Tilting theory in the context of Grothendieck derivators

Jan Šťovíček (joint with Moritz Groth)

Charles University in Prague

First Joint International Meeting RSME-SCM-SEMA-SIMAI-UMI Bilbao July 4th, 2014

Outline

Back to the dawn of tilting theory

Outline

- 2 Homotopy (co)limits
- 3 Grothendieck derivators

4 Results

Fact (Happel)

Let *k* be a field. Then $D(k(\bullet \leftarrow \bullet \rightarrow \bullet)) \simeq D(k(\bullet \rightarrow \bullet \leftarrow \bullet))$.

Proof

• Bernstein-Gelfand-Ponomarev reflection functors:

$$s^-$$
: rep_k(• \leftarrow • \rightarrow •) \longrightarrow rep_k(• \rightarrow • \leftarrow •)

• Then
$$Ls^- \cong T \otimes^L -: D(k(\bullet \leftarrow \bullet \rightarrow \bullet)) \xrightarrow{\simeq} D(k(\bullet \rightarrow \bullet \leftarrow \bullet)).$$

Fact (Happel)

Let *k* be a field. Then $D(k(\bullet \leftarrow \bullet \rightarrow \bullet)) \simeq D(k(\bullet \rightarrow \bullet \leftarrow \bullet))$.

Proof

• Bernstein-Gelfand-Ponomarev reflection functors:

$$s^-$$
: $\operatorname{rep}_k(\bullet \leftarrow \bullet \rightarrow \bullet) \longrightarrow \operatorname{rep}_k(\bullet \rightarrow \bullet \leftarrow \bullet)$

• Then
$$Ls^- \cong T \otimes^L -: D(k(\bullet \leftarrow \bullet \rightarrow \bullet)) \xrightarrow{\simeq} D(k(\bullet \rightarrow \bullet \leftarrow \bullet)).$$

Fact (Happel)

Let *k* be a field. Then $D(k(\bullet \leftarrow \bullet \rightarrow \bullet)) \simeq D(k(\bullet \rightarrow \bullet \leftarrow \bullet))$.

Proof

• Bernstein-Gelfand-Ponomarev reflection functors:

$$s^-$$
: rep $_k(\bullet \leftarrow \bullet \rightarrow \bullet) \longrightarrow$ rep $_k(\bullet \rightarrow \bullet \leftarrow \bullet)$

• Then
$$Ls^{-} \cong T \otimes^{L} -: D(k(\bullet \leftarrow \bullet \rightarrow \bullet)) \xrightarrow{\simeq} D(k(\bullet \rightarrow \bullet \leftarrow \bullet)).$$

W

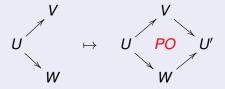
Fact (Happel)

Let *k* be a field. Then $D(k(\bullet \leftarrow \bullet \rightarrow \bullet)) \simeq D(k(\bullet \rightarrow \bullet \leftarrow \bullet))$.

Proof

• Bernstein-Gelfand-Ponomarev reflection functors:

$$s^{-}$$
: $\operatorname{rep}_{k}(\bullet \leftarrow \bullet \rightarrow \bullet) \longrightarrow \operatorname{rep}_{k}(\bullet \rightarrow \bullet \leftarrow \bullet)$



• Then $Ls^{-} \cong T \otimes^{L} -: D(k(\bullet \leftarrow \bullet \rightarrow \bullet)) \xrightarrow{\simeq} D(k(\bullet \rightarrow \bullet \leftarrow \bullet)).$

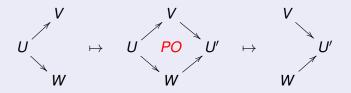
Fact (Happel)

Let *k* be a field. Then $D(k(\bullet \leftarrow \bullet \rightarrow \bullet)) \simeq D(k(\bullet \rightarrow \bullet \leftarrow \bullet))$.

Proof

• Bernstein-Gelfand-Ponomarev reflection functors:

$$s^{-}$$
: $\operatorname{rep}_{k}(\bullet \leftarrow \bullet \rightarrow \bullet) \longrightarrow \operatorname{rep}_{k}(\bullet \rightarrow \bullet \leftarrow \bullet)$



• Then $Ls^{-} \cong T \otimes^{L} -: D(k(\bullet \leftarrow \bullet \rightarrow \bullet)) \xrightarrow{\simeq} D(k(\bullet \rightarrow \bullet \leftarrow \bullet)).$

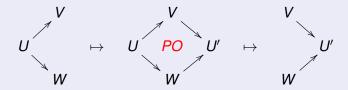
Fact (Happel)

Let *k* be a field. Then $D(k(\bullet \leftarrow \bullet \rightarrow \bullet)) \simeq D(k(\bullet \rightarrow \bullet \leftarrow \bullet))$.

Proof

• Bernstein-Gelfand-Ponomarev reflection functors:

$$s^{-}$$
: $\operatorname{rep}_{k}(\bullet \leftarrow \bullet \rightarrow \bullet) \longrightarrow \operatorname{rep}_{k}(\bullet \rightarrow \bullet \leftarrow \bullet)$



• Then $\mathbf{Ls}^{-} \cong T \otimes^{\mathbf{L}} -: \mathsf{D}(k(\bullet \leftarrow \bullet \rightarrow \bullet)) \stackrel{\simeq}{\longrightarrow} \mathsf{D}(k(\bullet \rightarrow \bullet \leftarrow \bullet)).$

- We first need to construct the reflection functor *s*⁻ for modules/complexes and then derive it.
- We cannot construct the equivalence right away at the level of the derived categories because we cannot construct the pushout there.
- Or can we?

- We first need to construct the reflection functor *s*⁻ for modules/complexes and then derive it.
- We cannot construct the equivalence right away at the level of the derived categories because we cannot construct the pushout there.
- Or can we?

- We first need to construct the reflection functor *s*⁻ for modules/complexes and then derive it.
- We cannot construct the equivalence right away at the level of the derived categories because we cannot construct the pushout there.
- Or can we?

- We first need to construct the reflection functor *s*⁻ for modules/complexes and then derive it.
- We cannot construct the equivalence right away at the level of the derived categories because we cannot construct the pushout there.

Or can we?

- We first need to construct the reflection functor *s*⁻ for modules/complexes and then derive it.
- We cannot construct the equivalence right away at the level of the derived categories because we cannot construct the pushout there.
- Or can we?

Outline

2 Homotopy (co)limits

3 Grothendieck derivators

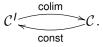
4 Results

• Let C be a cocomplete category and $I \in Cat$ a small category. Then we have

 If say C is a category of complexes and W the class of quasi-isomorphisms, we just derive the adjoint pair of functors!

- One should work with $C^{I}[W_{I}^{-1}]$ rather than $C[W^{-1}]^{I}$.
- More explicitly: D(Mod*R*¹) rather than D(Mod*R*)¹.

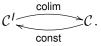
• Let C be a cocomplete category and $I \in Cat$ a small category. Then we have



 If say C is a category of complexes and W the class of quasi-isomorphisms, we just derive the adjoint pair of functors!

- One should work with $C^{I}[W_{I}^{-1}]$ rather than $C[W^{-1}]^{I}$.
- More explicitly: D(Mod*R*¹) rather than D(Mod*R*)¹.

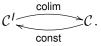
• Let C be a cocomplete category and $I \in Cat$ a small category. Then we have



 If say C is a category of complexes and W the class of quasi-isomorphisms, we just derive the adjoint pair of functors!

- One should work with $C^{I}[W_{I}^{-1}]$ rather than $C[W^{-1}]^{I}$.
- More explicitly: D(Mod*R*¹) rather than D(Mod*R*)¹.

• Let C be a cocomplete category and $I \in Cat$ a small category. Then we have

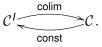


 If say C is a category of complexes and W the class of quasi-isomorphisms, we just derive the adjoint pair of functors!

$$\mathcal{C}^{\prime}[W_{l}^{-1}] \underbrace{\overset{\text{hocolim}}{\longleftarrow}}_{\text{const}} \mathcal{C}[W^{-1}],$$

- One should work with $C^{I}[W_{I}^{-1}]$ rather than $C[W^{-1}]^{I}$.
- More explicitly: D(Mod*R*¹) rather than D(Mod*R*)¹.

• Let C be a cocomplete category and $I \in Cat$ a small category. Then we have

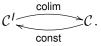


 If say C is a category of complexes and W the class of quasi-isomorphisms, we just derive the adjoint pair of functors!

$$\mathcal{C}^{I}[W_{I}^{-1}] \underbrace{\xrightarrow{\text{hocolim}}}_{\text{const}} \mathcal{C}[W^{-1}],$$

- One should work with $C'[W_I^{-1}]$ rather than $C[W^{-1}]'$.
- More explicitly: D(ModR¹) rather than D(ModR)¹.

• Let C be a cocomplete category and $I \in Cat$ a small category. Then we have

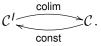


 If say C is a category of complexes and W the class of quasi-isomorphisms, we just derive the adjoint pair of functors!

$$\mathcal{C}^{I}[W_{I}^{-1}] \underbrace{\xrightarrow{\text{hocolim}}}_{\text{const}} \mathcal{C}[W^{-1}],$$

- One should work with $C'[W_I^{-1}]$ rather than $C[W^{-1}]'$.
- More explicitly: D(Mod*R*¹) rather than D(Mod*R*)¹.

• Let C be a cocomplete category and $I \in Cat$ a small category. Then we have

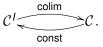


 If say C is a category of complexes and W the class of quasi-isomorphisms, we just derive the adjoint pair of functors!

$$\mathcal{C}^{\prime}[W_{l}^{-1}] \underbrace{\overset{\text{hocolim}}{\longleftarrow}}_{\text{const}} \mathcal{C}[W^{-1}],$$

- One should work with $C'[W_I^{-1}]$ rather than $C[W^{-1}]'$.
- More explicitly: D(ModR¹) rather than D(ModR)¹.

• Let C be a cocomplete category and $I \in Cat$ a small category. Then we have

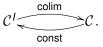


 If say C is a category of complexes and W the class of quasi-isomorphisms, we just derive the adjoint pair of functors!

$$\mathcal{C}^{\prime}[W_{l}^{-1}] \underbrace{\overset{\text{hocolim}}{\longleftarrow}}_{\text{const}} \mathcal{C}[W^{-1}],$$

- One should work with $C'[W_l^{-1}]$ rather than $C[W^{-1}]'$.
- More explicitly: $D(ModR^{l})$ rather than $D(ModR)^{l}$.

• Let C be a cocomplete category and $I \in Cat$ a small category. Then we have

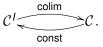


 If say C is a category of complexes and W the class of quasi-isomorphisms, we just derive the adjoint pair of functors!

$$\mathcal{C}[W^{-1}]' \underbrace{\mathcal{C}'[W_{l}^{-1}]}_{\text{diag}} \mathcal{C}'[W_{l}^{-1}] \underbrace{\mathcal{C}[W^{-1}]}_{\text{const}} \mathcal{C}[W^{-1}],$$

- One should work with $C'[W_l^{-1}]$ rather than $C[W^{-1}]'$.
- More explicitly: $D(ModR^{l})$ rather than $D(ModR)^{l}$.

• Let C be a cocomplete category and $I \in Cat$ a small category. Then we have



 If say C is a category of complexes and W the class of quasi-isomorphisms, we just derive the adjoint pair of functors!

$$\mathcal{C}[W^{-1}]^{I} \underbrace{\xrightarrow{X \to \infty}}_{\text{diag}} \mathcal{C}^{I}[W_{I}^{-1}] \underbrace{\xrightarrow{\text{hocolim}}}_{\text{const}} \mathcal{C}[W^{-1}],$$

- One should work with $C'[W_l^{-1}]$ rather than $C[W^{-1}]'$.
- More explicitly: $D(ModR^{l})$ rather than $D(ModR)^{l}$.

• Now we obtain Ls⁻ as:

$$D(k(\bullet \leftarrow \bullet \rightarrow \bullet)) \xrightarrow{=} D(k\Box) \xrightarrow{=} D(k(\bullet \rightarrow \bullet \leftarrow \bullet))$$

Subtle point: Interpretation of the above "representations."

• Now we obtain Ls⁻ as:

$$D(k(\bullet \leftarrow \bullet \rightarrow \bullet)) \xrightarrow{\text{left Kan}} D(k\Box) \xrightarrow{\text{restr.}} D(k(\bullet \rightarrow \bullet \leftarrow \bullet))$$

• Subtle point: Interpretation of the above "representations."

• Now we obtain Ls⁻ as:

$$D(k(\bullet \leftarrow \bullet \rightarrow \bullet)) \xrightarrow{\text{left Kan}} D(k\Box) \xrightarrow{\text{restr.}} D(k(\bullet \rightarrow \bullet \leftarrow \bullet))$$

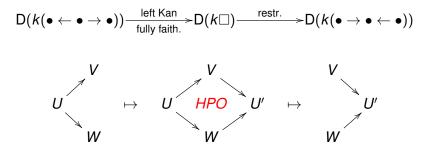
$$U \xrightarrow{V} \qquad V \qquad V \qquad V$$

$$U \xrightarrow{W} \qquad HPO \qquad U'$$

$$W \qquad W$$

Subtle point: Interpretation of the above "representations."

• Now we obtain Ls⁻ as:



Subtle point: Interpretation of the above "representations."

• Now we obtain Ls⁻ as:

• Subtle point: Interpretation of the above "representations."

• Now we obtain Ls⁻ as:

Subtle point: Interpretation of the above "representations."

Outline

2 Homotopy (co)limits

4 Results

Idea (Grothendieck, Heller, Franke, others)

Given (C, W), the category of *I*-shaped diagrams in the homotopy category $C[W^{-1}]$ contains too little information. We need to remember $C'[W_I^{-1}]$ instead, i.e. the homotopy category of *I*-shaped diagrams.

Definition

A prederivator is a strict 2-functor \mathscr{D} : $Cat^{op} \rightarrow CAT$:

Idea (Grothendieck, Heller, Franke, others)

Given (\mathcal{C}, W) , the category of *I*-shaped diagrams in the homotopy category $\mathcal{C}[W^{-1}]$ contains too little information. We need to remember $\mathcal{C}^{I}[W_{I}^{-1}]$ instead, i.e. the homotopy category of *I*-shaped diagrams.

Definition

A prederivator is a strict 2-functor \mathscr{D} : $Cat^{op} \rightarrow CAT$:

Idea (Grothendieck, Heller, Franke, others)

Given (\mathcal{C}, W) , the category of *I*-shaped diagrams in the homotopy category $\mathcal{C}[W^{-1}]$ contains too little information. We need to remember $\mathcal{C}^{I}[W_{I}^{-1}]$ instead, i.e. the homotopy category of *I*-shaped diagrams.

Definition

A prederivator is a strict 2-functor \mathscr{D} : $Cat^{op} \rightarrow CAT$:

Idea (Grothendieck, Heller, Franke, others)

Given (\mathcal{C}, W) , the category of *I*-shaped diagrams in the homotopy category $\mathcal{C}[W^{-1}]$ contains too little information. We need to remember $\mathcal{C}^{I}[W_{I}^{-1}]$ instead, i.e. the homotopy category of *I*-shaped diagrams.

Definition

A prederivator is a strict 2-functor $\mathscr{D}: Cat^{op} \to CAT$:

Definition

Idea (Grothendieck, Heller, Franke, others)

Given (\mathcal{C}, W) , the category of *I*-shaped diagrams in the homotopy category $\mathcal{C}[W^{-1}]$ contains too little information. We need to remember $\mathcal{C}^{I}[W_{I}^{-1}]$ instead, i.e. the homotopy category of *I*-shaped diagrams.

Definition

A prederivator is a strict 2-functor $\mathscr{D}: Cat^{op} \to CAT$:

A derivator is a prederivator satisfying certain simple category-theoretic axioms to allow for a well behaved calculus of homotopy Kan extensions.

Definition

Idea (Grothendieck, Heller, Franke, others)

Given (\mathcal{C}, W) , the category of *I*-shaped diagrams in the homotopy category $\mathcal{C}[W^{-1}]$ contains too little information. We need to remember $\mathcal{C}^{I}[W_{I}^{-1}]$ instead, i.e. the homotopy category of *I*-shaped diagrams.

Definition

A prederivator is a strict 2-functor $\mathscr{D}: Cat^{op} \to CAT$:

A derivator is a prederivator satisfying certain simple category-theoretic axioms to allow for a well behaved calculus of homotopy Kan extensions.

Definition

Idea (Grothendieck, Heller, Franke, others)

Given (\mathcal{C}, W) , the category of *I*-shaped diagrams in the homotopy category $\mathcal{C}[W^{-1}]$ contains too little information. We need to remember $\mathcal{C}^{I}[W_{I}^{-1}]$ instead, i.e. the homotopy category of *I*-shaped diagrams.

Definition

A prederivator is a strict 2-functor $\mathscr{D}: Cat^{op} \to CAT$:

A derivator is a prederivator satisfying certain simple category-theoretic axioms to allow for a well behaved calculus of homotopy Kan extensions.

• Let *k* be a field. Then the corresponding derivator \mathcal{D}_k is given by

- Although D_k enhances the rather uninteresting category D(Mod k), the derivator itself is very interesting.
- In some sense, the main goal of representation theory is to understand this derivator in detail.
- There is more: Representation theoretic concepts (Auslander-Reiten theory, reflection functors, tilting modules) are very useful in studying general derivators.

• Let k be a field. Then the corresponding derivator \mathcal{D}_k is given by

- Although D_k enhances the rather uninteresting category D(Mod k), the derivator itself is very interesting.
- In some sense, the main goal of representation theory is to understand this derivator in detail.
- There is more: Representation theoretic concepts (Auslander-Reiten theory, reflection functors, tilting modules) are very useful in studying general derivators.

• Let k be a field. Then the corresponding derivator \mathcal{D}_k is given by

- Although D_k enhances the rather uninteresting category D(Mod k), the derivator itself is very interesting.
- In some sense, the main goal of representation theory is to understand this derivator in detail.
- There is more: Representation theoretic concepts (Auslander-Reiten theory, reflection functors, tilting modules) are very useful in studying general derivators.

• Let k be a field. Then the corresponding derivator \mathcal{D}_k is given by

- Although D_k enhances the rather uninteresting category D(Mod k), the derivator itself is very interesting.
- In some sense, the main goal of representation theory is to understand this derivator in detail.
- There is more: Representation theoretic concepts (Auslander-Reiten theory, reflection functors, tilting modules) are very useful in studying general derivators.

• Let k be a field. Then the corresponding derivator \mathcal{D}_k is given by

- Although D_k enhances the rather uninteresting category D(Mod k), the derivator itself is very interesting.
- In some sense, the main goal of representation theory is to understand this derivator in detail.
- There is more: Representation theoretic concepts (Auslander-Reiten theory, reflection functors, tilting modules) are very useful in studying general derivators.

• Let k be a field. Then the corresponding derivator \mathcal{D}_k is given by

- Although D_k enhances the rather uninteresting category D(Mod k), the derivator itself is very interesting.
- In some sense, the main goal of representation theory is to understand this derivator in detail.
- There is more: Representation theoretic concepts (Auslander-Reiten theory, reflection functors, tilting modules) are very useful in studying general derivators.

• Let k be a field. Then the corresponding derivator \mathcal{D}_k is given by

- Although D_k enhances the rather uninteresting category D(Mod k), the derivator itself is very interesting.
- In some sense, the main goal of representation theory is to understand this derivator in detail.
- There is more: Representation theoretic concepts (Auslander-Reiten theory, reflection functors, tilting modules) are very useful in studying general derivators.

- Let 𝒯 be the derivator of topological spaces, i.e. 𝔅 = 𝒯ស𝑘, 𝑘 = weak equivalences, and 𝒯(𝔅) = 𝒯ャ𝑘^I[𝑘^{−1}].
- Then 𝒯 is a universal derivator (Cisinski, Heller). Roughly speaking, given a derivator 𝒯 and X ∈ 𝒯(*), there are a canonical functors

$$"-\otimes X''\colon \mathscr{T}(J) o \mathscr{D}(J), \quad \mathrm{pt.}\mapsto X.$$

• Even more holds. Every derivator is a module over \mathcal{T} :

$$\otimes \colon \mathscr{T} \times \mathscr{D} \longrightarrow \mathscr{D}$$

- Let 𝔅 be the derivator of topological spaces, i.e. 𝔅 = 𝔅op, 𝑋 = weak equivalences, and 𝔅(𝔅) = 𝔅op^I[𝑋⁻¹_I].
- Then *T* is a universal derivator (Cisinski, Heller). Roughly speaking, given a derivator *D* and *X* ∈ *D*(*), there are a canonical functors

$$"-\otimes X'' \colon \mathscr{T}(J) \to \mathscr{D}(J), \quad \mathrm{pt.} \mapsto X.$$

• Even more holds. Every derivator is a module over \mathcal{T} :

$$\otimes \colon \mathscr{T} \times \mathscr{D} \longrightarrow \mathscr{D}$$

- Let 𝒮 be the derivator of topological spaces, i.e. 𝔅 = 𝒯op, 𝑋 = weak equivalences, and 𝔅(𝔅) = 𝒯op^I[𝑋⁻¹_I].
- Then 𝒮 is a universal derivator (Cisinski, Heller). Roughly speaking, given a derivator 𝒮 and X ∈ 𝒮(*), there are a canonical functors

 $"-\otimes X''\colon \mathscr{T}(J) \to \mathscr{D}(J), \quad \mathrm{pt.} \mapsto X.$

• Even more holds. Every derivator is a module over \mathcal{T} :

$$\otimes \colon \mathscr{T} \times \mathscr{D} \longrightarrow \mathscr{D}$$

- Let 𝔅 be the derivator of topological spaces, i.e. 𝔅 = 𝔅op, 𝑋 = weak equivalences, and 𝔅(𝔅) = 𝔅op^I[𝑋⁻¹_I].
- Then 𝒮 is a universal derivator (Cisinski, Heller). Roughly speaking, given a derivator 𝒮 and X ∈ 𝒮(*), there are a canonical functors

$$"-\otimes X''\colon \mathscr{T}(J) o \mathscr{D}(J), \quad \mathrm{pt.}\mapsto X.$$

• Even more holds. Every derivator is a module over \mathcal{T} :

$$\otimes \colon \mathscr{T} \times \mathscr{D} \longrightarrow \mathscr{D}$$

- Let 𝔅 be the derivator of topological spaces, i.e. 𝔅 = 𝔅op, 𝑋 = weak equivalences, and 𝔅(𝔅) = 𝔅op^I[𝑋⁻¹_I].
- Then 𝒮 is a universal derivator (Cisinski, Heller). Roughly speaking, given a derivator 𝒮 and X ∈ 𝒮(*), there are a canonical functors

$$``-\otimes X''\colon \mathscr{T}(J) o \mathscr{D}(J), \quad \mathrm{pt.}\mapsto X.$$

• Even more holds. Every derivator is a module over \mathcal{T} :

$$\otimes \colon \mathscr{T} \times \mathscr{D} \longrightarrow \mathscr{D}$$

- Let 𝔅 be the derivator of topological spaces, i.e. 𝔅 = 𝔅op, 𝑋 = weak equivalences, and 𝔅(𝔅) = 𝔅op^I[𝑋⁻¹_I].
- Then 𝒮 is a universal derivator (Cisinski, Heller). Roughly speaking, given a derivator 𝒮 and X ∈ 𝒮(*), there are a canonical functors

$$``-\otimes X''\colon \mathscr{T}(J) o \mathscr{D}(J), \quad \mathrm{pt.}\mapsto X.$$

• Even more holds. Every derivator is a module over \mathcal{T} :

$$\otimes \colon \mathscr{T} \times \mathscr{D} \longrightarrow \mathscr{D}$$

• The derivators ${\mathscr D}$ enhancing derived categories satisfy more:

-) the base category $\mathscr{D}(*)$ is pointed
- homotopy pullbacks = homotopy pushouts
- (recall the example with reflections again!) back to reflections
- Such derivators are called stable.
- A topological example: The derivator ${\mathscr S}$ of topological spectra.
- This is a universal stable derivator with a canonical action

$$\otimes \colon \mathscr{S} \times \mathscr{D} \longrightarrow \mathscr{D}$$

• The derivators ${\mathscr D}$ enhancing derived categories satisfy more:

- the base category $\mathscr{D}(*)$ is pointed
- homotopy pullbacks = homotopy pushouts (recall the example with reflections again!) • back to reflections
- Such derivators are called stable.
- A topological example: The derivator ${\mathscr S}$ of topological spectra.
- This is a universal stable derivator with a canonical action

$$\otimes \colon \mathscr{S} \times \mathscr{D} \longrightarrow \mathscr{D}$$

• The derivators ${\mathscr D}$ enhancing derived categories satisfy more:

-) the base category $\mathscr{D}(*)$ is pointed
- homotopy pullbacks = homotopy pushouts

(recall the example with reflections again!)
back to reflections

- Such derivators are called stable.
- A topological example: The derivator ${\mathscr S}$ of topological spectra.
- This is a universal stable derivator with a canonical action

$$\otimes \colon \mathscr{S} \times \mathscr{D} \longrightarrow \mathscr{D}$$

• The derivators ${\mathscr D}$ enhancing derived categories satisfy more:

- the base category $\mathscr{D}(*)$ is pointed
- homotopy pullbacks = homotopy pushouts (recall the example with reflections again!) back to reflections
- Such derivators are called stable.
- A topological example: The derivator S of topological spectra.
- This is a universal stable derivator with a canonical action

$$\otimes \colon \mathscr{S} \times \mathscr{D} \longrightarrow \mathscr{D}$$

• The derivators ${\mathscr D}$ enhancing derived categories satisfy more:

- **)** the base category $\mathscr{D}(*)$ is pointed
- homotopy pullbacks = homotopy pushouts (recall the example with reflections again!) back to reflections
- Such derivators are called stable.
- A topological example: The derivator ${\mathscr S}$ of topological spectra.
- This is a universal stable derivator with a canonical action

$$\otimes \colon \mathscr{S} \times \mathscr{D} \longrightarrow \mathscr{D}$$

• The derivators ${\mathscr D}$ enhancing derived categories satisfy more:

-) the base category $\mathscr{D}(*)$ is pointed
- homotopy pullbacks = homotopy pushouts (recall the example with reflections again!) back to reflections
- Such derivators are called stable.
- A topological example: The derivator \mathscr{S} of topological spectra.
- This is a universal stable derivator with a canonical action

$$\otimes\colon \mathscr{S}\times\mathscr{D}\longrightarrow \mathscr{D}$$

• The derivators ${\mathscr D}$ enhancing derived categories satisfy more:

- the base category $\mathscr{D}(*)$ is pointed
 - homotopy pullbacks = homotopy pushouts (recall the example with reflections again!) • back to reflections
- Such derivators are called stable.
- A topological example: The derivator \mathscr{S} of topological spectra.
- This is a universal stable derivator with a canonical action

$$\otimes\colon \mathscr{S}\times\mathscr{D}\longrightarrow \mathscr{D}$$

Theorem (Franke, Maltsiniotis, Groth)

A stable derivator admits a canonical additive structure, i.e. we actually have a 2-functor

 $\mathscr{D}: \mathcal{C}at^{\mathsf{op}} \to \mathsf{ADD}.$

Under an additional mild hypothesis, we even have a canonical triangulated structure:

 $\mathscr{D}: \mathcal{C}at^{\operatorname{op}} \to \mathsf{TRIA}.$

Remark

Theorem (Franke, Maltsiniotis, Groth)

A stable derivator admits a canonical additive structure, i.e. we actually have a 2-functor

 $\mathscr{D} \colon \mathcal{C}at^{\mathsf{op}} \to \mathsf{ADD}.$

Under an additional mild hypothesis, we even have a canonical triangulated structure:

 $\mathscr{D}: \mathcal{C}at^{\operatorname{op}} \to \mathsf{TRIA}.$

Remark

Theorem (Franke, Maltsiniotis, Groth)

A stable derivator admits a canonical additive structure, i.e. we actually have a 2-functor

 $\mathscr{D}: \mathcal{C}at^{\mathsf{op}} \to \mathsf{ADD}.$

Under an additional mild hypothesis, we even have a canonical triangulated structure:

 $\mathscr{D} \colon \mathcal{C}at^{\mathsf{op}} \to \mathsf{TRIA}.$

Remark

Theorem (Franke, Maltsiniotis, Groth)

A stable derivator admits a canonical additive structure, i.e. we actually have a 2-functor

 $\mathscr{D}: \mathcal{C}at^{\mathsf{op}} \to \mathsf{ADD}.$

Under an additional mild hypothesis, we even have a canonical triangulated structure:

 $\mathscr{D}: \mathcal{C}at^{\mathsf{op}} \to \mathsf{TRIA}.$

Remark

Theorem (Franke, Maltsiniotis, Groth)

A stable derivator admits a canonical additive structure, i.e. we actually have a 2-functor

 $\mathscr{D}: \mathcal{C}at^{\mathsf{op}} \to \mathsf{ADD}.$

Under an additional mild hypothesis, we even have a canonical triangulated structure:

 $\mathscr{D} \colon \mathcal{C}at^{\mathsf{op}} \to \mathsf{TRIA}.$

Remark

Outline

- 2 Homotopy (co)limits
- 3 Grothendieck derivators

Theorem (Groth & Š., 2013)

Let Q, Q' be two finite oriented trees with the same underlying graph. Then

 $\mathscr{D}(\mathcal{Q})\simeq \mathscr{D}(\mathcal{Q}')$

for any stable derivator \mathcal{D} . Moreover, this equivalence can be taken of the form

 $\mathcal{T}\otimes_{[\mathcal{Q}]}-:\mathscr{D}(\mathcal{Q}) o\mathscr{D}(\mathcal{Q}')$

for a suitable spectral bimodule $T \in \mathscr{S}(Q' \times Q)$.

- A conceptual explanation of May's axioms for tensor triang. cat.
- Stable derivators are also enhancements of various versions of "higher triangulated" categories.
- Equivalences for all quivers without oriented cycles.
- Ambitious: abstract representation theory.

Theorem (Groth & Š., 2013)

Let Q, Q' be two finite oriented trees with the same underlying graph. Then

 $\mathscr{D}(\mathcal{Q})\simeq \mathscr{D}(\mathcal{Q}')$

for any stable derivator \mathcal{D} . Moreover, this equivalence can be taken of the form

 $f\otimes_{[Q]}-:\mathscr{D}(Q) o\mathscr{D}(Q')$

for a suitable spectral bimodule $T \in \mathscr{S}(Q' \times Q)$.

- A conceptual explanation of May's axioms for tensor triang. cat.
- Stable derivators are also enhancements of various versions of "higher triangulated" categories.
- Equivalences for all quivers without oriented cycles.
- Ambitious: abstract representation theory.

Theorem (Groth & Š., 2013)

Let Q, Q' be two finite oriented trees with the same underlying graph. Then

 $\mathscr{D}(\mathcal{Q})\simeq \mathscr{D}(\mathcal{Q}')$

for any stable derivator \mathcal{D} . Moreover, this equivalence can be taken of the form

$$T\otimes_{[Q]} -: \mathscr{D}(Q) \to \mathscr{D}(Q')$$

for a suitable spectral bimodule $T \in \mathscr{S}(Q' \times Q)$.

- A conceptual explanation of May's axioms for tensor triang. cat.
- Stable derivators are also enhancements of various versions of "higher triangulated" categories.
- Equivalences for all quivers without oriented cycles.
- Ambitious: abstract representation theory.

Theorem (Groth & Š., 2013)

Let Q, Q' be two finite oriented trees with the same underlying graph. Then

 $\mathscr{D}(\mathcal{Q})\simeq \mathscr{D}(\mathcal{Q}')$

for any stable derivator \mathcal{D} . Moreover, this equivalence can be taken of the form

 $T\otimes_{[Q]} -: \mathscr{D}(Q) \to \mathscr{D}(Q')$

for a suitable spectral bimodule $T \in \mathscr{S}(Q' \times Q)$.

- A conceptual explanation of May's axioms for tensor triang. cat.
- Stable derivators are also enhancements of various versions of "higher triangulated" categories.
- Equivalences for all quivers without oriented cycles.
- Ambitious: abstract representation theory.

Theorem (Groth & Š., 2013)

Let Q, Q' be two finite oriented trees with the same underlying graph. Then

 $\mathscr{D}(\mathcal{Q})\simeq \mathscr{D}(\mathcal{Q}')$

for any stable derivator \mathcal{D} . Moreover, this equivalence can be taken of the form

 $T\otimes_{[Q]} -: \mathscr{D}(Q) \to \mathscr{D}(Q')$

for a suitable spectral bimodule $T \in \mathscr{S}(Q' \times Q)$.

- A conceptual explanation of May's axioms for tensor triang. cat.
- Stable derivators are also enhancements of various versions of "higher triangulated" categories.
- Equivalences for all quivers without oriented cycles.
- Ambitious: abstract representation theory.

Theorem (Groth & Š., 2013)

Let Q, Q' be two finite oriented trees with the same underlying graph. Then

 $\mathscr{D}(\mathcal{Q})\simeq \mathscr{D}(\mathcal{Q}')$

for any stable derivator \mathcal{D} . Moreover, this equivalence can be taken of the form

 $T\otimes_{[Q]} -: \mathscr{D}(Q) \to \mathscr{D}(Q')$

for a suitable spectral bimodule $T \in \mathscr{S}(Q' \times Q)$.

- A conceptual explanation of May's axioms for tensor triang. cat.
- Stable derivators are also enhancements of various versions of "higher triangulated" categories.
- Equivalences for all quivers without oriented cycles.
- Ambitious: abstract representation theory.

Theorem (Groth & Š., 2013)

Let Q, Q' be two finite oriented trees with the same underlying graph. Then

 $\mathscr{D}(\mathcal{Q})\simeq \mathscr{D}(\mathcal{Q}')$

for any stable derivator \mathcal{D} . Moreover, this equivalence can be taken of the form

 $T\otimes_{[Q]} -: \mathscr{D}(Q) \to \mathscr{D}(Q')$

for a suitable spectral bimodule $T \in \mathscr{S}(Q' \times Q)$.

Other (intended) results and applications:

- A conceptual explanation of May's axioms for tensor triang. cat.
- Stable derivators are also enhancements of various versions of "higher triangulated" categories.
- Equivalences for all quivers without oriented cycles.

• Ambitious: abstract representation theory.

Theorem (Groth & Š., 2013)

Let Q, Q' be two finite oriented trees with the same underlying graph. Then

 $\mathscr{D}(\mathcal{Q})\simeq \mathscr{D}(\mathcal{Q}')$

for any stable derivator \mathcal{D} . Moreover, this equivalence can be taken of the form

$$T\otimes_{[\mathcal{Q}]}-:\mathscr{D}(\mathcal{Q}) o\mathscr{D}(\mathcal{Q}')$$

for a suitable spectral bimodule $T \in \mathscr{S}(Q' \times Q)$.

- A conceptual explanation of May's axioms for tensor triang. cat.
- Stable derivators are also enhancements of various versions of "higher triangulated" categories.
- Equivalences for all quivers without oriented cycles.
- Ambitious: abstract representation theory.