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@ Let .7 be a triangulated category with coproducts, e.g.
7 = D(#od R) for aring R or 7 is the stable homotopy
category.

@ Denote by .7¢°™P C 7 the full subcategory of compact objects
(C € 7 is compactif 7(C,—): 7 — /b preserves coproducts).

@ Let ¥ C .7°°MP be a full subcategory such that ¥% = %.
Important: ¥ is not required to be a triangulated subcategory.

@ Recall: If ¥ is a small preadditive category, then a ¥-module is a
an additive functor ¥°° — .

@ Given the data above, we have a the restricted Yoneda functor
h:  — MHod€
X— T(—, X)|¢

l.e. hmaps C € ¥ to 7(C, X).
@ Question: How much do we learn about .7 from .#od € ?

» to representability
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@ In general, we only get an Adams-type spectral sequence, but in
some cases, we can do better.

@ One might hope for h: .7 — .#0od % being an equivalence, but
then 7 is semisimple. Hence this is not a very interesting case.

@ The next easiest case is when a so-called Universal coefficient
theorem holds—we have a canonical short exact sequence

0 — ExtL.(hTX, hY) — F(X,Y) — Homg(hX, hY) — 0

for all (or just some) pairs X, Y € 7.

Let R be a right hereditary ring, 7 = D(.#0od R), and
% ={X"R | ne€Z}. Then his the cohomology functor

H*: D(.#od R) — .#od”R,

a UCT holds for each pair X, Y € 7, and H* reflects isomorphisms.

5/20 Jan Stovigek arXiv:1510.00426, Gorenstein and UCT



Representability of functors

@ The UCT’s are closely related to representability of functors
EP — .

6/20 Jan Stovitek arXiv:1510.00426, Gorenstein and UCT



Representability of functors

@ The UCT’s are closely related to representability of functors
EP — .
@ If the UCT holds for X, Y € .7,

6/20 Jan Stovitek arXiv:1510.00426, Gorenstein and UCT



Representability of functors

@ The UCT’s are closely related to representability of functors
EP — .
@ If the UCT holds for X, Y € .7, then every transformation

n: T (= X)le = T(=Y)le

is equal to .7 (—, f)|« for some (non-unique) f: X — Y.

6/20 Jan Stovitek arXiv:1510.00426, Gorenstein and UCT



Representability of functors

@ The UCT’s are closely related to representability of functors
EP — .
@ If the UCT holds for X, Y € .7, then every transformation
n: I (= X)le = T (=, Y)le

is equal to .7 (—, f)|« for some (non-unique) f: X — Y.
@ We can also ask what the essential image of h: .7 — #od € s,

6/20 Jan Stovitek arXiv:1510.00426, Gorenstein and UCT



Representability of functors

@ The UCT’s are closely related to representability of functors
EP — .
@ If the UCT holds for X, Y € .7, then every transformation

n: T (= X)le = T(=Y)le

is equal to .7 (—, f)|« for some (non-unique) f: X — Y.

@ We can also ask what the essential image of h: .7 — #od € s,
i.e. which functors F: ¥°° — &b are isomorphic to some
T (= X)le-

6/20 Jan Stovitek arXiv:1510.00426, Gorenstein and UCT



Representability of functors

@ The UCT’s are closely related to representability of functors
EP — .
@ If the UCT holds for X, Y € .7, then every transformation

n: T (= X)le = T(=Y)le

is equal to .7 (—, f)|« for some (non-unique) f: X — Y.

@ We can also ask what the essential image of h: .7 — #od € s,
i.e. which functors F: ¥°° — &b are isomorphic to some
T (—, X)|«. Non-trivial necessary condition:

6/20 Jan Stovitek arXiv:1510.00426, Gorenstein and UCT



Representability of functors

@ The UCT’s are closely related to representability of functors
EP — .
@ If the UCT holds for X, Y € .7, then every transformation

n: T (= X)le = T(=Y)le

is equal to .7 (—, f)|« for some (non-unique) f: X — Y.

@ We can also ask what the essential image of h: .7 — #od € s,
i.e. which functors F: ¥°° — &b are isomorphic to some
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@ The UCT’s are closely related to representability of functors
EP — .
@ If the UCT holds for X, Y € .7, then every transformation

n: T (= X)le = T(=Y)le

is equal to .7 (—, f)|« for some (non-unique) f: X — Y.

@ We can also ask what the essential image of h: .7 — #od € s,
i.e. which functors F: ¥°° — &b are isomorphic to some
(-, X)|«. Non-trivial necessary condition:

- = F(XCy) = F(C3) = F(C2) = F(Cy) = F(X7'C3) — - -~
for each triangle C; — C> — C; — Y. C; with all three terms in

add@.

@ Aim: Develop methods to establish the UCT and the
representability of functors satisfying the above condition in our
setup.
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| A

Proof.
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Leth: 7 — #od% be as above. If proj.dim. hX < 1 and X is in the
localizing class generated by €, then the UCT holds forall Y € 7 :

0 — Ext'.(hEX, hY) — Z(X, Y) — Home(hX, hY) — 0.

@ hrestricts to Add ¢ — Proj% (Yoneda and compactness).
@ Thus, we have projective presentation

0 = h(C1) ™ h(Co) "8 h(X) = 0in .#0d % with
Ci,Co € Add ¥ C 7, and a corresponding triangle

C1—f>COL>X—>ZC1.

@ Now just apply 7 (—, Y) to this triangle. 0

v
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lemma and the category .#od ¢ was 1-Gorenstein.

Definition (Enochs, Estrada, Garcia-Rozas)
The category .#od ¢ is Gorenstein if

@ For any module X, proj.dim. X < o iff inj. dim. X < oo, and
@ The finitary projective and injective dimensions are finite.

Finitary global dimensions:

fin. proj. gl. dim. .#Zod ¢ = max{proj.dim. X | proj.dim. X < co}.

The finitary injective dimension fin. inj. gl. dim. .#Zod € is defined dually.

Definition (Gorenstein dimension)

If #od % is Gorenstein, the Gorenstein dimension is the value

n := fin. proj. gl. dim. .#Zod ¢ = fin. inj. gl. dim. .Zod € .

v
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Gorenstein categories—examples

Rings, for which .#od R is Gorenstein:
@ rings of finite global dimension (trivial),
@ coordinate rings of various singularities,
@ group rings such as ZG, where |G| < o,
© cluster tilted algebras,

[Bass, '63]: On the ubiquity of Gorenstein rings.
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@ Recall the setup: 7 is triangulated with coproducts, ¥ = ¥% is a
small full subcategory of compact objects, and we study the
functor

h:  — #Hod¥
X— T(—,X)|¢

@ As it turned out, all instances of UCT’s which we were aware of
followed once we could answer:

Questions

Q1 How can we tell that .Z0d € is 1-Gorenstein? (This problem
depends only on %, not the ambient category 7).

Q2 How can we make sure that im h is contained in FD €? Here:

FD% = {X € A#od ¥ | proj.dim. X < oo}
={X € Aod ¥ | inj.dim. X < co}.

11/20 Jan Stovicek arXiv:1510.00426, Gorenstein and UCT



Example: Brown-Adams-Neeman representability

@ In this case, we start with .7 compactly generated triangulated,

12/20 Jan Stovicek arXiv:1510.00426, Gorenstein and UCT



Example: Brown-Adams-Neeman representability

@ In this case, we start with .7 compactly generated triangulated,
and put ¥ = .7eome

12/20 Jan Stovicek arXiv:1510.00426, Gorenstein and UCT



Example: Brown-Adams-Neeman representability

@ In this case, we start with .7 compactly generated triangulated,
and put ¥ = .7eome

h: 7 — #od T°™

12/20 Jan Stovicek arXiv:1510.00426, Gorenstein and UCT



Example: Brown-Adams-Neeman representability

@ In this case, we start with .7 compactly generated triangulated,
and put ¥ = .7eome

h: T —s Hod TP
@ Suppose that ¢ has a countable skeleton,

12/20 Jan Stovicek arXiv:1510.00426, Gorenstein and UCT



Example: Brown-Adams-Neeman representability

@ In this case, we start with .7 compactly generated triangulated,
and put ¥ = .7eome

h: 7 — #od T°™

@ Suppose that ¢ has a countable skeleton, e.g. .7 = D(.Zod R)
for a countable ring R

12/20 Jan Stovicek arXiv:1510.00426, Gorenstein and UCT



Example: Brown-Adams-Neeman representability

@ In this case, we start with .7 compactly generated triangulated,
and put ¥ = 7eomp

h: 7 — #od T°™

@ Suppose that ¢ has a countable skeleton, e.g. .7 = D(.Zod R)
for a countable ring R or 7 is the stable homotopy category.

12/20 Jan Stovicek arXiv:1510.00426, Gorenstein and UCT



Example: Brown-Adams-Neeman representab

@ In this case, we start with .7 compactly generated triangulated,
and put ¥ = 7eomp

h: 7 — #od T°™

@ Suppose that ¢ has a countable skeleton, e.g. .7 = D(.Zod R)
for a countable ring R or 7 is the stable homotopy category.

Theorem (Osofsky, Simson)
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and put ¥ = 7eomp

h: 7 — #od T°™

@ Suppose that ¢ has a countable skeleton, e.g. .7 = D(.Zod R)
for a countable ring R or 7 is the stable homotopy category.

Theorem (Osofsky, Simson)

If 9 is a triangulated category with < X, morphisms, then .#od 2 has
Gorenstein dimension < n+ 1.

In particular, .#od 7 °°™ has Gorenstein dimension < 1.

Theorem (Beligiannis, Krause, Simson)

The following are equivalent for F: (™) — o/b:
@ F is cohomological,

Q F isflatin .#od T°°™,

© proj.dim. F < 1.

4
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Gorenstein homological algebra

@ Aim: To answer Q2: How can we make sure that the essential
image of h: .7 — .#od € is contained in FD €?

o If .#0d ¢ is Gorenstein, we have two complete hereditary
cotorsion pairs:

(GProj¢,FD%¥) and  (FD%,GInj%).

@ Here, GProj % is the category of Gorenstein projective modules.
Moreover, X € .#0od % is Gorenstein projective iff X =2 im d for an
exact complex of projective modules

s P PSP P
@ Fact: GProj % is a Frobenius exact category, so
GProj¢ := GProj € /[Proj %]

is a triangulated category.
@ The situation with GInj ¢, Gorenstein injective modules, is dual.
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The singularity category

Theorem (Hovey)

There are two Quillen equivalent model structures on .#od ¢ based
on Gorenstein projective and Gorenstein injective modules.
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The singularity category

Theorem (Hovey)

There are two Quillen equivalent model structures on .#od ¢ based
on Gorenstein projective and Gorenstein injective modules.
In particular

GProj¢ ~ Mod €|W~"] ~ GInj%.

Definition
The latter category is called the singularity category of €.
(Also: stable module category, stable derived category, .. .)

| A\

Theorem

If #od € is locally coherent (equivalently add ¢ has weak kernels)
then GProj%¢ is compactly generated.

The compact objects are precisely those isomorphic to finitely
presented Gorenstein projective modules.

\
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equivalent for X € .#od % :

@ proj.dim. X < oo,
(2] Extlg(G, X) =0 for all G € GProj ¢ finitely presented.

o If C; — G, — C3 — XC; triangle in .7 with all terms in add 7,

i 5 hE'C3 — hCy & hCy — hC3 — hECy — - -
is exact in .Zod €,
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@ Observation: Given X: 6P — &b, then Ext’,(G, X) = 0 iff

s = X(ZCy) = X(C3) = X(C2) = X(Cy) = X(Z7'C3) — -
is exact at X(Cy).

15/20 Jan Stovicek arXiv:1510.00426, Gorenstein and UCT



Detecting of finite projective dimension

If #od € is Gorenstein and locally coherent, the following are
equivalent for X € .#od % :

@ proj.dim. X < oo,
Q Extlg(G, X) =0 for all G € GProj ¢ finitely presented.

o If C; — G, — C3 — XC; triangle in .7 with all terms in add 7,
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is exact in .#Zod %, so G :=imd is finitely presented Gor. pro;.
@ Observation: Given X: 6P — &b, then Ext’,(G, X) = 0 iff

s = X(ZCy) = X(C3) = X(C2) = X(Cy) = X(Z7'C3) — -

is exact at X(Cy).
@ The latter is true for any X in the image of h: .9 — .#od €
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Detecting of finite projective dimension

If #od € is Gorenstein and locally coherent, the following are
equivalent for X € .#od % :

@ proj.dim. X < oo,
Q Extlg(G, X) =0 for all G € GProj ¢ finitely presented.

o If C; — G, — C3 — XC; triangle in .7 with all terms in add 7,
*)hzi1C3*>hC1 E)th*)th—)hZC1 —

is exact in .#Zod %, so G :=imd is finitely presented Gor. pro;.
@ Observation: Given X: 6P — &b, then Ext’,(G, X) = 0 iff

o= X(ZCy) = X(C3) = X(C2) = X(Cy) = X(X™'C3) — -

is exact at X(Cy).
@ The latter is true for any X in the image of h: .9 — .#od €
@ Thus, to answer Q2, it suffices to decide whether we have
enough triangles in add %
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Mod € is Gorenstein and locally coherent. Then TFAE:

@ Every finitely presented Gor. proj. ¢ -module is a syzygy of a
triangle with terms in add % .

@ Wheneverf: Cy — Cy is a map inadd % andim h(f) € GProj €,
then the cone of f belongs to add €.

Definition
A subcategory ¥ of .7 above is called Gorenstein closed in 7.

Corollary (Answer to Q2)
TFAE for € as in the theorem:

@ < is Gorenstein closed in 7 .
© The essential image of h: 7 — .#od ¢ takes values in FD €.
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Then for each X, Y € & with X in the localizing class generated by ¢
we have

0 — ExtL(hXX, hY) — Z(X, Y) — Homg(hX, hY) = 0
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A general universal coefficient theorem

Theorem

Let® = Y€ be a set of compact objects in 7 such that .#od € is
1-Gorenstein and ¢ Gorenstein closed in 7.

Then for each X, Y € & with X in the localizing class generated by ¢
we have

0 — ExtL(hZX,hY) — Z(X,Y) — Home(hX, hY) — 0
Moreover, we have the following dichotomy for a € -module F:

@ either proj.dim. F <1 and F = hX for some X in the localizing
class generated by ¢,

@ orproj.dim. F = co and F is not of the form hX forany X € 7.

y
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Examples from bivariant K-theory of C*-algebras

@ Kasparov’s bivariant K-theory KK—a monoidal triangulated
category with ¥2 = id
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Examples from bivariant K-theory of C*-algebr

@ Kasparov’s bivariant K-theory KK—a monoidal triangulated
category with 22 = id and for a C*-algebra X we have
Ki(X) = KK(X'C, X).

@ More generally, one can consider variants (diagrams of
C*-algebra)—equivariant K-theory KK, filtrated K-theory, ...

@ Various UCT's available in the literature (Rosenberg-Schochet,
Dadarlat-Loring, Meyer-Nest, Kéhler, .. .).

@ Technical nuance: KK’ has only countable coproducts (all

C*-algebras are separable). So one needs a modification of the
previous theory which works “below R4
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C(p)-equivariant KK-theory

T = KKCP) (C(p) = cyclic group of prime order) contains a
1-Gorenstein and Gorenstein closed subcategory generated by the
following quiver

A2 ZAZ
O =0 2 N
2b 2;\ Sooq /}:0a2 ol
ZA1<—ZAO7

oo \_)
Y15 oly
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