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The problem and motivation

Problem (Rosický)
Given a ring R, is there a regular cardinal λ such that the λ-pure global
dimension of Mod-R is ≤ 1?

Motivation
Representability of functors in triangulated categories. In this case:
Obstructions to representability of certain functors D(Mod-R)→ Ab.

Theorem (Bazzoni-Š., 2010)
Let k be an uncountable field (e.g. k = C). Assume that R is one of:

1 R = k [x1, x2, . . . , xn], n ≥ 2,
2 R =

(
k V
0 k

)
, dimk V ≥ 2.

Then no such regular cardinal λ exists.
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Setup and notation

R a discrete valuation domain (e.g. Ẑp or k [[x ]]).
p ∈ R a prime, unique up to multiplication by a unit.
Given G ∈ Mod-R, inductively define pσG:

I p0G = G,
I pσ+1G = p(pσG),
I pσG =

⋂
ρ<σ

pρG for σ limit.

Note:

p0G ⊇ p1G ⊆ p2G ⊇ · · · ⊇ pσG ⊇ pσ+1G ⊇ · · ·

is a transfinite sequence of iterated Jacobson radicals.
The length of G is defined as min{λ | pλG = pλ+1G}. For such λ,
pλG is divisible, so a summand of G. In particular, pλG = 0 if G is
reduced.
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p ∈ R a prime, unique up to multiplication by a unit.
Given G ∈ Mod-R, inductively define pσG:

I p0G = G,
I pσ+1G = p(pσG),
I pσG =

⋂
ρ<σ

pρG for σ limit.

Note:

p0G ⊇ p1G ⊆ p2G ⊇ · · · ⊇ pσG ⊇ pσ+1G ⊇ · · ·

is a transfinite sequence of iterated Jacobson radicals.
The length of G is defined as min{λ | pλG = pλ+1G}. For such λ,
pλG is divisible, so a summand of G. In particular, pλG = 0 if G is
reduced.
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Balanced sequences
Observation
G 7→ pλG gives a functor pλ(−) : Mod-R → Mod-R, which is not exact.

Definition
Let λ be an ordinal. A short exact sequence

0→ A→ B → C → 0

is λ-balanced if
0→ pσA→ pσB → pσC → 0

is exact for each σ < λ.

Aim
Let λ be limit. Construct a set of modules Sλ such that

λ-balanced ⇐⇒ Sλ-pure.
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Jan Št’ovíček (ECC) Rosický’s problem September, 2010 7 / 18



Balanced sequences
Observation
G 7→ pλG gives a functor pλ(−) : Mod-R → Mod-R, which is not exact.

Definition
Let λ be an ordinal. A short exact sequence

0→ A→ B → C → 0

is λ-balanced if
0→ pσA→ pσB → pσC → 0

is exact for each σ < λ.

Aim
Let λ be limit. Construct a set of modules Sλ such that

λ-balanced ⇐⇒ Sλ-pure.
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Walker’s modules Pβ

Construct a module Pβ using generators and relations.
For an ordinal β, generators are indexed by finite sequences

ββ1β2 . . . βn such that β > β1 > β2 > · · · > βn.

Relations:

p · β1β2 . . . βnβn+1 = β1β2 . . . βn and p · β = 0.

Note: β infinite =⇒ Pβ is |β|-presented.
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A characterization of balanced sequences

Theorem (Walker, 1972)
Let λ be a limit ordinal. The following are equivalent for an exact
sequence ε : 0→ A→ B → C → 0:

1 ε is λ-balanced.
2 For each σ < λ,

0→ HomR(Pσ,A)→ HomR(Pσ,B)→ HomR(Pσ,C)→ 0

is exact.
3 Pσ

∀f

  A
AA

AA
AA

B // C

for each σ < λ.
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Jan Št’ovíček (ECC) Rosický’s problem September, 2010 9 / 18



A characterization of balanced sequences

Theorem (Walker, 1972)
Let λ be a limit ordinal. The following are equivalent for an exact
sequence ε : 0→ A→ B → C → 0:

1 ε is λ-balanced.
2 For each σ < λ,

0→ HomR(Pσ,A)→ HomR(Pσ,B)→ HomR(Pσ,C)→ 0

is exact.
3 Pσ
∃g
��

∀f

  A
AA

AA
AA

B // C

for each σ < λ.
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What is the pλ-adic topology?

Given a module G and an ordinal λ, the pλ-adic topology on G is a
linear topology with basis of neighborhoods of 0 ∈ G taken as

U0 = {pσG | σ < λ}

For abelian p-groups studied by Mines, 1968.

Facts
Assume λ is limit and G is reduced torsion. Then:

1 pλ-adic topology is discrete⇐⇒ length of G is < λ;
2 pλ-adic topology is Hausdorff⇐⇒ length of G is ≤ λ;
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Pure projectives are complete for uncountable λ

Fact & Definition
Any linear topology determines a uniform space.
So we say that G is complete in the pλ-adic topology provided that
every Cauchy net converges.

Theorem (Salce, 1980)
Let

R be a discrete valuation domain,
λ an uncountable regular cardinal,
G ∈ Mod-R reduced, torsion and λ-pure projective (= summand in
a sum of < λ-presented modules).

Then G is complete in the pλ-adic topology.

Jan Št’ovíček (ECC) Rosický’s problem September, 2010 11 / 18



Pure projectives are complete for uncountable λ

Fact & Definition
Any linear topology determines a uniform space.
So we say that G is complete in the pλ-adic topology provided that
every Cauchy net converges.

Theorem (Salce, 1980)
Let

R be a discrete valuation domain,
λ an uncountable regular cardinal,
G ∈ Mod-R reduced, torsion and λ-pure projective (= summand in
a sum of < λ-presented modules).

Then G is complete in the pλ-adic topology.
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Higher pure global dimensions of valuation domains

Theorem (Bazzoni-Š., 2010)
Let R be a discrete valuation domain and λ an uncountable regular
cardinal.
Then the λ-pure global dimension of Walker’s module Pλ is > 1.

Idea behind proof
1 The exact sequence

0 −→ K −→
⊕
β<λ

P(HomR(Pβ ,Pλ))
β −→ Pλ −→ 0

is λ-pure and λ-balanced.
2 K is not a closed subspace of

⊕
β<λ P(HomR(Pβ ,Pλ))

β in pλ-adic
topology, So it is nether complete nor λ-pure projective.
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Jan Št’ovíček (ECC) Rosický’s problem September, 2010 12 / 18



Higher pure global dimensions of valuation domains

Theorem (Bazzoni-Š., 2010)
Let R be a discrete valuation domain and λ an uncountable regular
cardinal.
Then the λ-pure global dimension of Walker’s module Pλ is > 1.

Idea behind proof
1 The exact sequence

0 −→ K −→
⊕
β<λ

P(HomR(Pβ ,Pλ))
β −→ Pλ −→ 0

is λ-pure and λ-balanced.
2 K is not a closed subspace of

⊕
β<λ P(HomR(Pβ ,Pλ))

β in pλ-adic
topology, So it is nether complete nor λ-pure projective.
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Outline

1 The problem and motivation

2 The case of discrete valuation domains
Balanced sequences and Walker’s modules
Employing the pλ-adic topology

3 The counterexample
Purity in finitely accessible categories
Results of Osofsky and Lenzing
Summary
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Finitely accessible categories

Definition
Let C be an category with direct limits. Then

X ∈ C is finitely presentable if HomC(X ,−) commutes with direct
limits.
C is a finitely accessible category if ∃ set S of finitely presentable
objects such that C = lim−→S.
T ⊆ C is a finitely accessible subcategory of C if T is closed under
lim−→ in C and for each X ∈ T we have

X finitely presentable in T =⇒ X finitely presentable C.
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Purity in finitely accessible categories

Fact
If C is additive finitely accessible and λ regular, it makes perfect sense
to speak of

1 λ-pure exact sequences and λ-pure projective objects in C,
2 λ-pure projective dimension of G ∈ C,
3 λ-pure global dimension of C.

Observation (irrelevance of the ambient category!)
If T ⊆ C is a finitely accessible subcategory and G ∈ T , then

λ-pure proj.dimT G = λ-pure proj.dimCG

Corollary
λ-pure gl.dim T ≤ λ-pure gl.dim C.
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Transferring lower bounds for λ-pure global dimension

Let R be a discrete valuation domain and λ regular uncountable.
Let T be the category of torsion R-modules.
Then T is a finitely accessible subcategory of Mod-R.
We know that Walker’s Pλ belong to T .
Therefore, λ-pure proj.dimT Pλ > 1.
If we can embed T as a finitely accessible subcategory into
Mod-S (S another ring). Then

1 < λ-pure gl.dim T ≤ λ-pure gl.dim (Mod-S).

We can do this for S = k [x1, x2, . . . , xn], n ≥ 2, and for S =
(

k V
0 k

)
,

dimk V ≥ 2!
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Results of Osofsky and Lenzing

Theorem (Osofsky, 1973)
Let k be an uncountable field and R = k [x , y ]. Then:

pure proj.dimRk(x , y) = 2.

Theorem (Lenzing, 1984)

Let k be an uncountable field and R =
(

k k2

0 k

)
. Let G ∈ Mod-R be the

generic module (analog of the fraction field). Then:

pure proj.dimRG = 2.

Remark
The case R =

(
k V
0 k

)
, dimk V > 2, is covered by a result due to Baer,

Brune and Lenzing.
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The counterexample

When putting all the pieces together, we obtain:

Theorem (Bazzoni-Š., 2010)
Let k be an uncountable field and λ any infinite regular cardinal.
Assume that R is one of:

1 R = k [x1, x2, . . . , xn], n ≥ 2,
2 R =

(
k V
0 k

)
, dimk V ≥ 2.

Then λ-pure gl.dim(Mod-R) > 1.

Jan Št’ovíček (ECC) Rosický’s problem September, 2010 18 / 18



The counterexample

When putting all the pieces together, we obtain:

Theorem (Bazzoni-Š., 2010)
Let k be an uncountable field and λ any infinite regular cardinal.
Assume that R is one of:

1 R = k [x1, x2, . . . , xn], n ≥ 2,
2 R =

(
k V
0 k

)
, dimk V ≥ 2.

Then λ-pure gl.dim(Mod-R) > 1.
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