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General setup

Problem
Given a category C and a class W or morphisms, understand C[W−1].

Examples
1 C = Top (topological spaces), W = weak equivalences

(morphisms inducing bijections on all homotopy groups).
2 C = C(A), complexes over and abelian category A,

W = {homology isomorphisms}.
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Trouble with constructions

Well known problem: C[W−1] often does not admit good categorical
constructions.

Example

If D(A) = C(A)[{q.-iso}−1], then every monomorphism and every
epimorphism splits. Therefore, there are not so many interesting limits
or colimits.

Usual algebraic solution: Keep some of the information originally
contained in C(A) as an additional structure to D(A) (triangulated
structure, mapping cones).
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Homotopy invariant constructions
Let again C be a category and W a class of morphism to invert,
abstract weak equivalences. C is usually quite well behaved in that it is
complete and cocomplete.

Problem

X f // Y coker // // C

X ′
f ′
//

∼

OO

Y ′
coker
// //

∼

OO

C′
6∼

OO

Well known: Often one functorially choose f ′ which is initial in a
suitable sense so that C′ is homotopy invariant. This is always possible
if (C,W ) has a structure of a Quillen model category. Classical cases:

1 Cofiber sequences of pointed spaces in homotopy theory.
2 Mapping cones of complexes in algebra.
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The moral from the cone construction
Denote by [n] the category generated by

0→ 1→ 2→ · · · → n.

If (C,W ) is nice enough (model category), we have for I = [1]:

CI C

CI [W−1
I ] C[W−1]

(C[W−1])I

The functor diagI is far from being in equivalence. If k is a field
and C = C(k), then diagI is essentially the homology functor

H∗ : D(k(· → ·)) −→ ModZk(· → ·).
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Expressing (co)limits abstractly

Let C be a cocomplete category and I ∈ Cat a small category.
Then we have

CI
colim

**C
const

jj .

We just derive the adjoint pair of functors!

C[W−1]I CI [W−1
I ]

diagoo
hocolim --C[W−1]
const

mm ,

where hocolim = Lcolim.
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Prederivators

Idea (Grothendieck, Heller, others)
Given (C,W ), the category of I-shaped diagrams in the homotopy
category C[W−1] contains too little information. We need to remember
CI [W−1

I ] instead, i.e. the homotopy category of I-shaped diagrams.

Definition
A prederivator is a strict 2-functor D : Cat op → CAT:

D : I
f
&&

g
88�� η J 7−→ D(I) �� η

∗ D(J)
g∗

jj

f∗tt

A derivator is a prederivator satisfying certain axioms (to come)
allowing for a well behaved calculus of homotopy Kan extensions.
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Axioms for a derivator
(Der1) D(

∐
j Ij)

∼−→
∏

j D(Ij) canonically.

(Der2) The diagram functor diag : D(I)→ D(∗)I reflects
isomorphisms (conservativity axiom).

(Der3) Let f : I → J be a functor in Cat . Then the restriction
functor f ∗ has both a left adjoint f! and a right adjoint f∗:

D(I)

f!
((

f∗

66D(J)f∗oo .

f! = (homotopy) left Kan extension,
f∗ = (homotopy) right Kan extension.

If J = ∗, then f ∗ = const, and we get homotopy
colimits/limits back.

(Der4) f!(X )j
∼= hocolim(f/j) proj∗(X ) and

f∗(X )j
∼= holim(j/f ) proj∗(X ) canonically.

Jan Št’ovíček (Charles University) Abstract rep. theory & derivators April 12, 2014 11 / 22



Axioms for a derivator
(Der1) D(

∐
j Ij)

∼−→
∏

j D(Ij) canonically.

(Der2) The diagram functor diag : D(I)→ D(∗)I reflects
isomorphisms (conservativity axiom).

(Der3) Let f : I → J be a functor in Cat . Then the restriction
functor f ∗ has both a left adjoint f! and a right adjoint f∗:

D(I)

f!
((

f∗

66D(J)f∗oo .

f! = (homotopy) left Kan extension,
f∗ = (homotopy) right Kan extension.

If J = ∗, then f ∗ = const, and we get homotopy
colimits/limits back.

(Der4) f!(X )j
∼= hocolim(f/j) proj∗(X ) and

f∗(X )j
∼= holim(j/f ) proj∗(X ) canonically.

Jan Št’ovíček (Charles University) Abstract rep. theory & derivators April 12, 2014 11 / 22



Axioms for a derivator
(Der1) D(

∐
j Ij)

∼−→
∏

j D(Ij) canonically.

(Der2) The diagram functor diag : D(I)→ D(∗)I reflects
isomorphisms (conservativity axiom).

(Der3) Let f : I → J be a functor in Cat . Then the restriction
functor f ∗ has both a left adjoint f! and a right adjoint f∗:

D(I)

f!
((

f∗

66D(J)f∗oo .

f! = (homotopy) left Kan extension,
f∗ = (homotopy) right Kan extension.

If J = ∗, then f ∗ = const, and we get homotopy
colimits/limits back.

(Der4) f!(X )j
∼= hocolim(f/j) proj∗(X ) and

f∗(X )j
∼= holim(j/f ) proj∗(X ) canonically.
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Homotopy theory sneaks in
Let V be the derivator of topological spaces, i.e. C = Top, W =
weak equivalences, and V (I) = CI [W−1

I ].
Then V is a universal derivator (Cisinski, Heller). Roughly
speaking, given a derivator D and X ∈ D(I), there are canonical
functors

“−⊗X ′′ : V (J)→ D(I × J), pt. 7→ X .

Even more holds. Every derivator is a module over V :

⊗ : V ×D −→ D

(Cisinski, Heller).
If COMB is the 2-category of combinatorial model categories and
QE the class of Quilled equivalences, then

COMB[QE−1]

fully embeds into the 2-category of derivators with derivator
adjunctions as 1-morphisms (Renaudin).
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Pointed derivators

Definition
A derivator D is pointed if the base category D(∗) has a zero object
(equivalently, each D(I) has a zero object).

Examples
1 DTop∗ , the homotopy derivator of pointed spaces. I.e. DTop∗(I) is

the homotopy category of I-shaped diagrams of pointed
topological spaces.

2 DR for any ring R. Recall: D(I) = D(ModRI).
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Jan Št’ovíček (Charles University) Abstract rep. theory & derivators April 12, 2014 14 / 22



Pointed derivators

Definition
A derivator D is pointed if the base category D(∗) has a zero object
(equivalently, each D(I) has a zero object).

Examples
1 DTop∗ , the homotopy derivator of pointed spaces. I.e. DTop∗(I) is

the homotopy category of I-shaped diagrams of pointed
topological spaces.

2 DR for any ring R. Recall: D(I) = D(ModRI).
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Suspension and loop functors

Let D be a pointed derivator. Consider the functors in Cat :

00

−→

00 //

��

10

−→

00 //

��

10

��
←−

01 01 // 11 11

Then we have functors:

D(∗) 00∗ //D(p)
ip //D(�)

11∗ //D(∗).

In terms of diagrams, we have:

X

7−→

X //

��

0

7−→

X //

��

0

��
7−→

0 0 // ΣX ΣX

The loop functor X 7→ ΩX is dual. We get an adjoint pair (Σ,Ω).
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Stability

Definition
A pointed derivator D is stable if (Σ,Ω) is a pair of equivalences.

Remark
Equivalently: pullbacks and pushouts coincide in D(�).

Examples
The homotopy derivator DSp of topological spectra.
DR for any ring R.
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Additivity and triangulated structure

Theorem (Franke, Maltsiniotis, Groth)
A stable derivator admits a canonical additive structure, i.e. we actually
have a 2-functor

D : Cat op → ADD.

Under an additional mild hypothesis, we even have a canonical
triangulated structure:

D : Cat op → TRIA.

Remark
Unlike for standalone triangulated categories, the triangulation on a
derivator is not an additional structure. It is only a shadow of universal
constructions inherent to the derivator.
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Jan Št’ovíček (Charles University) Abstract rep. theory & derivators April 12, 2014 17 / 22



Outline

1 Homotopy (co)limits

2 Grothendieck derivators

3 Stability

4 Abstract representation theory
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Derivators vs. representation theory

Classically representation theory is concerned with studying
modkA, where k is a field and A ∈ Cat .
More modern version: study D(kA), the derived category. But
D(kA) is none other than Dk (A).

Reformulation in terms of derivators
The aim of representation theory is in fact to obtain a very detailed
understanding of the derivator of a field.
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Abstract representation theory

If D is any stable derivator, we can view D(I) as the “derived”
category of representations of I in D .
For instance, given the derivator DSp of spectra, DSp(I) is the
homotopy category of I-shaped diagrams of spectra (universal
example).
The point: Various familiar patterns from representation theory
apply to any stable derivator.
Applications:

I Equivalences via Bernstein-Gelfand-Ponomarev reflection functors.
I May’s axioms for monoidal derivators.
I Universal Auslander-Platzeck-Reiten tilting modules over spectra.
I Put order to definitions of higher triangles/octahedra.
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Jan Št’ovíček (Charles University) Abstract rep. theory & derivators April 12, 2014 20 / 22



Abstract representation theory

If D is any stable derivator, we can view D(I) as the “derived”
category of representations of I in D .
For instance, given the derivator DSp of spectra, DSp(I) is the
homotopy category of I-shaped diagrams of spectra (universal
example).
The point: Various familiar patterns from representation theory
apply to any stable derivator.
Applications:

I Equivalences via Bernstein-Gelfand-Ponomarev reflection functors.
I May’s axioms for monoidal derivators.
I Universal Auslander-Platzeck-Reiten tilting modules over spectra.
I Put order to definitions of higher triangles/octahedra.
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Reflection functors for Dynkin type A
Let D be any stable derivator and X ∈ D([n]) (of shape
X0 → X1 → · · · → Xn).
By a series of Kan extension construct a coherent diagram of the
following shape with all squares bicartesian (n = 2):

· · · 0
$$

0
!!

0
##

· · ·;;

""

ΩX ′′′

;;

##

X2

==

  

ΣX0

<<

""
· · · ΩX ′′

::

$$

X1

>>

  

X ′′

<<

""

· · ·<<

##

X0

<<

##

X ′

>>

!!

X ′′′

<<

""
· · · 0

::

0

==

0

;;

· · ·

Restrict to a suitable part of the diagram to obtain equivalences or
autoequivalences.
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Universal APR tilting “modules”

We can always obtain an object T ∈ DSp([n]× [n]op) such that
these (auto)equivalences are of the form

T ⊗[[n]] − : D([n])→ D([n]).

Here, T ⊗[[n]] X =
∫ [n] T ⊗ X (the coend).

If k is a field then T ⊗[[n]] k ∈ D([n]) = D(k [n]) is a classical tilting
module.

Example

S // S // S

I : 0

OO

// S

OO

// S

OO

0

OO

// 0

OO

// S

OO

S // S 0oo

T : 0

OO

// S

OO

0

OO

oo

0

OO

// 0

OO

ΩS

OO

oo
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