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General setup

Problem
Given a category C and a class W or morphisms, understand C[W~"].

Examples
@ C = Top (topological spaces), W = weak equivalences
(morphisms inducing bijections on all homotopy groups).

@ C = C(A), complexes over and abelian category A,
W = {homology isomorphisms}.
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Trouble with constructions

Well known problem: C[W~"] often does not admit good categorical
constructions.

Example

If D(A) = C(A)[{q.-iso}~'], then every monomorphism and every
epimorphism splits. Therefore, there are not so many interesting limits
or colimits.

Usual algebraic solution: Keep some of the information originally
contained in C(.A) as an additional structure to D(A) (triangulated
structure, mapping cones).
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Homotopy invariant constructions

Let again C be a category and W a class of morphism to invert,
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Well known: Often one functorially choose f which is initial in a
suitable sense so that C’ is homotopy invariant.
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suitable sense so that C’ is homotopy invariant. This is always possible
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Well known: Often one functorially choose f which is initial in a
suitable sense so that C’ is homotopy invariant. This is always possible
if (C, W) has a structure of a Quillen model category. Classical cases:

@ Cofiber sequences of pointed spaces in homotopy theory.
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Homotopy invariant constructions

Let again C be a category and W a class of morphism to invert,

abstract weak equivalences. C is usually quite well behaved in that it is
complete and cocomplete.

Problem
X f Y coker
X —_— Y/ﬁ
f coker

9]

#

/

-

O ——

Well known: Often one functorially choose f which is initial in a
suitable sense so that C’ is homotopy invariant. This is always possible
if (C, W) has a structure of a Quillen model category. Classical cases:
@ Cofiber sequences of pointed spaces in homotopy theory.

© Mapping cones of complexes in algebra.
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@ If (C, W) is nice enough (model category), we have for | = [1]:
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The moral from the cone construction
@ Denote by [n] the category generated by
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@ If (C, W) is nice enough (model category), we have for | = [1]:

c! cone C
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The moral from the cone construction
@ Denote by [n] the category generated by

0—->1—-2—.--—n

@ If (C, W) is nice enough (model category), we have for | = [1]:

c! cone C
ciw W]
diagL x7
w1y

@ The functor diag, is far from being in equivalence. If k is a field
and C = C(k), then diag; is essentially the homology functor

H,: D(k(- — -)) — ModZk(- — -).
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Expressing (co)limits abstractly

@ Let C be a cocomplete category and / € Cat a small category.
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@ Let C be a cocomplete category and / € Cat a small category.

Then we have

colim
— T
' —c.
const

@ We just derive the adjoint pair of functors!

Jan Stovigek (Charles University) Abstract rep. theory & derivators April 12, 2014

8/22



Expressing (co)limits abstractly

@ Let C be a cocomplete category and / € Cat a small category.

Then we have
colim

G

const

@ We just derive the adjoint pair of functors!

diag hocolim

cwTy W cw-T,

const
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Expressing (co)limits abstractly

@ Let C be a cocomplete category and / € Cat a small category.

Then we have
colim

G

const

@ We just derive the adjoint pair of functors!

diag hocolim

cwTy W cw-T,

const

where hocolim = Lcolim.
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Prederivators

Idea (Grothendieck, Heller, others)

Given (C, W), the category of /-shaped diagrams in the homotopy
category C[W~"] contains too little information.
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Prederivators

Idea (Grothendieck, Heller, others)

Given (C, W), the category of /-shaped diagrams in the homotopy
category C[W~"] contains too little information. We need to remember
C’[W,‘1] instead, i.e. the homotopy category of /-shaped diagrams.

Definition
A prederivator is a strict 2-functor 2: Cat°P — CAT:
A P
2: I\%J — .@(/)T\@.@(J)
g g
A derivator is a prederivator satisfying certain axioms (to come)
allowing for a well behaved calculus of homotopy Kan extensions.
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Axioms for a derivator
(Dert) 2(11; 1 )—>H/ 2(1;) canonically.
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(Dert) 2(11; 1 )—>H/ 2(1;) canonically.

(Der2) The diagram functor diag: 2(/) — 2(x)’ reflects
isomorphisms (conservativity axiom).
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(Dert) 2(11; 1 )—>H/ 2(1;) canonically.

(Der2) The diagram functor diag: 2(/) — 2(x)’ reflects
isomorphisms (conservativity axiom).

(Der3) Let f: I — J be a functor in Cat.
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Axioms for a derivator

(Dert) 2(11; 1 )—>H/ 2(1;) canonically.

(Der2) The diagram functor diag: 2(/) — 2(x)’ reflects
isomorphisms (conservativity axiom).

(Der3) Let f: I — J be a functor in Cat. Then the restriction
functor f* has both a left adjoint f, and a right adjoint f,:
f
—
(1) <—i~

~N 7
fi

2(J).
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Axioms for a derivator

(Dert) 2(11; 1 )—>H/ 2(1;) canonically.

(Der2) The diagram functor diag: 2(/) — 2(x)’ reflects
isomorphisms (conservativity axiom).

(Der3) Let f: I — J be a functor in Cat. Then the restriction

functor f* has both a left adjoint f, and a right adjoint f,:
f

—
D(l)<—++
\_/
f

@ fi = (homotopy) left Kan extension,
@ f, = (homotopy) right Kan extension.

2(J).

If J = %, then f* = const, and we get homotopy
colimits/limits back.
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Axioms for a derivator

(Dert) 2(11; 1 )—>]_[/ 2(1;) canonically.

(Der2) The diagram functor diag: 2(/) — 2(x)’ reflects
isomorphisms (conservativity axiom).

(Der3) Let f: I — J be a functor in Cat. Then the restriction

functor f* has both a left adjoint f, and a right adjoint f,:
f

— T
D(l)<—++
\_/
f.
@ fi = (homotopy) left Kan extension,

@ f, = (homotopy) right Kan extension.

2(J).

If J = %, then f* = const, and we get homotopy
colimits/limits back.

(Derd) fi(X); = hocolim,; proj*(X) and
f.(X); = holim; ¢ proj*(X) canonically.
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Homotopy theory sneaks in

@ Let ¥ be the derivator of topological spaces, i.e. C = Top, W =
weak equivalences, and 7 (/) = C'[W,].

@ Then ¥ is a universal derivator (Cisinski, Heller). Roughly
speaking, given a derivator 2 and X € Z(l), there are canonical
functors

X" v (J) = 2(1 x J), pt.— X
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Homotopy theory sneaks in

@ Let ¥ be the derivator of topological spaces, i.e. C = Top, W =
weak equivalences, and 7 (/) = C'[W,].

@ Then ¥ is a universal derivator (Cisinski, Heller). Roughly
speaking, given a derivator 2 and X € Z(l), there are canonical
functors

X" v (J) = 2(1 x J), pt.— X

@ Even more holds. Every derivator is a module over 7:
RV XD —D

(Cisinski, Heller).
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Homotopy theory sneaks in
@ Let ¥ be the derivator of topological spaces, i.e. C = Top, W =
weak equivalences, and 7 (/) = C'[W,].
@ Then ¥ is a universal derivator (Cisinski, Heller). Roughly

speaking, given a derivator 2 and X € Z(l), there are canonical
functors
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QE the class of Quilled equivalences,
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Homotopy theory sneaks in

@ Let ¥ be the derivator of topological spaces, i.e. C = Top, W =
weak equivalences, and 7 (/) = C'[W,].

@ Then ¥ is a universal derivator (Cisinski, Heller). Roughly
speaking, given a derivator 2 and X € Z(l), there are canonical
functors

“—eX" v (J) = 2(1x J), pt.— X

@ Even more holds. Every derivator is a module over 7:
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o |f COMB is the 2-category of combinatorial model categories and
QE the class of Quilled equivalences, then
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Homotopy theory sneaks in
@ Let ¥ be the derivator of topological spaces, i.e. C = Top, W =
weak equivalences, and 7 (/) = C'[W,].
@ Then ¥ is a universal derivator (Cisinski, Heller). Roughly

speaking, given a derivator 2 and X € Z(l), there are canonical
functors

XV (J) = D(Ix J), pt.— X.

@ Even more holds. Every derivator is a module over 7:
QY XD —D

(Cisinski, Heller).
@ If COMB is the 2-category of combinatorial model categories and
QE the class of Quilled equivalences, then

COMBI[QE~]

fully embeds into the 2-category of derivators with derivator
adjunctions as 1-morphisms (Renaudin).
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Pointed derivators

Definition
A derivator Z is pointed
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Pointed derivators

Definition

A derivator 7 is pointed if the base category Z(x) has a zero object
(equivalently, each Z(/) has a zero object).
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Pointed derivators

Definition

A derivator 7 is pointed if the base category Z(x) has a zero object
(equivalently, each Z(/) has a zero object).

Examples

Q@ %Z70p., the homotopy derivator of pointed spaces.
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topological spaces.
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Pointed derivators

Definition

A derivator 7 is pointed if the base category Z(x) has a zero object
(equivalently, each Z(/) has a zero object).

Examples

Q@ Z7op., the homotopy derivator of pointed spaces. l.e. Z7qp, (/) is

the homotopy category of /-shaped diagrams of pointed
topological spaces.

©Q %g for any ring R.
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Pointed derivators

Definition

A derivator 7 is pointed if the base category Z(x) has a zero object
(equivalently, each Z(/) has a zero object).

Examples

Q@ Z7op., the homotopy derivator of pointed spaces. l.e. Z7qp, (/) is
the homotopy category of /-shaped diagrams of pointed
topological spaces.

@ 2 for any ring R. Recall: 2(/) = D(ModR').
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Suspension and loop functors

Let 2 be a pointed derivator.
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Suspension and loop functors

Let 2 be a pointed derivator. Consider the functors in Cat:

00 00— 10 00 ——10
- | - | ] -
01 01— 11 11
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Suspension and loop functors

Let 2 be a pointed derivator. Consider the functors in Cat:

00 00— 10 00— 10
. j . l L o
01 01 ——11 11
Then we have functors:
00,

(M) () e ().

2(+)
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Suspension and loop functors

Let 2 be a pointed derivator. Consider the functors in Cat:

00 00——10 00 ——10
H j H l L o
01 01 —— 11 11
Then we have functors:
9(+)-25- 9(")— = () - ().

In terms of diagrams, we have:

X X—0 X——-0
0 0——2XX X
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Suspension and loop functors

Let 2 be a pointed derivator. Consider the functors in Cat:

00 00——10 00 ——10
H l H l L o
01 01 —— 11 11
Then we have functors:
9(+)-25- 9(")— = () - ().

In terms of diagrams, we have:

X X—0 X——-0
0 0——2XX X

The loop functor X — QX is dual.
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Suspension and loop functors

Let 2 be a pointed derivator. Consider the functors in Cat:

00 00——10 00 ——10
H l H l L o
01 01 —— 11 11
Then we have functors:
9(+)-25- 9(")— = () - ().

In terms of diagrams, we have:

- = -
0 0——=3XX X

The loop functor X — QX is dual. We get an adjoint pair (X, Q).
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Stability

Definition

A pointed derivator Z is stable if (X, Q) is a pair of equivalences.
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@ The homotopy derivator Zs,, of topological spectra.
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Stability

Definition
A pointed derivator Z is stable if (X, Q) is a pair of equivalences.

Remark
Equivalently: pullbacks and pushouts coincide in Z(0J).

Examples

@ The homotopy derivator Zs,, of topological spectra.
@ 9p for any ring R.
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Additivity and triangulated structure

Theorem (Franke, Maltsiniotis, Groth)
A stable derivator admits a canonical additive structure,
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Additivity and triangulated structure

Theorem (Franke, Maltsiniotis, Groth)

A stable derivator admits a canonical additive structure, i.e. we actually
have a 2-functor

2: Cat°® — ADD.
Under an additional mild hypothesis, we even have a canonical
triangulated structure:

2 Cat®® — TRIA.

Remark

Unlike for standalone triangulated categories, the triangulation on a
derivator is not an additional structure.

V.
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Additivity and triangulated structure

Theorem (Franke, Maltsiniotis, Groth)

A stable derivator admits a canonical additive structure, i.e. we actually
have a 2-functor
9: Cat°® — ADD.

Under an additional mild hypothesis, we even have a canonical
triangulated structure:

2 Cat®® — TRIA.

Remark

Unlike for standalone triangulated categories, the triangulation on a
derivator is not an additional structure. It is only a shadow of universal
constructions inherent to the derivator.

4
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Outline

@ Abstract representation theory
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Derivators vs. representation theory

@ Classically representation theory is concerned with studying
modkA, where k is a field and A € Cat.
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Derivators vs. representation theory

@ Classically representation theory is concerned with studying
modkA, where k is a field and A € Cat.

@ More modern version: study D(kA), the derived category. But
D(kA) is none other than Zk(A).

Reformulation in terms of derivators

The aim of representation theory is in fact to obtain a very detailed
understanding of the derivator of a field.

Jan Stovigek (Charles University) Abstract rep. theory & derivators April 12, 2014 19/22



Abstract representation theory

e If 7 is any stable derivator,
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Abstract representation theory

@ If 7 is any stable derivator, we can view (/) as the “derived”
category of representations of /in 2.

@ For instance, given the derivator Zs;, of spectra, Zsp(/) is the
homotopy category of /-shaped diagrams of spectra (universal
example).

@ The point: Various familiar patterns from representation theory
apply to any stable derivator.

@ Applications:

Equivalences via Bernstein-Gelfand-Ponomarev reflection functors.
May’s axioms for monoidal derivators.

Universal Auslander-Platzeck-Reiten tilting modules over spectra.
Put order to definitions of higher triangles/octahedra.

vV vy vVvYyy
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Reflection functors for Dynkin type A
@ Let Z be any stable derivator and X € 2([n])
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Reflection functors for Dynkin type A

@ Let 2 be any stable derivator and X € 2([n]) (of shape
Xo— X1 = - = Xp).
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Reflection functors for Dynkin type A

@ Let 2 be any stable derivator and X € 2([n]) (of shape
Xo—= Xy = - — Xp).

@ By a series of Kan extension construct a coherent diagram of the
following shape with all squares bicartesian (n = 2):

0

\/\/
/\/\
/\/\/
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Reflection functors for Dynkin type A

@ Let 2 be any stable derivator and X € 2([n]) (of shape
Xo—= Xy = - — Xp).

@ By a series of Kan extension construct a coherent diagram of the
following shape with all squares bicartesian (n = 2):

NN

QXI//

NS A \ / \
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Reflection functors for Dynkin type A

@ Let 2 be any stable derivator and X € 2([n]) (of shape
Xo— X1 = - = Xp).

@ By a series of Kan extension construct a coherent diagram of the
following shape with all squares bicartesian (n = 2):

NN

@ Restrict to a suitable part of the diagram
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Reflection functors for Dynkin type A

@ Let 2 be any stable derivator and X € 2([n]) (of shape
Xo— X1 = - = Xp).

@ By a series of Kan extension construct a coherent diagram of the
following shape with all squares bicartesian (n = 2):

NN

@ Restrict to a suitable part of the diagram to obtain equivalences
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Reflection functors for Dynkin type A

@ Let 2 be any stable derivator and X € 2([n]) (of shape
Xo— X1 = - = Xp).

@ By a series of Kan extension construct a coherent diagram of the
following shape with all squares bicartesian (n = 2):

NN

@ Restrict to a suitable part of the diagram to obtain equivalences or
autoequivalences.
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Universal APR tilting “modules”

@ We can always obtain an object T € Zsp([n] x [n]°P)
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Universal APR tilting “modules”

@ We can always obtain an object T € Zsp([n] x [n]°P) such that
these (auto)equivalences are of the form

T®[[n]] —:2([n]) — 2([n]).
@ Here, T @ X = f[”] T ® X (the coend).
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@ We can always obtain an object T € Zsp([n] x [n]°P) such that
these (auto)equivalences are of the form

T @y —: 2([n]) = 2([n)).

@ Here, T @ X = f[”] T ® X (the coend).

o If kis afield then T @y k € Z([n]) = D(k[n]) is a classical tilting
module.
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Universal APR tilting “modules”

@ We can always obtain an object T € Zsp([n] x [n]°P) such that
these (auto)equivalences are of the form

T @y —: 2([n]) = 2([n)).

@ Here, T @ X = f[”] T ® X (the coend).
o If kis afield then T @y k € Z([n]) = D(k[n]) is a classical tilting

module.
Example
S—S—=S
byt
I 0—-=S—=S
b
0—=0—=S

4
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Universal APR tilting “modules”

@ We can always obtain an object T € Zsp([n] x [n]°P) such that
these (auto)equivalences are of the form

T @y —: 2([n]) = 2([n)).

o Here, Ty X = [ T @ X (the coend).
o If kis afield then T @, k € Z([n]) = D(k[n]) is a classical tilting

module.
Example
S—S—=S S—=S<—0
byt (I
I 0—-=S—S T 0-S<-0
(I (O
0—-~0—S 0—=0<QS
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