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The problem and motivation

Problem (Rosicky)

Given aring R, is there a regular cardinal A such that the A-pure global
dimension of Mod-R is < 17?

4

Motivation

Representability of functors in triangulated categories. In this case:
Obstructions to representability of certain functors D(Mod-R) — Ab.

Theorem (Bazzoni-S., 2010)
Let k be an uncountable field (e.g. k = C). Assume that R is one of:

Q@ R=K[x1,Xo,...,Xp], N> 2,
Q@ R=(kY),dimgV>2.

Then no such regular cardinal \ exists.

4
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Setup and notation

@ R adiscrete valuation domain (e.g. Z, or k[x]).
@ p € R a prime, unique up to multiplication by a unit.
@ Given G € Mod-R, inductively define p? G:

» pP°G=G,

» PG = p(p’ G),

» p°G= () pG for o limit.

p<o
@ Note:

PPGOP'GCPPGD---Dp’GDp°t'GD -

is a transfinite sequence of iterated Jacobson radicals.

@ The length of G is defined as min{\ | p*G = p**'G}. For such ),
p*G is divisible, so a summand of G. In particular, PG =0if G is
reduced.
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Balanced sequences
Observation
G — p*G gives a functor p*(—) : Mod-R — Mod-R, which is not exact.

Definition
Let A be an ordinal. A short exact sequence

0—-A—-B—-C—0

is \-balanced if
0—-p°A—p°B—-p°C—0

is exact for each o < ).

Aim
Let X be limit. Construct a set of modules S, such that

A-balanced <= S,-pure.

y
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Walker's modules Pj

@ Construct a module Pg using generators and relations.
@ For an ordinal 3, generators are indexed by finite sequences

06108>...8, suchthat 8> 081> 08> > Gn.
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pP-B31B2...0n08n41 =B1P2...0n and p-B=0.
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Walker's modules Pj

@ Construct a module Pg using generators and relations.
@ For an ordinal 3, generators are indexed by finite sequences
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Walker's modules Pj

@ Construct a module Pg using generators and relations.
@ For an ordinal 3, generators are indexed by finite sequences

06108>...8, suchthat 8> 081> 08> > Gn.

@ Relations:

pP-B31B2...0n08n41 =B1P2...0n and p-B=0.
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210
, LV e

Jan Stovigek (ECC) Rosicky’s problem September, 2010 8/18



A characterization of balanced sequences

Theorem (Walker, 1972)
Let \ be a limit ordinal.
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A characterization of balanced sequences

Theorem (Walker, 1972)

Let X be a limit ordinal. The following are equivalent for an exact
sequences:0 —-A—B— C—0:

@ c is \-balanced.
@ Foreacho < ),

0 — Homg(P,,A) — Homg(P,, B) — Homg(P,,C) — 0
is exact.
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A characterization of balanced sequences

Theorem (Walker, 1972)

Let X be a limit ordinal. The following are equivalent for an exact
sequences:0 —-A—B— C—0:

@ c is \-balanced.
@ Foreacho < ),

0 — Homg(P,,A) — Homg(P,, B) — Homg(P,,C) — 0
is exact.
Q P~ for each o < \.
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@ Given a module G and an ordinal ), the p*-adic topology on G is a
linear topology with basis of neighborhoods of 0 € G taken as

U ={p’G|o <A}

@ For abelian p-groups studied by Mines, 1968.
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linear topology with basis of neighborhoods of 0 € G taken as
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What is the p*-adic topology?

@ Given a module G and an ordinal ), the p*-adic topology on G is a
linear topology with basis of neighborhoods of 0 € G taken as

Up = {p"G|o <A}

@ For abelian p-groups studied by Mines, 1968.

Facts
Assume ) is limit and G is reduced torsion. Then:

@ p’-adic topology is discrete <= length of Gis < \;
@ p*-adic topology is Hausdorff < length of Gis < \;
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Pure projectives are complete for uncountable A

Fact & Definition
Any linear topology determines a uniform space.
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Theorem (Bazzoni-S., 2010)
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Higher pure global dimensions of valuation domains

Theorem (Bazzoni-S., 2010)

Let R be a discrete valuation domain and \ an uncountable regular
cardinal.

Then the \-pure global dimension of Walker's module P, is > 1.

Idea behind proof

@ The exact sequence

0— K — @ PéHomH(P@PA)) S P)\ N
B<A
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Higher pure global dimensions of valuation domains

Theorem (Bazzoni-S., 2010)

Let R be a discrete valuation domain and \ an uncountable regular

cardinal.
Then the \-pure global dimension of Walker's module P, is > 1.

Idea behind proof

@ The exact sequence

0— K — @ PéHomH(Pﬂva)) S P)\ N
B<A
is A-pure and A-balanced.

©@ K is not a closed subspace of @50 PéHomH(PB,PA))

in p*-adic
topology,
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Theorem (Bazzoni-S., 2010)

Let R be a discrete valuation domain and \ an uncountable regular

cardinal.
Then the \-pure global dimension of Walker's module P, is > 1.

Idea behind proof

@ The exact sequence

0— K — @ PéHomH(Pﬁva)) S P)\ N
B<A

is A-pure and A-balanced.

@ K is not a closed subspace of @,_, PéH(’m”(Pﬁ’PX)) in p*-adic
topology, So it is nether complete nor A-pure projective.
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Finitely accessible categories

Definition
Let C be an category with direct limits. Then
@ X e Cis finitely presentable if Hom¢ (X, —) commutes with direct
limits.
@ C is afinitely accessible category if 9 set S of finitely presentable
objects such that € = lim S.

@ 7 C Cis afinitely accessible subcategory of C if 7 is closed under
lim in C and for each X € 7 we have

X finitely presentable in 7 = X finitely presentable C.
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Purity in finitely accessible categories

Fact
If C is additive finitely accessible and X regular,
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Purity in finitely accessible categories
Fact

If C is additive finitely accessible and ) regular, it makes perfect sense
to speak of

@ )\-pure exact sequences and \-pure projective objects in C,
© )\-pure projective dimension of G € C,
© \-pure global dimension of C.

Observation (irrelevance of the ambient category!)
If 7 C Cis afinitely accessible subcategory and G € 7, then

A-pure proj.dim,G = A-pure proj.dim.G

Corollary
A-pure gl.dimT < \-pure gl.dimC.

v
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Transferring lower bounds for A-pure global dimension

@ Let R be a discrete valuation domain and A regular uncountable.

Jan Stovigek (ECC) Rosicky’s problem September, 2010 16/18



Transferring lower bounds for A-pure global dimension

@ Let R be a discrete valuation domain and A regular uncountable.
@ Let 7 be the category of torsion R-modules.

Jan Stovigek (ECC) Rosicky’s problem September, 2010 16/18



Transferring lower bounds for A-pure global dimension

@ Let R be a discrete valuation domain and A regular uncountable.
@ Let 7 be the category of torsion R-modules.
@ Then 7 is a finitely accessible subcategory of Mod-R.

Jan Stovigek (ECC) Rosicky’s problem September, 2010 16/18



Transferring lower bounds for A-pure global dimension

@ Let R be a discrete valuation domain and A regular uncountable.
@ Let 7 be the category of torsion R-modules.

@ Then 7 is a finitely accessible subcategory of Mod-R.

@ We know that Walker’s P, belong to 7.

Jan Stovigek (ECC) Rosicky’s problem September, 2010 16/18



Transferring lower bounds for A-pure global dimension

@ Let R be a discrete valuation domain and A regular uncountable.
@ Let 7 be the category of torsion R-modules.

@ Then 7 is a finitely accessible subcategory of Mod-R.

@ We know that Walker’s P, belong to 7.

@ Therefore, A-pure proj.dim, Py > 1.

Jan Stovigek (ECC) Rosicky’s problem September, 2010 16/18



Transferring lower bounds for A-pure global dimension

@ Let R be a discrete valuation domain and A regular uncountable.
@ Let 7 be the category of torsion R-modules.

@ Then 7 is a finitely accessible subcategory of Mod-R.

@ We know that Walker’s P, belong to 7.

@ Therefore, A-pure proj.dim, Py > 1.

@ If we can embed 7 as a finitely accessible subcategory into
Mod-S

Jan Stovigek (ECC) Rosicky’s problem September, 2010 16/18



Transferring lower bounds for A-pure global dimension

@ Let R be a discrete valuation domain and A regular uncountable.
@ Let 7 be the category of torsion R-modules.

@ Then 7 is a finitely accessible subcategory of Mod-R.

@ We know that Walker’s P, belong to 7.

@ Therefore, A-pure proj.dim, Py > 1.

@ If we can embed 7 as a finitely accessible subcategory into
Mod-S (S another ring).

Jan Stovigek (ECC) Rosicky’s problem September, 2010 16/18
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@ Let R be a discrete valuation domain and A regular uncountable.
@ Let 7 be the category of torsion R-modules.

@ Then 7 is a finitely accessible subcategory of Mod-R.

@ We know that Walker’s P, belong to 7.

@ Therefore, A-pure proj.dim, Py > 1.

@ If we can embed 7 as a finitely accessible subcategory into
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@ Let R be a discrete valuation domain and A regular uncountable.
@ Let 7 be the category of torsion R-modules.

@ Then 7 is a finitely accessible subcategory of Mod-R.

@ We know that Walker’s P, belong to 7.

@ Therefore, A-pure proj.dim, Py > 1.
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Transferring lower bounds for A-pure global dimension

@ Let R be a discrete valuation domain and A regular uncountable.
@ Let 7 be the category of torsion R-modules.

@ Then 7 is a finitely accessible subcategory of Mod-R.

@ We know that Walker’s P, belong to 7.

@ Therefore, A-pure proj.dim, Py > 1.

@ If we can embed 7 as a finitely accessible subcategory into
Mod-S (S another ring). Then

1 < A-pure gl.dim 7 < A-pure gl.dim (Mod-S).

@ We can do this for S = k[xi, X2, ..., Xs], n>2,and for S= (K V),
dim, V > 2!
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Results of Osofsky and Lenzing

Theorem (Osofsky, 1973)
Let k be an uncountable field and R = k[x, y].
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Results of Osofsky and Lenzing

Theorem (Osofsky, 1973)

Let k be an uncountable field and R = k[x, y]. Then:

pure proj.dimgk(x,y) = 2.

Theorem (Lenzing, 1984)

Let k be an uncountable field and R = (kK k*). Let G € Mod-R be the

generic module (analog of the fraction field). Then:

pure proj.dimgG = 2.

Remark
Thecase R= (§ V), dimcV > 2,

V.
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Results of Osofsky and Lenzing

Theorem (Osofsky, 1973)
Let k be an uncountable field and R = k[x, y]. Then:

pure proj.dimgk(x,y) = 2.

Theorem (Lenzing, 1984)

Let k be an uncountable field and R = (kK k*). Let G € Mod-R be the
generic module (analog of the fraction field). Then:

pure proj.dimgG = 2.

Remark

The case R= (§ V), dim, V > 2, is covered by a result due to Baer,
Brune and Lenzing.

v
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The counterexample

When putting all the pieces together, we obtain:
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The counterexample

When putting all the pieces together, we obtain:

Theorem (Bazzoni-S., 2010)

Let k be an uncountable field and A any infinite regular cardinal.
Assume that R is one of:

Q@ R=K[x1,X2,...,Xp], N> 2,
Q@ R=(kY), dimgV>2.
Then X\-pure gl.dim(Mod-R) > 1.
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