|C

I.e. h maps C ∈ C to T (C,X ).
Question: How much do we learn about T from ModC ?

to representability
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4/20 Jan Št’ovı́ček arXiv:1510.00426, Gorenstein and UCT



General setup

Let T be a triangulated category with coproducts, e.g.
T = D(ModR) for a ring R or T is the stable homotopy
category.
Denote by T comp ⊆ T the full subcategory of compact objects
(C ∈ T is compact if T (C,−) : T → Ab preserves coproducts).
Let C ⊆ T comp be a full subcategory such that ΣC = C .
Important: C is not required to be a triangulated subcategory.
Recall: If C is a small preadditive category, then a C -module is a
an additive functor C op → Ab.
Given the data above, we have a the restricted Yoneda functor

h : T −→ModC

X 7−→ T (−,X )|C

I.e. h maps C ∈ C to T (C,X ).
Question: How much do we learn about T from ModC ?

to representability
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Universal coefficient theorems

In general, we only get an Adams-type spectral sequence,

but in
some cases, we can do better.
One might hope for h : T →ModC being an equivalence, but
then T is semisimple. Hence this is not a very interesting case.
The next easiest case is when a so-called Universal coefficient
theorem holds—we have a canonical short exact sequence

0→ Ext1C (hΣX ,hY )→ T (X ,Y )→ HomC (hX ,hY )→ 0

for all (or just some) pairs X ,Y ∈ T .

Example

Let R be a right hereditary ring, T = D(ModR), and
C = {ΣnR | n ∈ Z}. Then h is the cohomology functor

H∗ : D(ModR) −→Mod ZR,

a UCT holds for each pair X ,Y ∈ T , and H∗ reflects isomorphisms.
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Representability of functors

The UCT’s are closely related to representability of functors
C op → Ab.

If the UCT holds for X ,Y ∈ T , then every transformation

η : T (−,X )|C → T (−,Y )|C

is equal to T (−, f )|C for some (non-unique) f : X → Y .
We can also ask what the essential image of h : T →ModC is,
i.e. which functors F : C op → Ab are isomorphic to some
T (−,X )|C . Non-trivial necessary condition:

· · · → F (ΣC1)→ F (C3)→ F (C2)→ F (C1)→ F (Σ−1C3)→ · · ·

for each triangle C1 → C2 → C3 → ΣC1 with all three terms in
add C .
Aim: Develop methods to establish the UCT and the
representability of functors satisfying the above condition in our
setup.

to the setup to fin.hom.dim
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The role of low projective dimension

Lemma
Let h : T →ModC be as above.

If proj.dim.hX ≤ 1 and X is in the
localizing class generated by C , then the UCT holds for all Y ∈ T :

0→ Ext1C (hΣX ,hY )→ T (X ,Y )→ HomC (hX ,hY )→ 0.

Proof.

h restricts to Add C
'−→ Proj C (Yoneda and compactness).

Thus, we have projective presentation

0→ h(C1)
h(f )→ h(C0)

h(p)→ h(X )→ 0 in ModC with
C1,C0 ∈ Add C ⊆ T , and a corresponding triangle

C1
f−→ C0

p−→ X −→ ΣC1.

Now just apply T (−,Y ) to this triangle.
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8/20 Jan Št’ovı́ček arXiv:1510.00426, Gorenstein and UCT



Gorenstein categories
In all cases where we knew about a UCT,

it was because of the
lemma and the category ModC was 1-Gorenstein.

Definition (Enochs, Estrada, Garcı́a-Rozas)

The category ModC is Gorenstein if
1 For any module X , proj.dim.X <∞ iff inj.dim.X <∞, and
2 The finitary projective and injective dimensions are finite.

Finitary global dimensions:

fin.proj.gl.dim.ModC = max{proj.dim.X | proj.dim.X <∞}.

The finitary injective dimension fin. inj.gl.dim.ModC is defined dually.

Definition (Gorenstein dimension)

If ModC is Gorenstein, the Gorenstein dimension is the value

n := fin.proj.gl.dim.ModC = fin. inj.gl.dim.ModC .
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Gorenstein categories—examples

Examples

Rings, for which ModR is Gorenstein:
1 rings of finite global dimension (trivial),

2 coordinate rings of various singularities,
3 group rings such as ZG, where |G| <∞,
4 cluster tilted algebras,
5 . . .

[Bass, ’63]: On the ubiquity of Gorenstein rings.

10/20 Jan Št’ovı́ček arXiv:1510.00426, Gorenstein and UCT



Gorenstein categories—examples

Examples

Rings, for which ModR is Gorenstein:
1 rings of finite global dimension (trivial),
2 coordinate rings of various singularities,

3 group rings such as ZG, where |G| <∞,
4 cluster tilted algebras,
5 . . .

[Bass, ’63]: On the ubiquity of Gorenstein rings.
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UCT’s and representability revisited

Recall the setup:

T is triangulated with coproducts, C = ΣC is a
small full subcategory of compact objects, and we study the
functor

h : T −→ModC

X 7−→ T (−,X )|C
As it turned out, all instances of UCT’s which we were aware of
followed once we could answer:

Questions
Q1 How can we tell that ModC is 1-Gorenstein? (This problem

depends only on C , not the ambient category T ).
Q2 How can we make sure that im h is contained in FD C ? Here:

FD C = {X ∈ModC | proj.dim.X <∞}
= {X ∈ModC | inj.dim.X <∞}.

to fin.hom.dim.
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Example: Brown-Adams-Neeman representability

In this case, we start with T compactly generated triangulated,

and put C = T comp

h : T −→ModT comp

Suppose that C has a countable skeleton, e.g. T = D(ModR)
for a countable ring R or T is the stable homotopy category.

Theorem (Osofsky, Simson)

If D is a triangulated category with ≤ ℵn morphisms, then ModD has
Gorenstein dimension ≤ n + 1.
In particular, ModT comp has Gorenstein dimension ≤ 1.

Theorem (Beligiannis, Krause, Simson)

The following are equivalent for F : (T comp)op → Ab:
1 F is cohomological,
2 F is flat in ModT comp,
3 proj.dim.F ≤ 1.
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Gorenstein homological algebra

Aim: To answer Q2:

How can we make sure that the essential
image of h : T →ModC is contained in FD C ?
If ModC is Gorenstein, we have two complete hereditary
cotorsion pairs:

(GProj C ,FD C ) and (FD C ,GInj C ).

Here, GProj C is the category of Gorenstein projective modules.
Moreover, X ∈ModC is Gorenstein projective iff X ∼= im d for an
exact complex of projective modules

· · · → P1 → P0
d→ P0 → P1 → · · ·

Fact: GProj C is a Frobenius exact category, so

GProjC := GProj C /[Proj C ]

is a triangulated category.
The situation with GInj C , Gorenstein injective modules, is dual.
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13/20 Jan Št’ovı́ček arXiv:1510.00426, Gorenstein and UCT



Gorenstein homological algebra

Aim: To answer Q2: How can we make sure that the essential
image of h : T →ModC is contained in FD C ?
If ModC is Gorenstein, we have two complete hereditary
cotorsion pairs:

(GProj C ,FD C ) and (FD C ,GInj C ).

Here, GProj C is the category of Gorenstein projective modules.
Moreover, X ∈ModC is Gorenstein projective iff X ∼= im d for an
exact complex of projective modules

· · · → P1 → P0
d→ P0 → P1 → · · ·

Fact: GProj C is a Frobenius exact category, so

GProjC := GProj C /[Proj C ]

is a triangulated category.
The situation with GInj C , Gorenstein injective modules, is dual.
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The singularity category

Theorem (Hovey)

There are two Quillen equivalent model structures on ModC based
on Gorenstein projective and Gorenstein injective modules.

In particular
GProjC 'ModC [W−1] ' GInjC .

Definition
The latter category is called the singularity category of C .
(Also: stable module category, stable derived category, . . . )

Theorem
If ModC is locally coherent (equivalently add C has weak kernels)
then GProjC is compactly generated.
The compact objects are precisely those isomorphic to finitely
presented Gorenstein projective modules.
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Detecting of finite projective dimension

Corollary

If ModC is Gorenstein and locally coherent,

the following are
equivalent for X ∈ModC :

1 proj.dim.X <∞,
2 Ext1C (G,X ) = 0 for all G ∈ GProj C finitely presented.

If C1 → C2 → C3 → ΣC1 triangle in T with all terms in add C ,

· · · → hΣ−1C3 → hC1
d→ hC2 → hC3 → hΣC1 → · · ·

is exact in ModC , so G := im d is finitely presented Gor. proj.
Observation: Given X : C op → Ab, then Ext1T (G,X ) = 0 iff

· · · → X (ΣC1)→ X (C3)→ X (C2)→ X (C1)→ X (Σ−1C3)→ · · ·
is exact at X (C1).
The latter is true for any X in the image of h : T →ModC !
Thus, to answer Q2, it suffices to decide whether we have
enough triangles in add C .

to questions to representability
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Gorenstein closed subcategories

Theorem
Suppose that C = ΣC is a set of compact objects in T ,

and that
ModC is Gorenstein and locally coherent. Then TFAE:

1 Every finitely presented Gor. proj. C -module is a syzygy of a
triangle with terms in add C .

2 Whenever f : C1 → C2 is a map in add C and im h(f ) ∈ GProj C ,
then the cone of f belongs to add C .

Definition
A subcategory C of T above is called Gorenstein closed in T .

Corollary (Answer to Q2)

TFAE for C as in the theorem:
1 C is Gorenstein closed in T .
2 The essential image of h : T →ModC takes values in FD C .
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A general universal coefficient theorem

Theorem
Let C = ΣC be a set of compact objects in T such that

ModC is
1-Gorenstein and C Gorenstein closed in T .
Then for each X ,Y ∈ T with X in the localizing class generated by C
we have

0→ Ext1C (hΣX ,hY )→ T (X ,Y )→ HomC (hX ,hY )→ 0

Moreover, we have the following dichotomy for a C -module F :

either proj.dim.F ≤ 1 and F ∼= hX for some X in the localizing
class generated by C ,
or proj.dim.F =∞ and F is not of the form hX for any X ∈ T .
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Examples from bivariant K-theory of C*-algebras

Kasparov’s bivariant K -theory KK—a monoidal triangulated
category with Σ2 ∼= id

and for a C*-algebra X we have
Ki (X ) = KK(ΣiC,X ).
More generally, one can consider variants (diagrams of
C*-algebra)—equivariant K-theory KKG, filtrated K-theory, . . .
Various UCT’s available in the literature (Rosenberg-Schochet,
Dadarlat-Loring, Meyer-Nest, Köhler, . . . ).
Technical nuance: KK? has only countable coproducts (all
C*-algebras are separable). So one needs a modification of the
previous theory which works “below ℵ1”.
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C(p)-equivariant KK-theory

Example

T = KKC(p) (C(p) = cyclic group of prime order) contains a
1-Gorenstein and Gorenstein closed subcategory generated by the
following quiver

A0
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2α0||

0t0
��
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oo
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RR
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