Abstract representation theory using Grothendieck derivators

Jan Šťovíček (joint with Moritz Groth)

Charles University in Prague

AMeGA + ECI Workshop Třešť, April 12th, 2014 Outline

Abstract representation theory

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

April 12, 2014 2 / 22

A (10) A (10) A (10)

Outline

Homotopy (co)limits

- 2 Grothendieck derivators
- 3 Stability

Problem

Given a category C and a class W or morphisms, understand $C[W^{-1}]$.

Examples

- C = Top (topological spaces), W = weak equivalences (morphisms inducing bijections on all homotopy groups).
- C = C(A), complexes over and abelian category A,
 W = {homology isomorphisms}.

< ロ > < 同 > < 回 > < 回 >

Problem

Given a category C and a class W or morphisms, understand $C[W^{-1}]$.

Examples

- C = Top (topological spaces), W = weak equivalences (morphisms inducing bijections on all homotopy groups).
- C = C(A), complexes over and abelian category A,
 W = {homology isomorphisms}.

< ロ > < 同 > < 回 > < 回 >

Problem

Given a category C and a class W or morphisms, understand $C[W^{-1}]$.

Examples

- C = Top (topological spaces), W = weak equivalences (morphisms inducing bijections on all homotopy groups).
- C = C(A), complexes over and abelian category A, W = {homology isomorphisms}.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problem

Given a category C and a class W or morphisms, understand $C[W^{-1}]$.

Examples

- C = Top (topological spaces), W = weak equivalences (morphisms inducing bijections on all homotopy groups).
- C = C(A), complexes over and abelian category A, W = {homology isomorphisms}.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problem

Given a category C and a class W or morphisms, understand $C[W^{-1}]$.

Examples

- C = Top (topological spaces), W = weak equivalences (morphisms inducing bijections on all homotopy groups).
- 2 C = C(A), complexes over and abelian category A, $W = \{\text{homology isomorphisms}\}.$

イロト イ団ト イヨト イヨト

Well known problem: $C[W^{-1}]$ often does not admit good categorical constructions.

Example

If $D(A) = C(A)[\{q.-iso\}^{-1}]$, then every monomorphism and every epimorphism splits. Therefore, there are not so many interesting limits or colimits.

Usual algebraic solution: Keep some of the information originally contained in C(A) as an additional structure to D(A) (triangulated structure, mapping cones).

A (10) A (10)

Well known problem: $C[W^{-1}]$ often does not admit good categorical constructions.

Example

If $D(A) = C(A)[\{q.-iso\}^{-1}]$, then every monomorphism and every epimorphism splits. Therefore, there are not so many interesting limits or colimits.

Usual algebraic solution: Keep some of the information originally contained in C(A) as an additional structure to D(A) (triangulated structure, mapping cones).

A (10) × A (10) × A (10)

Well known problem: $C[W^{-1}]$ often does not admit good categorical constructions.

Example

If $D(A) = C(A)[\{q.-iso\}^{-1}]$, then every monomorphism and every epimorphism splits. Therefore, there are not so many interesting limits or colimits.

Usual algebraic solution: Keep some of the information originally contained in C(A) as an additional structure to D(A) (triangulated structure, mapping cones).

< ロ > < 同 > < 回 > < 回 >

Well known problem: $C[W^{-1}]$ often does not admit good categorical constructions.

Example

If $D(A) = C(A)[\{q.-iso\}^{-1}]$, then every monomorphism and every epimorphism splits. Therefore, there are not so many interesting limits or colimits.

Usual algebraic solution: Keep some of the information originally contained in C(A) as an additional structure to D(A) (triangulated structure, mapping cones).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Well known problem: $C[W^{-1}]$ often does not admit good categorical constructions.

Example

If $D(A) = C(A)[\{q.-iso\}^{-1}]$, then every monomorphism and every epimorphism splits. Therefore, there are not so many interesting limits or colimits.

Usual algebraic solution: Keep some of the information originally contained in C(A) as an additional structure to D(A) (triangulated structure, mapping cones).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Well known problem: $C[W^{-1}]$ often does not admit good categorical constructions.

Example

If $D(A) = C(A)[\{q.-iso\}^{-1}]$, then every monomorphism and every epimorphism splits. Therefore, there are not so many interesting limits or colimits.

Usual algebraic solution: Keep some of the information originally contained in C(A) as an additional structure to D(A) (triangulated structure, mapping cones).

A (10) A (10)

Let again C be a category and W a class of morphism to invert,

abstract weak equivalences. C is usually quite well behaved in that it is complete and cocomplete.

Problem

Well known: Often one functorially choose f' which is initial in a suitable sense so that C' is homotopy invariant. This is always possible if (\mathcal{C}, W) has a structure of a Quillen model category. Classical cases:

- Cofiber sequences of pointed spaces in homotopy theory.
- 2 Mapping cones of complexes in algebra.

Let again C be a category and W a class of morphism to invert, abstract weak equivalences. C is usually quite well behaved in that it is complete and cocomplete.

Problem

Well known: Often one functorially choose f' which is initial in a suitable sense so that C' is homotopy invariant. This is always possible if (\mathcal{C}, W) has a structure of a Quillen model category. Classical cases:

- Cofiber sequences of pointed spaces in homotopy theory.
- 2 Mapping cones of complexes in algebra.

Let again C be a category and W a class of morphism to invert, abstract weak equivalences. C is usually quite well behaved in that it is complete and cocomplete.

Problem

Well known: Often one functorially choose f' which is initial in a suitable sense so that C' is homotopy invariant. This is always possible if (\mathcal{C}, W) has a structure of a Quillen model category. Classical cases:

- Cofiber sequences of pointed spaces in homotopy theory.
- 2 Mapping cones of complexes in algebra.

イロト 不得 トイヨト イヨト

Let again C be a category and W a class of morphism to invert, abstract weak equivalences. C is usually quite well behaved in that it is complete and cocomplete.

Well known: Often one functorially choose f' which is initial in a suitable sense so that C' is homotopy invariant. This is always possible if (\mathcal{C}, W) has a structure of a Quillen model category. Classical cases:

- Cofiber sequences of pointed spaces in homotopy theory.
- 2 Mapping cones of complexes in algebra.

Let again C be a category and W a class of morphism to invert, abstract weak equivalences. C is usually quite well behaved in that it is complete and cocomplete.

Well known: Often one functorially choose f' which is initial in a suitable sense so that C' is homotopy invariant. This is always possible if (\mathcal{C}, W) has a structure of a Quillen model category. Classical cases:

- Ocfiber sequences of pointed spaces in homotopy theory.
- 2 Mapping cones of complexes in algebra.

Let again C be a category and W a class of morphism to invert, abstract weak equivalences. C is usually quite well behaved in that it is complete and cocomplete.

Well known: Often one functorially choose f' which is initial in a suitable sense so that C' is homotopy invariant. This is always possible if (\mathcal{C}, W) has a structure of a Quillen model category. Classical cases:

- Cofiber sequences of pointed spaces in homotopy theory.
- 2 Mapping cones of complexes in algebra.

Let again C be a category and W a class of morphism to invert, abstract weak equivalences. C is usually quite well behaved in that it is complete and cocomplete.

Well known: Often one functorially choose f' which is initial in a suitable sense so that C' is homotopy invariant. This is always possible if (\mathcal{C}, W) has a structure of a Quillen model category. Classical cases:

Cofiber sequences of pointed spaces in homotopy theory.Mapping cones of complexes in algebra.

Let again C be a category and W a class of morphism to invert, abstract weak equivalences. C is usually quite well behaved in that it is complete and cocomplete.

Well known: Often one functorially choose f' which is initial in a suitable sense so that C' is homotopy invariant. This is always possible if (\mathcal{C}, W) has a structure of a Quillen model category. Classical cases:

- Cofiber sequences of pointed spaces in homotopy theory.
 - Mapping cones of complexes in algebra.

Let again C be a category and W a class of morphism to invert, abstract weak equivalences. C is usually quite well behaved in that it is complete and cocomplete.

Well known: Often one functorially choose f' which is initial in a suitable sense so that C' is homotopy invariant. This is always possible if (\mathcal{C}, W) has a structure of a Quillen model category. Classical cases:

- Cofiber sequences of pointed spaces in homotopy theory.
- Mapping cones of complexes in algebra.

• Denote by [n] the category generated by

 $0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \rightarrow n.$

• If (\mathcal{C}, W) is nice enough (model category), we have for I = [1]:

 $\mathcal{C}'[W_l^{-1}] \qquad \qquad \mathcal{C}[W^{-1}]$

$$(\mathcal{C}[W^{-1}])^{I}$$

 The functor diag₁ is far from being in equivalence. If k is a field and C = C(k), then diag₁ is essentially the homology functor

$$H_*\colon \mathsf{D}(k(\cdot\to\cdot))\longrightarrow \mathsf{Mod}^{\mathbb{Z}}k(\cdot\to\cdot).$$

• Denote by [n] the category generated by

 $0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \rightarrow n.$

• If (\mathcal{C}, W) is nice enough (model category), we have for I = [1]:

$$\mathcal{C}^{I}[W_{I}^{-1}] \qquad \qquad \mathcal{C}[W^{-1}]$$

$$(\mathcal{C}[W^{-1}])^{I}$$

 The functor diag₁ is far from being in equivalence. If k is a field and C = C(k), then diag₁ is essentially the homology functor

$$H_* \colon \mathsf{D}(k(\cdot \to \cdot)) \longrightarrow \mathsf{Mod}^{\mathbb{Z}}k(\cdot \to \cdot).$$

• Denote by [n] the category generated by

$$0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \rightarrow n.$$

• If (\mathcal{C}, W) is nice enough (model category), we have for I = [1]:

$$\mathcal{C}' \xrightarrow{\text{cone}} \mathcal{C}$$

$$\mathcal{C}^{I}[W_{I}^{-1}] \qquad \qquad \mathcal{C}[W^{-1}]$$

$$(\mathcal{C}[W^{-1}])^{I}$$

 The functor diag₁ is far from being in equivalence. If k is a field and C = C(k), then diag₁ is essentially the homology functor

$$H_* \colon \mathsf{D}(k(\cdot \to \cdot)) \longrightarrow \mathsf{Mod}^{\mathbb{Z}}k(\cdot \to \cdot).$$

• Denote by [n] the category generated by

$$0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \rightarrow n.$$

• If (\mathcal{C}, W) is nice enough (model category), we have for I = [1]:

$$(\mathcal{C}[W^{-1}])^{T}$$

 The functor diag₁ is far from being in equivalence. If k is a field and C = C(k), then diag₁ is essentially the homology functor

$$H_* \colon \mathsf{D}(k(\cdot \to \cdot)) \longrightarrow \mathsf{Mod}^{\mathbb{Z}}k(\cdot \to \cdot).$$

• Denote by [n] the category generated by

$$0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \rightarrow n$$
.

• If (\mathcal{C}, W) is nice enough (model category), we have for I = [1]:

 The functor diag₁ is far from being in equivalence. If k is a field and C = C(k), then diag₁ is essentially the homology functor

$$H_*\colon \mathsf{D}(k(\cdot\to\cdot))\longrightarrow \mathsf{Mod}^{\mathbb{Z}}k(\cdot\to\cdot).$$

• Denote by [n] the category generated by

$$0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \rightarrow n.$$

• If (\mathcal{C}, W) is nice enough (model category), we have for I = [1]:

 The functor diag₁ is far from being in equivalence. If k is a field and C = C(k), then diag₁ is essentially the homology functor

$$H_* \colon \mathsf{D}(k(\cdot \to \cdot)) \longrightarrow \mathsf{Mod}^{\mathbb{Z}}k(\cdot \to \cdot).$$

• Denote by [n] the category generated by

$$0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \rightarrow n.$$

• If (\mathcal{C}, W) is nice enough (model category), we have for I = [1]:

 The functor diag₁ is far from being in equivalence. If k is a field and C = C(k), then diag₁ is essentially the homology functor

$$H_* \colon \mathsf{D}(k(\cdot o \cdot)) \longrightarrow \mathsf{Mod}^{\mathbb{Z}} k(\cdot o \cdot).$$

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

• Denote by [n] the category generated by

$$0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \rightarrow n$$
.

• If (\mathcal{C}, W) is nice enough (model category), we have for I = [1]:

 The functor diag₁ is far from being in equivalence. If k is a field and C = C(k), then diag₁ is essentially the homology functor

$$H_*: \mathsf{D}(k(\cdot \to \cdot)) \longrightarrow \mathsf{Mod}^{\mathbb{Z}}k(\cdot \to \cdot)$$

• Denote by [n] the category generated by

$$0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \rightarrow n$$
.

• If (\mathcal{C}, W) is nice enough (model category), we have for I = [1]:

 The functor diag₁ is far from being in equivalence. If k is a field and C = C(k), then diag₁ is essentially the homology functor

$$H_* \colon \mathsf{D}(k(\cdot \to \cdot)) \longrightarrow \mathsf{Mod}^{\mathbb{Z}}k(\cdot \to \cdot).$$

• Let C be a cocomplete category and $I \in Cat$ a small category. Then we have

• We just derive the adjoint pair of functors!

where hocolim = Lcolim.

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

April 12, 2014 8 / 22

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Let C be a cocomplete category and $I \in Cat$ a small category. Then we have

• We just derive the adjoint pair of functors!

where hocolim = Lcolim.

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

April 12, 2014 8 / 22

• Let C be a cocomplete category and $I \in Cat$ a small category. Then we have

• We just derive the adjoint pair of functors!

where hocolim = Lcolim.

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

April 12, 2014 8 / 22

< ロ > < 同 > < 回 > < 回 >

• Let C be a cocomplete category and $I \in Cat$ a small category. Then we have

We just derive the adjoint pair of functors!

where hocolim = Lcolim.

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

April 12, 2014 8 / 22

< ロ > < 同 > < 回 > < 回 >
Expressing (co)limits abstractly

• Let C be a cocomplete category and $I \in Cat$ a small category. Then we have

We just derive the adjoint pair of functors!

where hocolim = Lcolim.

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

< ロ > < 同 > < 回 > < 回 >

Outline

Homotopy (co)limits

2 Grothendieck derivators

3 Stability

Abstract representation theory

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

April 12, 2014 9 / 22

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Idea (Grothendieck, Heller, others)

Given (C, W), the category of *I*-shaped diagrams in the homotopy category $C[W^{-1}]$ contains too little information. We need to remember $C^{I}[W_{I}^{-1}]$ instead, i.e. the homotopy category of *I*-shaped diagrams.

Definition

A prederivator is a strict 2-functor $\mathscr{D}: Cat^{op} \to CAT$:

A derivator is a prederivator satisfying certain axioms (to come) allowing for a well behaved calculus of homotopy Kan extensions.

イロト 不得 トイヨト イヨト

Idea (Grothendieck, Heller, others)

Given (C, W), the category of *I*-shaped diagrams in the homotopy category $C[W^{-1}]$ contains too little information. We need to remember $C^{I}[W_{I}^{-1}]$ instead, i.e. the homotopy category of *I*-shaped diagrams.

Definition

A prederivator is a strict 2-functor $\mathscr{D}: Cat^{op} \to CAT$:

A derivator is a prederivator satisfying certain axioms (to come) allowing for a well behaved calculus of homotopy Kan extensions.

イロト 不得 トイヨト イヨト

Idea (Grothendieck, Heller, others)

Given (\mathcal{C}, W) , the category of *I*-shaped diagrams in the homotopy category $\mathcal{C}[W^{-1}]$ contains too little information. We need to remember $\mathcal{C}^{I}[W_{I}^{-1}]$ instead, i.e. the homotopy category of *I*-shaped diagrams.

Definition

A prederivator is a strict 2-functor $\mathscr{D}: Cat^{op} \to CAT$:

A derivator is a prederivator satisfying certain axioms (to come) allowing for a well behaved calculus of homotopy Kan extensions.

Idea (Grothendieck, Heller, others)

Given (\mathcal{C}, W) , the category of *I*-shaped diagrams in the homotopy category $\mathcal{C}[W^{-1}]$ contains too little information. We need to remember $\mathcal{C}^{I}[W_{I}^{-1}]$ instead, i.e. the homotopy category of *I*-shaped diagrams.

Definition

A prederivator is a strict 2-functor $\mathscr{D}: Cat^{op} \to CAT$:

A derivator is a prederivator satisfying certain axioms (to come) allowing for a well behaved calculus of homotopy Kan extensions.

Idea (Grothendieck, Heller, others)

Given (\mathcal{C}, W) , the category of *I*-shaped diagrams in the homotopy category $\mathcal{C}[W^{-1}]$ contains too little information. We need to remember $\mathcal{C}^{I}[W_{l}^{-1}]$ instead, i.e. the homotopy category of *I*-shaped diagrams.

Definition

A prederivator is a strict 2-functor $\mathscr{D}: Cat^{op} \to CAT$:

A derivator is a prederivator satisfying certain axioms (to come) allowing for a well behaved calculus of homotopy Kan extensions.

Idea (Grothendieck, Heller, others)

Given (\mathcal{C}, W) , the category of *I*-shaped diagrams in the homotopy category $\mathcal{C}[W^{-1}]$ contains too little information. We need to remember $\mathcal{C}^{I}[W_{l}^{-1}]$ instead, i.e. the homotopy category of *I*-shaped diagrams.

Definition

A prederivator is a strict 2-functor $\mathscr{D}: Cat^{op} \to CAT$:

A derivator is a prederivator satisfying certain axioms (to come) allowing for a well behaved calculus of homotopy Kan extensions

Idea (Grothendieck, Heller, others)

Given (\mathcal{C}, W) , the category of *I*-shaped diagrams in the homotopy category $\mathcal{C}[W^{-1}]$ contains too little information. We need to remember $\mathcal{C}^{I}[W_{l}^{-1}]$ instead, i.e. the homotopy category of *I*-shaped diagrams.

Definition

A prederivator is a strict 2-functor $\mathscr{D}: Cat^{op} \to CAT$:

A derivator is a prederivator satisfying certain axioms (to come) allowing for a well behaved calculus of homotopy Kan extensions.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

(Der1) $\mathscr{D}(\coprod_{j} I_{j}) \xrightarrow{\sim} \prod_{j} \mathscr{D}(I_{j})$ canonically.

- (Der2) The diagram functor diag: $\mathcal{D}(I) \to \mathcal{D}(*)^{I}$ reflects isomorphisms (conservativity axiom).
- (Der3) Let $f: I \rightarrow J$ be a functor in *Cat*. Then the restriction functor f^* has both a left adjoint f_i and a right adjoint f_* :

- $f_{!} =$ (homotopy) left Kan extension,
- $f_* =$ (homotopy) right Kan extension.

If J = *, then $f^* = \text{const}$, and we get homotopy colimits/limits back.

(Der4) $f_!(X)_j \cong \text{hocolim}_{(f/j)} \text{ proj}^*(X)$ and $f_*(X)_j \cong \text{holim}_{(j/f)} \text{ proj}^*(X)$ canonically.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

(Der1) $\mathscr{D}(\coprod_i I_i) \xrightarrow{\sim} \prod_i \mathscr{D}(I_i)$ canonically.

(Der2) The diagram functor diag: $\mathscr{D}(I) \to \mathscr{D}(*)^{I}$ reflects isomorphisms (conservativity axiom).

• f_1 = (homotopy) left Kan extension,

• $f_* =$ (homotopy) right Kan extension.

BA 4 BA

(Der1) $\mathscr{D}(\coprod_j I_j) \xrightarrow{\sim} \prod_j \mathscr{D}(I_j)$ canonically.

- (Der2) The diagram functor diag: $\mathscr{D}(I) \to \mathscr{D}(*)^{I}$ reflects isomorphisms (conservativity axiom).
- (Der3) Let $f: I \rightarrow J$ be a functor in *Cat*. Then the restriction functor f^* has both a left adjoint f_1 and a right adjoint f_* :

- $f_{!} =$ (homotopy) left Kan extension,
- $f_* =$ (homotopy) right Kan extension.

If J = *, then $f^* = \text{const}$, and we get homotopy colimits/limits back.

(Der1) $\mathscr{D}(\coprod_j I_j) \xrightarrow{\sim} \prod_j \mathscr{D}(I_j)$ canonically.

- (Der2) The diagram functor diag: $\mathscr{D}(I) \to \mathscr{D}(*)^{I}$ reflects isomorphisms (conservativity axiom).
- (Der3) Let $f: I \rightarrow J$ be a functor in *Cat*. Then the restriction functor f^* has both a left adjoint f_1 and a right adjoint f_* :

• *f*_! = (homotopy) left Kan extension,

• $f_* =$ (homotopy) right Kan extension.

If J = *, then $f^* = \text{const}$, and we get homotopy colimits/limits back.

(Der1) $\mathscr{D}(\coprod_j I_j) \xrightarrow{\sim} \prod_j \mathscr{D}(I_j)$ canonically.

- (Der2) The diagram functor diag: $\mathscr{D}(I) \to \mathscr{D}(*)^{I}$ reflects isomorphisms (conservativity axiom).
- (Der3) Let $f: I \rightarrow J$ be a functor in *Cat*. Then the restriction functor f^* has both a left adjoint f_1 and a right adjoint f_* :

• $f_1 =$ (homotopy) left Kan extension,

• *f*_{*} = (homotopy) right Kan extension.

If J = *, then $f^* = \text{const}$, and we get homotopy colimits/limits back.

(Der1) $\mathscr{D}(\coprod_j I_j) \xrightarrow{\sim} \prod_j \mathscr{D}(I_j)$ canonically.

- (Der2) The diagram functor diag: $\mathscr{D}(I) \to \mathscr{D}(*)^{I}$ reflects isomorphisms (conservativity axiom).
- (Der3) Let $f: I \rightarrow J$ be a functor in *Cat*. Then the restriction functor f^* has both a left adjoint f_1 and a right adjoint f_* :

*f*₁ = (homotopy) left Kan extension, *f*_{*} = (homotopy) right Kan extension.

If J = *, then $f^* = \text{const}$, and we get homotopy colimits/limits back.

(Der1) $\mathscr{D}(\coprod_j I_j) \xrightarrow{\sim} \prod_j \mathscr{D}(I_j)$ canonically.

- (Der2) The diagram functor diag: $\mathscr{D}(I) \to \mathscr{D}(*)^{I}$ reflects isomorphisms (conservativity axiom).
- (Der3) Let $f: I \rightarrow J$ be a functor in *Cat*. Then the restriction functor f^* has both a left adjoint f_1 and a right adjoint f_* :

- *f*_! = (homotopy) left Kan extension,
- $f_* =$ (homotopy) right Kan extension.

If J = *, then $f^* = \text{const}$, and we get homotopy colimits/limits back.

(Der4) $f_!(X)_j \cong \text{hocolim}_{(f/j)} \text{proj}^*(X)$ and $f_*(X)_j \cong \text{holim}_{(j/f)} \text{proj}^*(X)$ canonically.

(Der1) $\mathscr{D}(\coprod_j I_j) \xrightarrow{\sim} \prod_j \mathscr{D}(I_j)$ canonically.

- (Der2) The diagram functor diag: $\mathscr{D}(I) \to \mathscr{D}(*)^{I}$ reflects isomorphisms (conservativity axiom).
- (Der3) Let $f: I \rightarrow J$ be a functor in *Cat*. Then the restriction functor f^* has both a left adjoint f_i and a right adjoint f_* :

- *f*_! = (homotopy) left Kan extension,
- $f_* =$ (homotopy) right Kan extension.

If J = *, then $f^* = \text{const}$, and we get homotopy colimits/limits back.

(Der4)
$$f_!(X)_j \cong \text{hocolim}_{(f/j)} \text{proj}^*(X)$$
 and $f_*(X)_j \cong \text{holim}_{(j/f)} \text{proj}^*(X)$ canonically.

Let 𝒴 be the derivator of topological spaces, i.e. C = Top, W = weak equivalences, and 𝒴(I) = C^I[W_I⁻¹].

Then *V* is a universal derivator (Cisinski, Heller). Roughly speaking, given a derivator *D* and X ∈ *D*(*I*), there are canonical functors

$$^{``} - \otimes X'' \colon \mathscr{V}(J) o \mathscr{D}(I imes J), \quad \mathrm{pt.} \mapsto X.$$

• Even more holds. Every derivator is a module over \mathscr{V} :

 $\otimes \colon \mathscr{V} \times \mathscr{D} \longrightarrow \mathscr{D}$

(Cisinski, Heller).

• If COMB is the 2-category of combinatorial model categories and *QE* the class of Quilled equivalences, then

 $COMB[QE^{-1}]$

fully embeds into the 2-category of derivators with derivator adjunctions as 1-morphisms (Renaudin).

Jan Šťovíček (Charles University)

Let 𝒴 be the derivator of topological spaces, i.e. 𝔅 = 𝒯op, 𝒴 = weak equivalences, and 𝒴(𝒴) = 𝔅^𝑘[𝒴_𝑘⁻¹].

Then *V* is a universal derivator (Cisinski, Heller). Roughly speaking, given a derivator *D* and X ∈ *D*(*I*), there are canonical functors

$$"-\otimes X''\colon \mathscr{V}(J) o \mathscr{D}(I imes J), \quad \mathrm{pt.}\mapsto X.$$

• Even more holds. Every derivator is a module over \mathscr{V} :

 $\otimes \colon \mathscr{V} \times \mathscr{D} \longrightarrow \mathscr{D}$

(Cisinski, Heller).

• If COMB is the 2-category of combinatorial model categories and *QE* the class of Quilled equivalences, then

 $COMB[QE^{-1}]$

fully embeds into the 2-category of derivators with derivator adjunctions as 1-morphisms (Renaudin).

Jan Šťovíček (Charles University)

- Let 𝒴 be the derivator of topological spaces, i.e. 𝔅 = 𝒯op, 𝒴 = weak equivalences, and 𝒴(𝒴) = 𝔅^𝑘[𝒴_𝑘⁻¹].
- Then 𝒴 is a universal derivator (Cisinski, Heller). Roughly speaking, given a derivator 𝒷 and X ∈ 𝒷(I), there are canonical functors

$$"-\otimes X''\colon \mathscr{V}(J) o\mathscr{D}(I imes J),\quad \mathrm{pt.}\mapsto X.$$

• Even more holds. Every derivator is a module over \mathscr{V} :

 $\otimes \colon \mathscr{V} \times \mathscr{D} \longrightarrow \mathscr{D}$

(Cisinski, Heller).

• If COMB is the 2-category of combinatorial model categories and *QE* the class of Quilled equivalences, then

 $COMB[QE^{-1}]$

fully embeds into the 2-category of derivators with derivator adjunctions as 1-morphisms (Renaudin).

Jan Šťovíček (Charles University)

- Let 𝒴 be the derivator of topological spaces, i.e. 𝔅 = 𝒯op, 𝒴 = weak equivalences, and 𝒴(𝔅) = 𝔅^𝑘[𝑘_𝑘⁻¹].
- Then 𝒴 is a universal derivator (Cisinski, Heller). Roughly speaking, given a derivator 𝒴 and X ∈ 𝒴(I), there are canonical functors

$$U' - \otimes X'' \colon \mathscr{V}(J) \to \mathscr{D}(I \times J), \quad \mathrm{pt.} \mapsto X.$$

• Even more holds. Every derivator is a module over \mathscr{V} :

 $\otimes \colon \mathscr{V} \times \mathscr{D} \longrightarrow \mathscr{D}$

(Cisinski, Heller).

• If COMB is the 2-category of combinatorial model categories and *QE* the class of Quilled equivalences, then

 $COMB[QE^{-1}]$

fully embeds into the 2-category of derivators with derivator adjunctions as 1-morphisms (Renaudin).

Jan Šťovíček (Charles University)

- Let 𝒴 be the derivator of topological spaces, i.e. 𝔅 = 𝒯op, 𝒴 = weak equivalences, and 𝒴(𝔅) = 𝔅^𝑘[𝑘_𝑘⁻¹].
- Then 𝒴 is a universal derivator (Cisinski, Heller). Roughly speaking, given a derivator 𝒴 and X ∈ 𝒴(I), there are canonical functors

$$`` - \otimes X'' \colon \mathscr{V}(J) \to \mathscr{D}(I \times J), \quad \mathrm{pt.} \mapsto X.$$

• Even more holds. Every derivator is a module over \mathscr{V} :

 $\otimes \colon \mathscr{V} \times \mathscr{D} \longrightarrow \mathscr{D}$

(Cisinski, Heller).

• If COMB is the 2-category of combinatorial model categories and *QE* the class of Quilled equivalences, then

 $COMB[QE^{-1}]$

fully embeds into the 2-category of derivators with derivator adjunctions as 1-morphisms (Renaudin).

Jan Šťovíček (Charles University)

- Let 𝒴 be the derivator of topological spaces, i.e. 𝔅 = 𝒯op, 𝒴 = weak equivalences, and 𝒴(𝒴) = 𝔅^𝑘[𝒴_𝑘⁻¹].
- Then 𝒱 is a universal derivator (Cisinski, Heller). Roughly speaking, given a derivator 𝔅 and X ∈ 𝔅(I), there are canonical functors

$$`` - \otimes X'' \colon \mathscr{V}(J) \to \mathscr{D}(I \times J), \quad \mathrm{pt.} \mapsto X.$$

• Even more holds. Every derivator is a module over \mathscr{V} :

$$\otimes \colon \mathscr{V} \times \mathscr{D} \longrightarrow \mathscr{D}$$

(Cisinski, Heller).

• If COMB is the 2-category of combinatorial model categories and *QE* the class of Quilled equivalences, then

 $COMB[QE^{-1}]$

fully embeds into the 2-category of derivators with derivator adjunctions as 1-morphisms (Renaudin).

Jan Šťovíček (Charles University)

- Let 𝒴 be the derivator of topological spaces, i.e. 𝔅 = 𝒯op, 𝒴 = weak equivalences, and 𝒴(𝔅) = 𝔅^𝑘[𝑘_𝑘⁻¹].
- Then 𝒴 is a universal derivator (Cisinski, Heller). Roughly speaking, given a derivator 𝒴 and X ∈ 𝒴(I), there are canonical functors

$$``-\otimes X''\colon \mathscr{V}(J)\to \mathscr{D}(I\times J), \quad \text{pt.}\mapsto X.$$

• Even more holds. Every derivator is a module over \mathscr{V} :

 $\otimes \colon \mathscr{V} \times \mathscr{D} \longrightarrow \mathscr{D}$

(Cisinski, Heller).

• If COMB is the 2-category of combinatorial model categories and *QE* the class of Quilled equivalences, then

 $COMB[QE^{-1}]$

fully embeds into the 2-category of derivators with derivator adjunctions as 1-morphisms (Renaudin).

Jan Šťovíček (Charles University)

- Let 𝒴 be the derivator of topological spaces, i.e. 𝔅 = 𝒯op, 𝒴 = weak equivalences, and 𝒴(𝔅) = 𝔅^𝑘[𝑘_𝑘⁻¹].
- Then 𝒱 is a universal derivator (Cisinski, Heller). Roughly speaking, given a derivator 𝔅 and X ∈ 𝔅(I), there are canonical functors

$$\mathfrak{W}^{\prime\prime}-\otimes X^{\prime\prime}\colon \mathscr{V}(J) o \mathscr{D}(I imes J), \quad \mathrm{pt.}\mapsto X.$$

• Even more holds. Every derivator is a module over \mathscr{V} :

 $\otimes \colon \mathscr{V} \times \mathscr{D} \longrightarrow \mathscr{D}$

(Cisinski, Heller).

• If COMB is the 2-category of combinatorial model categories and *QE* the class of Quilled equivalences, then

 $COMB[QE^{-1}]$

fully embeds into the 2-category of derivators with derivator adjunctions as 1-morphisms (Renaudin).

Jan Šťovíček (Charles University)

- Let 𝒴 be the derivator of topological spaces, i.e. 𝔅 = 𝒯op, 𝒴 = weak equivalences, and 𝒴(𝒴) = 𝔅^𝑘[𝒴_𝑘⁻¹].
- Then 𝒴 is a universal derivator (Cisinski, Heller). Roughly speaking, given a derivator 𝒴 and X ∈ 𝒴(I), there are canonical functors

$$\mathfrak{W}^{\prime\prime}-\otimes X^{\prime\prime}\colon \mathscr{V}(J) o \mathscr{D}(I imes J), \quad \mathrm{pt.}\mapsto X.$$

• Even more holds. Every derivator is a module over \mathscr{V} :

 $\otimes \colon \mathscr{V} \times \mathscr{D} \longrightarrow \mathscr{D}$

(Cisinski, Heller).

• If COMB is the 2-category of combinatorial model categories and *QE* the class of Quilled equivalences, then

 $COMB[QE^{-1}]$

fully embeds into the 2-category of derivators with derivator adjunctions as 1-morphisms (Renaudin).

Jan Šťovíček (Charles University)

Outline

Homotopy (co)limits

2 Grothendieck derivators

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

April 12, 2014 13 / 22

э

A (10) A (10) A (10)

Definition

A derivator \mathscr{D} is pointed if the base category $\mathscr{D}(*)$ has a zero object (equivalently, each $\mathscr{D}(I)$ has a zero object).

Examples

- D_{Top*}, the homotopy derivator of pointed spaces. I.e. D_{Top*}(I) is the homotopy category of *I*-shaped diagrams of pointed topological spaces.
- ② \mathcal{D}_R for any ring *R*. Recall: $\mathcal{D}(I) = D(Mod R^I)$.

A (10) A (10) A (10)

Definition

A derivator \mathscr{D} is pointed if the base category $\mathscr{D}(*)$ has a zero object (equivalently, each $\mathscr{D}(I)$ has a zero object).

Examples

- D_{Top*}, the homotopy derivator of pointed spaces. I.e. D_{Top*}(I) is the homotopy category of *I*-shaped diagrams of pointed topological spaces.
- ② \mathcal{D}_R for any ring *R*. Recall: $\mathcal{D}(I) = D(Mod R^I)$.

< 回 > < 三 > < 三 >

Definition

A derivator \mathscr{D} is pointed if the base category $\mathscr{D}(*)$ has a zero object (equivalently, each $\mathscr{D}(I)$ has a zero object).

Examples

- D_{Top*}, the homotopy derivator of pointed spaces. I.e. D_{Top*}(I) is the homotopy category of *I*-shaped diagrams of pointed topological spaces.
- ② \mathcal{D}_R for any ring *R*. Recall: $\mathcal{D}(I) = D(Mod R^I)$.

A (10) A (10)

Definition

A derivator \mathscr{D} is pointed if the base category $\mathscr{D}(*)$ has a zero object (equivalently, each $\mathscr{D}(I)$ has a zero object).

Examples

D_{Top*}, the homotopy derivator of pointed spaces. I.e. D_{Top*}(I) is the homotopy category of *I*-shaped diagrams of pointed topological spaces.

② \mathcal{D}_R for any ring *R*. Recall: $\mathcal{D}(I) = D(Mod R^I)$.

A (10) A (10) A (10) A

Definition

A derivator \mathscr{D} is pointed if the base category $\mathscr{D}(*)$ has a zero object (equivalently, each $\mathscr{D}(I)$ has a zero object).

Examples

- D_{Top*}, the homotopy derivator of pointed spaces. I.e. D_{Top*}(I) is the homotopy category of *I*-shaped diagrams of pointed topological spaces.
- ② \mathcal{D}_R for any ring *R*. Recall: $\mathcal{D}(I) = D(Mod R^I)$.

- 4 週 ト 4 ヨ ト 4 ヨ ト -

Definition

A derivator \mathscr{D} is pointed if the base category $\mathscr{D}(*)$ has a zero object (equivalently, each $\mathscr{D}(I)$ has a zero object).

Examples

- D_{Top*}, the homotopy derivator of pointed spaces. I.e. D_{Top*}(I) is the homotopy category of *I*-shaped diagrams of pointed topological spaces.
- **2** \mathscr{D}_R for any ring *R*. Recall: $\mathscr{D}(I) = \mathsf{D}(\mathsf{Mod} R')$.

イロン イ理 とくほ とくほ とう

Definition

A derivator \mathscr{D} is pointed if the base category $\mathscr{D}(*)$ has a zero object (equivalently, each $\mathscr{D}(I)$ has a zero object).

Examples

- D_{Top*}, the homotopy derivator of pointed spaces. I.e. D_{Top*}(I) is the homotopy category of *I*-shaped diagrams of pointed topological spaces.
- **2** \mathscr{D}_R for any ring *R*. Recall: $\mathscr{D}(I) = \mathsf{D}(\mathsf{Mod} R^I)$.

イロン イ理 とく ヨン・

Suspension and loop functors

Let \mathcal{D} be a pointed derivator. Consider the functors in *Cat*:

Then we have functors:

In terms of diagrams, we have:

The loop functor $X \mapsto \Omega X$ is dual. We get an adjoint pair (Σ, Ω) .

Suspension and loop functors

Let \mathscr{D} be a pointed derivator. Consider the functors in Cat:

Then we have functors:

In terms of diagrams, we have:

The loop functor $X \mapsto \Omega X$ is dual. We get an adjoint pair (Σ, Ω) .
Let \mathscr{D} be a pointed derivator. Consider the functors in Cat:

Then we have functors:

In terms of diagrams, we have:

The loop functor $X \mapsto \Omega X$ is dual. We get an adjoint pair (Σ, Ω) .

Let \mathscr{D} be a pointed derivator. Consider the functors in Cat:

Then we have functors:

$$\mathscr{D}(*) \xrightarrow{00_*} \mathscr{D}(\ulcorner) \xrightarrow{i_{\vdash}} \mathscr{D}(\Box) \xrightarrow{11^*} \mathscr{D}(*).$$

In terms of diagrams, we have:

The loop functor $X \mapsto \Omega X$ is dual. We get an adjoint pair (Σ, Ω) .

3

Let \mathscr{D} be a pointed derivator. Consider the functors in Cat:

Then we have functors:

$$\mathscr{D}(*) \xrightarrow{00_*} \mathscr{D}(\ulcorner) \xrightarrow{i_{\vdash}} \mathscr{D}(\Box) \xrightarrow{11^*} \mathscr{D}(*).$$

In terms of diagrams, we have:

The loop functor $X \mapsto \Omega X$ is dual. We get an adjoint pair (Σ, Ω) .

く 同 ト く ヨ ト く ヨ ト 一

Let \mathscr{D} be a pointed derivator. Consider the functors in Cat:

Then we have functors:

$$\mathscr{D}(*) \xrightarrow{00_*} \mathscr{D}(\ulcorner) \xrightarrow{i_{\vdash}} \mathscr{D}(\Box) \xrightarrow{11^*} \mathscr{D}(*).$$

In terms of diagrams, we have:

The loop functor $X \mapsto \Omega X$ is dual. We get an adjoint pair (Σ, Ω) .

Definition

A pointed derivator \mathscr{D} is stable if (Σ, Ω) is a pair of equivalences.

Remark

Equivalently: pullbacks and pushouts coincide in $\mathscr{D}(\Box)$.

Examples

- The homotopy derivator \mathcal{D}_{Sp} of topological spectra.
- \mathcal{D}_R for any ring R.

3

Definition

A pointed derivator \mathscr{D} is stable if (Σ, Ω) is a pair of equivalences.

Remark

Equivalently: pullbacks and pushouts coincide in $\mathscr{D}(\Box)$.

Examples

- The homotopy derivator \mathcal{D}_{Sp} of topological spectra.
- \mathcal{D}_R for any ring R.

3

イロト 不得 トイヨト イヨト

Definition

A pointed derivator \mathscr{D} is stable if (Σ, Ω) is a pair of equivalences.

Remark

Equivalently: pullbacks and pushouts coincide in $\mathscr{D}(\Box)$.

Examples

- The homotopy derivator \mathscr{D}_{Sp} of topological spectra.
- \mathcal{D}_R for any ring R.

Definition

A pointed derivator \mathscr{D} is stable if (Σ, Ω) is a pair of equivalences.

Remark

Equivalently: pullbacks and pushouts coincide in $\mathscr{D}(\Box)$.

Examples

- The homotopy derivator \mathcal{D}_{Sp} of topological spectra.
- \mathcal{D}_R for any ring R.

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Franke, Maltsiniotis, Groth)

A stable derivator admits a canonical additive structure, i.e. we actually have a 2-functor

 $\mathscr{D}: \mathcal{C}at^{\mathsf{op}} \to \mathsf{ADD}.$

Under an additional mild hypothesis, we even have a canonical triangulated structure:

 $\mathscr{D}: \mathcal{C}at^{\operatorname{op}} \to \mathsf{TRIA}.$

Remark

Unlike for standalone triangulated categories, the triangulation on a derivator is not an additional structure. It is only a shadow of universal constructions inherent to the derivator.

< ロ > < 同 > < 回 > < 回 >

Theorem (Franke, Maltsiniotis, Groth)

A stable derivator admits a canonical additive structure, i.e. we actually have a 2-functor

 $\mathscr{D} : \mathcal{C}at^{op} \to \mathsf{ADD}.$

Under an additional mild hypothesis, we even have a canonical triangulated structure:

 $\mathscr{D}: \mathcal{C}at^{\mathsf{op}} \to \mathsf{TRIA}.$

Remark

Unlike for standalone triangulated categories, the triangulation on a derivator is not an additional structure. It is only a shadow of universal constructions inherent to the derivator.

< ロ > < 同 > < 回 > < 回 >

Theorem (Franke, Maltsiniotis, Groth)

A stable derivator admits a canonical additive structure, i.e. we actually have a 2-functor

 $\mathscr{D}: \mathcal{C}at^{\mathsf{op}} \to \mathsf{ADD}.$

Under an additional mild hypothesis, we even have a canonical triangulated structure:

 $\mathscr{D} \colon \mathcal{C}at^{\mathsf{op}} \to \mathsf{TRIA}.$

Remark

Unlike for standalone triangulated categories, the triangulation on a derivator is not an additional structure. It is only a shadow of universal constructions inherent to the derivator.

< ロ > < 同 > < 回 > < 回 >

Theorem (Franke, Maltsiniotis, Groth)

A stable derivator admits a canonical additive structure, i.e. we actually have a 2-functor

 $\mathscr{D}: \mathcal{C}at^{\mathsf{op}} \to \mathsf{ADD}.$

Under an additional mild hypothesis, we even have a canonical triangulated structure:

 $\mathscr{D} : \mathcal{C}at^{op} \to \mathsf{TRIA}.$

Remark

Unlike for standalone triangulated categories, the triangulation on a derivator is not an additional structure. It is only a shadow of universal constructions inherent to the derivator.

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

April 12, 2014 17 / 22

Theorem (Franke, Maltsiniotis, Groth)

A stable derivator admits a canonical additive structure, i.e. we actually have a 2-functor

 $\mathscr{D}: \mathcal{C}at^{\mathsf{op}} \to \mathsf{ADD}.$

Under an additional mild hypothesis, we even have a canonical triangulated structure:

 $\mathscr{D} \colon \mathcal{C}at^{\mathsf{op}} \to \mathsf{TRIA}.$

Remark

Unlike for standalone triangulated categories, the triangulation on a derivator is not an additional structure. It is only a shadow of universal constructions inherent to the derivator.

Outline

Homotopy (co)limits

- 2 Grothendieck derivators
- 3 Stability

Abstract representation theory

э

A (10) A (10) A (10)

Classically representation theory is concerned with studying modkA, where k is a field and A ∈ Cat.

• More modern version: study D(kA), the derived category. But D(kA) is none other than $\mathcal{D}_k(A)$.

Reformulation in terms of derivators

The aim of representation theory is in fact to obtain a very detailed understanding of the derivator of a field.

- Classically representation theory is concerned with studying modkA, where k is a field and A ∈ Cat.
- More modern version: study D(kA), the derived category. But D(kA) is none other than D_k(A).

Reformulation in terms of derivators

The aim of representation theory is in fact to obtain a very detailed understanding of the derivator of a field.

- Classically representation theory is concerned with studying modkA, where k is a field and A ∈ Cat.
- More modern version: study D(kA), the derived category. But D(kA) is none other than D_k(A).

Reformulation in terms of derivators

The aim of representation theory is in fact to obtain a very detailed understanding of the derivator of a field.

- Classically representation theory is concerned with studying modkA, where k is a field and A ∈ Cat.
- More modern version: study D(kA), the derived category. But D(kA) is none other than $\mathcal{D}_k(A)$.

Reformulation in terms of derivators

The aim of representation theory is in fact to obtain a very detailed understanding of the derivator of a field.

4 E N 4 E N

- If D is any stable derivator, we can view D(I) as the "derived" category of representations of I in D.
- For instance, given the derivator D_{Sp} of spectra, D_{Sp}(I) is the homotopy category of *I*-shaped diagrams of spectra (universal example).
- The point: Various familiar patterns from representation theory apply to any stable derivator.
- Applications:
 - Equivalences via Bernstein-Gelfand-Ponomarev reflection functors.
 - May's axioms for monoidal derivators.
 - Universal Auslander-Platzeck-Reiten tilting modules over spectra.
 - Put order to definitions of higher triangles/octahedra.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- If D is any stable derivator, we can view D(I) as the "derived" category of representations of I in D.
- For instance, given the derivator D_{Sp} of spectra, D_{Sp}(I) is the homotopy category of *I*-shaped diagrams of spectra (universal example).
- The point: Various familiar patterns from representation theory apply to any stable derivator.
- Applications:
 - Equivalences via Bernstein-Gelfand-Ponomarev reflection functors.
 - May's axioms for monoidal derivators.
 - Universal Auslander-Platzeck-Reiten tilting modules over spectra.
 - Put order to definitions of higher triangles/octahedra.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- If D is any stable derivator, we can view D(I) as the "derived" category of representations of I in D.
- For instance, given the derivator D_{Sp} of spectra, D_{Sp}(I) is the homotopy category of *I*-shaped diagrams of spectra (universal example).
- The point: Various familiar patterns from representation theory apply to any stable derivator.
- Applications:
 - Equivalences via Bernstein-Gelfand-Ponomarev reflection functors.
 - May's axioms for monoidal derivators.
 - Universal Auslander-Platzeck-Reiten tilting modules over spectra.
 - Put order to definitions of higher triangles/octahedra.

3

- If D is any stable derivator, we can view D(I) as the "derived" category of representations of I in D.
- For instance, given the derivator D_{Sp} of spectra, D_{Sp}(I) is the homotopy category of *I*-shaped diagrams of spectra (universal example).
- The point: Various familiar patterns from representation theory apply to any stable derivator.
- Applications:
 - Equivalences via Bernstein-Gelfand-Ponomarev reflection functors.
 - May's axioms for monoidal derivators.
 - Universal Auslander-Platzeck-Reiten tilting modules over spectra.
 - Put order to definitions of higher triangles/octahedra.

3

- If D is any stable derivator, we can view D(I) as the "derived" category of representations of I in D.
- For instance, given the derivator D_{Sp} of spectra, D_{Sp}(I) is the homotopy category of *I*-shaped diagrams of spectra (universal example).
- The point: Various familiar patterns from representation theory apply to any stable derivator.
- Applications:
 - Equivalences via Bernstein-Gelfand-Ponomarev reflection functors.
 - May's axioms for monoidal derivators.
 - Universal Auslander-Platzeck-Reiten tilting modules over spectra.
 - Put order to definitions of higher triangles/octahedra.

3

- If D is any stable derivator, we can view D(I) as the "derived" category of representations of I in D.
- For instance, given the derivator D_{Sp} of spectra, D_{Sp}(I) is the homotopy category of *I*-shaped diagrams of spectra (universal example).
- The point: Various familiar patterns from representation theory apply to any stable derivator.
- Applications:
 - Equivalences via Bernstein-Gelfand-Ponomarev reflection functors.
 - May's axioms for monoidal derivators.
 - Universal Auslander-Platzeck-Reiten tilting modules over spectra.
 - Put order to definitions of higher triangles/octahedra.

3

- If D is any stable derivator, we can view D(I) as the "derived" category of representations of I in D.
- For instance, given the derivator D_{Sp} of spectra, D_{Sp}(I) is the homotopy category of *I*-shaped diagrams of spectra (universal example).
- The point: Various familiar patterns from representation theory apply to any stable derivator.
- Applications:
 - Equivalences via Bernstein-Gelfand-Ponomarev reflection functors.
 - May's axioms for monoidal derivators.
 - Universal Auslander-Platzeck-Reiten tilting modules over spectra.
 - Put order to definitions of higher triangles/octahedra.

- If D is any stable derivator, we can view D(I) as the "derived" category of representations of I in D.
- For instance, given the derivator D_{Sp} of spectra, D_{Sp}(I) is the homotopy category of *I*-shaped diagrams of spectra (universal example).
- The point: Various familiar patterns from representation theory apply to any stable derivator.
- Applications:
 - Equivalences via Bernstein-Gelfand-Ponomarev reflection functors.
 - May's axioms for monoidal derivators.
 - Universal Auslander-Platzeck-Reiten tilting modules over spectra.
 - Put order to definitions of higher triangles/octahedra.

- If D is any stable derivator, we can view D(I) as the "derived" category of representations of I in D.
- For instance, given the derivator D_{Sp} of spectra, D_{Sp}(I) is the homotopy category of *I*-shaped diagrams of spectra (universal example).
- The point: Various familiar patterns from representation theory apply to any stable derivator.
- Applications:
 - Equivalences via Bernstein-Gelfand-Ponomarev reflection functors.
 - May's axioms for monoidal derivators.
 - Universal Auslander-Platzeck-Reiten tilting modules over spectra.
 - Put order to definitions of higher triangles/octahedra.

- If D is any stable derivator, we can view D(I) as the "derived" category of representations of I in D.
- For instance, given the derivator D_{Sp} of spectra, D_{Sp}(I) is the homotopy category of *I*-shaped diagrams of spectra (universal example).
- The point: Various familiar patterns from representation theory apply to any stable derivator.
- Applications:
 - Equivalences via Bernstein-Gelfand-Ponomarev reflection functors.
 - May's axioms for monoidal derivators.
 - Universal Auslander-Platzeck-Reiten tilting modules over spectra.
 - Put order to definitions of higher triangles/octahedra.

- If D is any stable derivator, we can view D(I) as the "derived" category of representations of I in D.
- For instance, given the derivator D_{Sp} of spectra, D_{Sp}(I) is the homotopy category of *I*-shaped diagrams of spectra (universal example).
- The point: Various familiar patterns from representation theory apply to any stable derivator.
- Applications:
 - Equivalences via Bernstein-Gelfand-Ponomarev reflection functors.
 - May's axioms for monoidal derivators.
 - Universal Auslander-Platzeck-Reiten tilting modules over spectra.
 - Put order to definitions of higher triangles/octahedra.

• Let \mathscr{D} be any stable derivator and $X \in \mathscr{D}([n])$ (of shape

 $X_0 \to X_1 \to \cdots \to X_n).$

• By a series of Kan extension construct a coherent diagram of the following shape with all squares bicartesian (n = 2):

 Restrict to a suitable part of the diagram to obtain equivalences or autoequivalences.

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

- Let \mathscr{D} be any stable derivator and $X \in \mathscr{D}([n])$ (of shape $X_0 \to X_1 \to \cdots \to X_n$).
- By a series of Kan extension construct a coherent diagram of the following shape with all squares bicartesian (n = 2):

 Restrict to a suitable part of the diagram to obtain equivalences or autoequivalences.

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

- Let \mathscr{D} be any stable derivator and $X \in \mathscr{D}([n])$ (of shape $X_0 \to X_1 \to \cdots \to X_n$).
- By a series of Kan extension construct a coherent diagram of the following shape with all squares bicartesian (n = 2):

 Restrict to a suitable part of the diagram to obtain equivalences or autoequivalences.

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

- Let \mathscr{D} be any stable derivator and $X \in \mathscr{D}([n])$ (of shape $X_0 \to X_1 \to \cdots \to X_n$).
- By a series of Kan extension construct a coherent diagram of the following shape with all squares bicartesian (n = 2):

 Restrict to a suitable part of the diagram to obtain equivalences or autoequivalences.

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

- Let \mathscr{D} be any stable derivator and $X \in \mathscr{D}([n])$ (of shape $X_0 \to X_1 \to \cdots \to X_n$).
- By a series of Kan extension construct a coherent diagram of the following shape with all squares bicartesian (n = 2):

 Restrict to a suitable part of the diagram to obtain equivalences or autoequivalences.

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

- Let \mathscr{D} be any stable derivator and $X \in \mathscr{D}([n])$ (of shape $X_0 \to X_1 \to \cdots \to X_n$).
- By a series of Kan extension construct a coherent diagram of the following shape with all squares bicartesian (n = 2):

 Restrict to a suitable part of the diagram to obtain equivalences or autoequivalences.

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

- Let \mathscr{D} be any stable derivator and $X \in \mathscr{D}([n])$ (of shape $X_0 \to X_1 \to \cdots \to X_n$).
- By a series of Kan extension construct a coherent diagram of the following shape with all squares bicartesian (n = 2):

 Restrict to a suitable part of the diagram to obtain equivalences or autoequivalences.

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators
- Let \mathscr{D} be any stable derivator and $X \in \mathscr{D}([n])$ (of shape $X_0 \to X_1 \to \cdots \to X_n$).
- By a series of Kan extension construct a coherent diagram of the following shape with all squares bicartesian (n = 2):

 Restrict to a suitable part of the diagram to obtain equivalences or autoequivalences.

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

April 12, 2014 21 / 22

- Let \mathscr{D} be any stable derivator and $X \in \mathscr{D}([n])$ (of shape $X_0 \to X_1 \to \cdots \to X_n$).
- By a series of Kan extension construct a coherent diagram of the following shape with all squares bicartesian (n = 2):

 Restrict to a suitable part of the diagram to obtain equivalences or autoequivalences.

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

April 12, 2014 21 / 22

- Let \mathscr{D} be any stable derivator and $X \in \mathscr{D}([n])$ (of shape $X_0 \to X_1 \to \cdots \to X_n$).
- By a series of Kan extension construct a coherent diagram of the following shape with all squares bicartesian (n = 2):

 Restrict to a suitable part of the diagram to obtain equivalences or autoequivalences.

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

- Let \mathscr{D} be any stable derivator and $X \in \mathscr{D}([n])$ (of shape $X_0 \to X_1 \to \cdots \to X_n$).
- By a series of Kan extension construct a coherent diagram of the following shape with all squares bicartesian (n = 2):

 Restrict to a suitable part of the diagram to obtain equivalences or autoequivalences.

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

- Let \mathscr{D} be any stable derivator and $X \in \mathscr{D}([n])$ (of shape $X_0 \to X_1 \to \cdots \to X_n$).
- By a series of Kan extension construct a coherent diagram of the following shape with all squares bicartesian (n = 2):

 Restrict to a suitable part of the diagram to obtain equivalences or autoequivalences.

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

 We can always obtain an object *T* ∈ D_{Sp}([*n*] × [*n*]^{op}) such that these (auto)equivalences are of the form

 $T \otimes_{[[n]]} -: \mathscr{D}([n]) \to \mathscr{D}([n]).$

• Here, $T \otimes_{[n]} X = \int^{[n]} T \otimes X$ (the coend).

If k is a field then T ⊗_{[[n]]} k ∈ D([n]) = D(k[n]) is a classical tilting module.

Example

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

April 12, 2014 22 / 22

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

 We can always obtain an object *T* ∈ D_{Sp}([*n*] × [*n*]^{op}) such that these (auto)equivalences are of the form

$$T \otimes_{[[n]]} -: \mathscr{D}([n]) \to \mathscr{D}([n]).$$

• Here, $T \otimes_{[n]} X = \int^{[n]} T \otimes X$ (the coend).

If k is a field then T ⊗_{[[n]]} k ∈ D([n]) = D(k[n]) is a classical tilting module.

Example

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

April 12, 2014 22 / 22

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

 We can always obtain an object *T* ∈ D_{Sp}([*n*] × [*n*]^{op}) such that these (auto)equivalences are of the form

$$T \otimes_{[[n]]} -: \mathscr{D}([n]) \to \mathscr{D}([n]).$$

• Here, $T \otimes_{[n]} X = \int^{[n]} T \otimes X$ (the coend).

If k is a field then T ⊗_{[[n]]} k ∈ D([n]) = D(k[n]) is a classical tilting module.

Example

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

April 12, 2014 22 / 22

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

 We can always obtain an object *T* ∈ D_{Sp}([*n*] × [*n*]^{op}) such that these (auto)equivalences are of the form

$$T \otimes_{[[n]]} -: \mathscr{D}([n]) \to \mathscr{D}([n]).$$

• Here, $T \otimes_{[[n]]} X = \int^{[n]} T \otimes X$ (the coend).

If k is a field then T ⊗_{[[n]]} k ∈ D([n]) = D(k[n]) is a classical tilting module.

Example

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

April 12, 2014 22 / 22

 We can always obtain an object *T* ∈ D_{Sp}([*n*] × [*n*]^{op}) such that these (auto)equivalences are of the form

$$T \otimes_{[[n]]} -: \mathscr{D}([n]) \to \mathscr{D}([n]).$$

• Here, $T \otimes_{[[n]]} X = \int^{[n]} T \otimes X$ (the coend).

If k is a field then T ⊗_{[[n]]} k ∈ D([n]) = D(k[n]) is a classical tilting module.

Example

3

 We can always obtain an object *T* ∈ D_{Sp}([*n*] × [*n*]^{op}) such that these (auto)equivalences are of the form

$$T \otimes_{[[n]]} -: \mathscr{D}([n]) \to \mathscr{D}([n]).$$

• Here, $T \otimes_{[[n]]} X = \int^{[n]} T \otimes X$ (the coend).

If k is a field then T ⊗_{[[n]]} k ∈ D([n]) = D(k[n]) is a classical tilting module.

Jan Šťovíček (Charles University)

Abstract rep. theory & derivators

April 12, 2014 22 / 22