
Axioms, algorithms and
Hilbert’s Entscheidungsproblem

Jan Stovicek
Department of Mathematical Sciences

September 9th, 2008

www.ntnu.no Jan Stovicek, Axioms & algorithms



2

Outline

The Decision Problem

Formal Languages and Theories

Incompleteness

Undecidability

www.ntnu.no Jan Stovicek, Axioms & algorithms



3

Outline

The Decision Problem

Formal Languages and Theories

Incompleteness

Undecidability

www.ntnu.no Jan Stovicek, Axioms & algorithms



4

The Decision Problem

Problem (Hilbert’s Entscheidungsproblem, 1928)

Is there an effective procedure (an algorithm) which, given a set of
axioms

and a mathematical proposition, decides whether it is or is
not provable from the axioms?

From: David Hilbert and Wilhelm Ackermann,
Foundations of Theoretical Logic (Grundzüge der theoretischen
Logik), 1928.

www.ntnu.no Jan Stovicek, Axioms & algorithms



4

The Decision Problem

Problem (Hilbert’s Entscheidungsproblem, 1928)

Is there an effective procedure (an algorithm) which, given a set of
axioms and a mathematical proposition,

decides whether it is or is
not provable from the axioms?

From: David Hilbert and Wilhelm Ackermann,
Foundations of Theoretical Logic (Grundzüge der theoretischen
Logik), 1928.

www.ntnu.no Jan Stovicek, Axioms & algorithms



4

The Decision Problem

Problem (Hilbert’s Entscheidungsproblem, 1928)

Is there an effective procedure (an algorithm) which, given a set of
axioms and a mathematical proposition, decides whether it is or is
not provable from the axioms?

From: David Hilbert and Wilhelm Ackermann,
Foundations of Theoretical Logic (Grundzüge der theoretischen
Logik), 1928.

www.ntnu.no Jan Stovicek, Axioms & algorithms



4

The Decision Problem

Problem (Hilbert’s Entscheidungsproblem, 1928)

Is there an effective procedure (an algorithm) which, given a set of
axioms and a mathematical proposition, decides whether it is or is
not provable from the axioms?

From: David Hilbert and Wilhelm Ackermann,
Foundations of Theoretical Logic (Grundzüge der theoretischen
Logik), 1928.

www.ntnu.no Jan Stovicek, Axioms & algorithms



5

The Idea Behind

If we have a reasonable mathematical structure, such as the
arithmetics on natural numbers, then:

1. Give a complete axiomatic description;
2. Use the decision procedure (algorithm) to prove or disprove

mathematical statements mechanically.

Hilbert & Ackermann:
We want to make it clear that for the solution of the
decision problem a process would be given . . . , even
though the difficulties of the process would make practical
use illusory . . .

www.ntnu.no Jan Stovicek, Axioms & algorithms



5

The Idea Behind

If we have a reasonable mathematical structure, such as the
arithmetics on natural numbers, then:

1. Give a complete axiomatic description;

2. Use the decision procedure (algorithm) to prove or disprove
mathematical statements mechanically.

Hilbert & Ackermann:
We want to make it clear that for the solution of the
decision problem a process would be given . . . , even
though the difficulties of the process would make practical
use illusory . . .

www.ntnu.no Jan Stovicek, Axioms & algorithms



5

The Idea Behind

If we have a reasonable mathematical structure, such as the
arithmetics on natural numbers, then:

1. Give a complete axiomatic description;
2. Use the decision procedure (algorithm) to prove or disprove

mathematical statements mechanically.

Hilbert & Ackermann:
We want to make it clear that for the solution of the
decision problem a process would be given . . . , even
though the difficulties of the process would make practical
use illusory . . .

www.ntnu.no Jan Stovicek, Axioms & algorithms



5

The Idea Behind

If we have a reasonable mathematical structure, such as the
arithmetics on natural numbers, then:

1. Give a complete axiomatic description;
2. Use the decision procedure (algorithm) to prove or disprove

mathematical statements mechanically.

Hilbert & Ackermann:
We want to make it clear that for the solution of the
decision problem a process would be given . . . , even
though the difficulties of the process would make practical
use illusory . . .

www.ntnu.no Jan Stovicek, Axioms & algorithms



6

Obstacles to Automated Proving
— Incompleteness: For some very basic mathematical

structures, there is no reasonable complete description.

— Undecidability: There are problems which cannot be solved by
any algorithm.

— Inefficiency: Even if we have an algorithm, it may be far too
slow.

Remarks.

1. The important results on incompleteness and undecidability
come from 1930’s — well before the first real computers were
constructed!

2. Despite the problems, there are computer programs designed
for automated proving.

www.ntnu.no Jan Stovicek, Axioms & algorithms



6

Obstacles to Automated Proving
— Incompleteness: For some very basic mathematical

structures, there is no reasonable complete description.
— Undecidability: There are problems which cannot be solved by

any algorithm.

— Inefficiency: Even if we have an algorithm, it may be far too
slow.

Remarks.

1. The important results on incompleteness and undecidability
come from 1930’s — well before the first real computers were
constructed!

2. Despite the problems, there are computer programs designed
for automated proving.

www.ntnu.no Jan Stovicek, Axioms & algorithms



6

Obstacles to Automated Proving
— Incompleteness: For some very basic mathematical

structures, there is no reasonable complete description.
— Undecidability: There are problems which cannot be solved by

any algorithm.
— Inefficiency: Even if we have an algorithm, it may be far too

slow.

Remarks.

1. The important results on incompleteness and undecidability
come from 1930’s — well before the first real computers were
constructed!

2. Despite the problems, there are computer programs designed
for automated proving.

www.ntnu.no Jan Stovicek, Axioms & algorithms



6

Obstacles to Automated Proving
— Incompleteness: For some very basic mathematical

structures, there is no reasonable complete description.
— Undecidability: There are problems which cannot be solved by

any algorithm.
— Inefficiency: Even if we have an algorithm, it may be far too

slow.

Remarks.

1. The important results on incompleteness and undecidability
come from 1930’s

— well before the first real computers were
constructed!

2. Despite the problems, there are computer programs designed
for automated proving.

www.ntnu.no Jan Stovicek, Axioms & algorithms



6

Obstacles to Automated Proving
— Incompleteness: For some very basic mathematical

structures, there is no reasonable complete description.
— Undecidability: There are problems which cannot be solved by

any algorithm.
— Inefficiency: Even if we have an algorithm, it may be far too

slow.

Remarks.

1. The important results on incompleteness and undecidability
come from 1930’s — well before the first real computers were
constructed!

2. Despite the problems, there are computer programs designed
for automated proving.

www.ntnu.no Jan Stovicek, Axioms & algorithms



6

Obstacles to Automated Proving
— Incompleteness: For some very basic mathematical

structures, there is no reasonable complete description.
— Undecidability: There are problems which cannot be solved by

any algorithm.
— Inefficiency: Even if we have an algorithm, it may be far too

slow.

Remarks.

1. The important results on incompleteness and undecidability
come from 1930’s — well before the first real computers were
constructed!

2. Despite the problems, there are computer programs designed
for automated proving.

www.ntnu.no Jan Stovicek, Axioms & algorithms



7

Outline

The Decision Problem

Formal Languages and Theories

Incompleteness

Undecidability

www.ntnu.no Jan Stovicek, Axioms & algorithms



8

Example: Peano Arithmetic
An attempt to axiomatically describe natural numbers and their
arithmetics.

Axioms:

(P1) not (∃x)(x + 1 = 0);
(P2) x + 1 = y + 1 =⇒ x = y ;
(P3) x + 0 = x ;
(P4) x + (y + 1) = (x + y) + 1;
(P5) x · 0 = 0;
(P6) x · (y + 1) = x · y + x ;
(P7) for any formula ϕ(x) in Peano Arithmetics, we have an axiom

(ϕ(0) and (∀x)(ϕ(x) =⇒ ϕ(x + 1))) =⇒ (∀x)(ϕ(x)).

www.ntnu.no Jan Stovicek, Axioms & algorithms



8

Example: Peano Arithmetic
An attempt to axiomatically describe natural numbers and their
arithmetics.

Axioms:

(P1) not (∃x)(x + 1 = 0);

(P2) x + 1 = y + 1 =⇒ x = y ;
(P3) x + 0 = x ;
(P4) x + (y + 1) = (x + y) + 1;
(P5) x · 0 = 0;
(P6) x · (y + 1) = x · y + x ;
(P7) for any formula ϕ(x) in Peano Arithmetics, we have an axiom

(ϕ(0) and (∀x)(ϕ(x) =⇒ ϕ(x + 1))) =⇒ (∀x)(ϕ(x)).

www.ntnu.no Jan Stovicek, Axioms & algorithms



8

Example: Peano Arithmetic
An attempt to axiomatically describe natural numbers and their
arithmetics.

Axioms:

(P1) not (∃x)(x + 1 = 0);
(P2) x + 1 = y + 1 =⇒ x = y ;

(P3) x + 0 = x ;
(P4) x + (y + 1) = (x + y) + 1;
(P5) x · 0 = 0;
(P6) x · (y + 1) = x · y + x ;
(P7) for any formula ϕ(x) in Peano Arithmetics, we have an axiom

(ϕ(0) and (∀x)(ϕ(x) =⇒ ϕ(x + 1))) =⇒ (∀x)(ϕ(x)).

www.ntnu.no Jan Stovicek, Axioms & algorithms



8

Example: Peano Arithmetic
An attempt to axiomatically describe natural numbers and their
arithmetics.

Axioms:

(P1) not (∃x)(x + 1 = 0);
(P2) x + 1 = y + 1 =⇒ x = y ;
(P3) x + 0 = x ;

(P4) x + (y + 1) = (x + y) + 1;
(P5) x · 0 = 0;
(P6) x · (y + 1) = x · y + x ;
(P7) for any formula ϕ(x) in Peano Arithmetics, we have an axiom

(ϕ(0) and (∀x)(ϕ(x) =⇒ ϕ(x + 1))) =⇒ (∀x)(ϕ(x)).

www.ntnu.no Jan Stovicek, Axioms & algorithms



8

Example: Peano Arithmetic
An attempt to axiomatically describe natural numbers and their
arithmetics.

Axioms:

(P1) not (∃x)(x + 1 = 0);
(P2) x + 1 = y + 1 =⇒ x = y ;
(P3) x + 0 = x ;
(P4) x + (y + 1) = (x + y) + 1;

(P5) x · 0 = 0;
(P6) x · (y + 1) = x · y + x ;
(P7) for any formula ϕ(x) in Peano Arithmetics, we have an axiom

(ϕ(0) and (∀x)(ϕ(x) =⇒ ϕ(x + 1))) =⇒ (∀x)(ϕ(x)).

www.ntnu.no Jan Stovicek, Axioms & algorithms



8

Example: Peano Arithmetic
An attempt to axiomatically describe natural numbers and their
arithmetics.

Axioms:

(P1) not (∃x)(x + 1 = 0);
(P2) x + 1 = y + 1 =⇒ x = y ;
(P3) x + 0 = x ;
(P4) x + (y + 1) = (x + y) + 1;
(P5) x · 0 = 0;

(P6) x · (y + 1) = x · y + x ;
(P7) for any formula ϕ(x) in Peano Arithmetics, we have an axiom

(ϕ(0) and (∀x)(ϕ(x) =⇒ ϕ(x + 1))) =⇒ (∀x)(ϕ(x)).

www.ntnu.no Jan Stovicek, Axioms & algorithms



8

Example: Peano Arithmetic
An attempt to axiomatically describe natural numbers and their
arithmetics.

Axioms:

(P1) not (∃x)(x + 1 = 0);
(P2) x + 1 = y + 1 =⇒ x = y ;
(P3) x + 0 = x ;
(P4) x + (y + 1) = (x + y) + 1;
(P5) x · 0 = 0;
(P6) x · (y + 1) = x · y + x ;

(P7) for any formula ϕ(x) in Peano Arithmetics, we have an axiom
(ϕ(0) and (∀x)(ϕ(x) =⇒ ϕ(x + 1))) =⇒ (∀x)(ϕ(x)).

www.ntnu.no Jan Stovicek, Axioms & algorithms



8

Example: Peano Arithmetic
An attempt to axiomatically describe natural numbers and their
arithmetics.

Axioms:

(P1) not (∃x)(x + 1 = 0);
(P2) x + 1 = y + 1 =⇒ x = y ;
(P3) x + 0 = x ;
(P4) x + (y + 1) = (x + y) + 1;
(P5) x · 0 = 0;
(P6) x · (y + 1) = x · y + x ;
(P7) for any formula ϕ(x) in Peano Arithmetics, we have an axiom

(ϕ(0) and (∀x)(ϕ(x) =⇒ ϕ(x + 1))) =⇒ (∀x)(ϕ(x)).

www.ntnu.no Jan Stovicek, Axioms & algorithms



8

Example: Peano Arithmetic
An attempt to axiomatically describe natural numbers and their
arithmetics.

Axioms:

(P1) not (∃x)(x + 1 = 0);
(P2) x + 1 = y + 1 =⇒ x = y ;
(P3) x + 0 = x ;
(P4) x + (y + 1) = (x + y) + 1;
(P5) x · 0 = 0;
(P6) x · (y + 1) = x · y + x ;
(P7) for any formula ϕ(x) in Peano Arithmetics, we have an axiom

(ϕ(0) and (∀x)(ϕ(x) =⇒ ϕ(x + 1))) =⇒ (∀x)(ϕ(x)).

www.ntnu.no Jan Stovicek, Axioms & algorithms



8

Example: Peano Arithmetic
An attempt to axiomatically describe natural numbers and their
arithmetics.

Axioms:

(P1) not (∃x)(x + 1 = 0);
(P2) x + 1 = y + 1 =⇒ x = y ;
(P3) x + 0 = x ;
(P4) x + (y + 1) = (x + y) + 1;
(P5) x · 0 = 0;
(P6) x · (y + 1) = x · y + x ;
(P7) for any formula ϕ(x) in Peano Arithmetics, we have an axiom

(ϕ(0) and (∀x)(ϕ(x) =⇒ ϕ(x + 1))) =⇒ (∀x)(ϕ(x)).

www.ntnu.no Jan Stovicek, Axioms & algorithms



8

Example: Peano Arithmetic
An attempt to axiomatically describe natural numbers and their
arithmetics.

Axioms:

(P1) not (∃x)(x + 1 = 0);
(P2) x + 1 = y + 1 =⇒ x = y ;
(P3) x + 0 = x ;
(P4) x + (y + 1) = (x + y) + 1;
(P5) x · 0 = 0;
(P6) x · (y + 1) = x · y + x ;
(P7) for any formula ϕ(x) in Peano Arithmetics, we have an axiom

(ϕ(0) and (∀x)(ϕ(x) =⇒ ϕ(x + 1))) =⇒ (∀x)(ϕ(x)).

www.ntnu.no Jan Stovicek, Axioms & algorithms



9

Formal Languages

We have the following components:

— Variables: x , y , z, . . .
— Constants: 0,1
— Operation symbols: +, ·

— Terms: 0, 1, x , x + y , x · y .
If t1 and t2 are terms, so are t1 + t2 and t1 · t2.
Therefore, (x + y) · z, (1 + x) · y + z, . . . are terms.

— Relation symbol: =

www.ntnu.no Jan Stovicek, Axioms & algorithms



9

Formal Languages

We have the following components:

— Variables: x , y , z, . . .

— Constants: 0,1
— Operation symbols: +, ·

— Terms: 0, 1, x , x + y , x · y .
If t1 and t2 are terms, so are t1 + t2 and t1 · t2.
Therefore, (x + y) · z, (1 + x) · y + z, . . . are terms.

— Relation symbol: =

www.ntnu.no Jan Stovicek, Axioms & algorithms



9

Formal Languages

We have the following components:

— Variables: x , y , z, . . .
— Constants: 0,1

— Operation symbols: +, ·

— Terms: 0, 1, x , x + y , x · y .
If t1 and t2 are terms, so are t1 + t2 and t1 · t2.
Therefore, (x + y) · z, (1 + x) · y + z, . . . are terms.

— Relation symbol: =

www.ntnu.no Jan Stovicek, Axioms & algorithms



9

Formal Languages

We have the following components:

— Variables: x , y , z, . . .
— Constants: 0,1
— Operation symbols: +, ·

— Terms: 0, 1, x , x + y , x · y .
If t1 and t2 are terms, so are t1 + t2 and t1 · t2.
Therefore, (x + y) · z, (1 + x) · y + z, . . . are terms.

— Relation symbol: =

www.ntnu.no Jan Stovicek, Axioms & algorithms



9

Formal Languages

We have the following components:

— Variables: x , y , z, . . .
— Constants: 0,1
— Operation symbols: +, ·

— Terms: 0, 1, x , x + y , x · y .

If t1 and t2 are terms, so are t1 + t2 and t1 · t2.
Therefore, (x + y) · z, (1 + x) · y + z, . . . are terms.

— Relation symbol: =

www.ntnu.no Jan Stovicek, Axioms & algorithms



9

Formal Languages

We have the following components:

— Variables: x , y , z, . . .
— Constants: 0,1
— Operation symbols: +, ·

— Terms: 0, 1, x , x + y , x · y .
If t1 and t2 are terms, so are t1 + t2 and t1 · t2.

Therefore, (x + y) · z, (1 + x) · y + z, . . . are terms.

— Relation symbol: =

www.ntnu.no Jan Stovicek, Axioms & algorithms



9

Formal Languages

We have the following components:

— Variables: x , y , z, . . .
— Constants: 0,1
— Operation symbols: +, ·

— Terms: 0, 1, x , x + y , x · y .
If t1 and t2 are terms, so are t1 + t2 and t1 · t2.
Therefore, (x + y) · z, (1 + x) · y + z, . . . are terms.

— Relation symbol: =

www.ntnu.no Jan Stovicek, Axioms & algorithms



9

Formal Languages

We have the following components:

— Variables: x , y , z, . . .
— Constants: 0,1
— Operation symbols: +, ·

— Terms: 0, 1, x , x + y , x · y .
If t1 and t2 are terms, so are t1 + t2 and t1 · t2.
Therefore, (x + y) · z, (1 + x) · y + z, . . . are terms.

— Relation symbol: =

www.ntnu.no Jan Stovicek, Axioms & algorithms



10

Formal Languages (continued)
Formulas, sentences:

— Atomic formulas: t1 = t2, where t1, t2 are terms.
Example. ϕ(x , y) : x + y = x · y

— Logical operators: and , or , not .
— Quantifiers: (∀x), (∃x).

Example. ψ(x) : not (∃y)(∃z)(y < x and z < x and x = y · z)

— Sentences: Formulas without free variables.
(∀x)(

not (x = 0 or x = 1) =⇒
(∃y)(∃z)(ψ(y) and ψ(z) and x + x = y + z)

)

(Goldbach’s Conjecture).

www.ntnu.no Jan Stovicek, Axioms & algorithms



10

Formal Languages (continued)
Formulas, sentences:
— Atomic formulas: t1 = t2, where t1, t2 are terms.

Example. ϕ(x , y) : x + y = x · y
— Logical operators: and , or , not .
— Quantifiers: (∀x), (∃x).

Example. ψ(x) : not (∃y)(∃z)(y < x and z < x and x = y · z)

— Sentences: Formulas without free variables.
(∀x)(

not (x = 0 or x = 1) =⇒
(∃y)(∃z)(ψ(y) and ψ(z) and x + x = y + z)

)

(Goldbach’s Conjecture).

www.ntnu.no Jan Stovicek, Axioms & algorithms



10

Formal Languages (continued)
Formulas, sentences:
— Atomic formulas: t1 = t2, where t1, t2 are terms.

Example. ϕ(x , y) : x + y = x · y

— Logical operators: and , or , not .
— Quantifiers: (∀x), (∃x).

Example. ψ(x) : not (∃y)(∃z)(y < x and z < x and x = y · z)

— Sentences: Formulas without free variables.
(∀x)(

not (x = 0 or x = 1) =⇒
(∃y)(∃z)(ψ(y) and ψ(z) and x + x = y + z)

)

(Goldbach’s Conjecture).

www.ntnu.no Jan Stovicek, Axioms & algorithms



10

Formal Languages (continued)
Formulas, sentences:
— Atomic formulas: t1 = t2, where t1, t2 are terms.

Example. ϕ(x , y) : x + y = x · y
— Logical operators: and , or , not .

— Quantifiers: (∀x), (∃x).
Example. ψ(x) : not (∃y)(∃z)(y < x and z < x and x = y · z)

— Sentences: Formulas without free variables.
(∀x)(

not (x = 0 or x = 1) =⇒
(∃y)(∃z)(ψ(y) and ψ(z) and x + x = y + z)

)

(Goldbach’s Conjecture).

www.ntnu.no Jan Stovicek, Axioms & algorithms



10

Formal Languages (continued)
Formulas, sentences:
— Atomic formulas: t1 = t2, where t1, t2 are terms.

Example. ϕ(x , y) : x + y = x · y
— Logical operators: and , or , not .
— Quantifiers: (∀x), (∃x).

Example. ψ(x) : not (∃y)(∃z)(y < x and z < x and x = y · z)

— Sentences: Formulas without free variables.
(∀x)(

not (x = 0 or x = 1) =⇒
(∃y)(∃z)(ψ(y) and ψ(z) and x + x = y + z)

)

(Goldbach’s Conjecture).

www.ntnu.no Jan Stovicek, Axioms & algorithms



10

Formal Languages (continued)
Formulas, sentences:
— Atomic formulas: t1 = t2, where t1, t2 are terms.

Example. ϕ(x , y) : x + y = x · y
— Logical operators: and , or , not .
— Quantifiers: (∀x), (∃x).

Example. ψ(x) : not (∃y)(∃z)(y < x and z < x and x = y · z)

— Sentences: Formulas without free variables.
(∀x)(

not (x = 0 or x = 1) =⇒
(∃y)(∃z)(ψ(y) and ψ(z) and x + x = y + z)

)

(Goldbach’s Conjecture).

www.ntnu.no Jan Stovicek, Axioms & algorithms



10

Formal Languages (continued)
Formulas, sentences:
— Atomic formulas: t1 = t2, where t1, t2 are terms.

Example. ϕ(x , y) : x + y = x · y
— Logical operators: and , or , not .
— Quantifiers: (∀x), (∃x).

Example. ψ(x) : not (∃y)(∃z)(y < x and z < x and x = y · z)

— Sentences: Formulas without free variables.

(∀x)(
not (x = 0 or x = 1) =⇒
(∃y)(∃z)(ψ(y) and ψ(z) and x + x = y + z)

)

(Goldbach’s Conjecture).

www.ntnu.no Jan Stovicek, Axioms & algorithms



10

Formal Languages (continued)
Formulas, sentences:
— Atomic formulas: t1 = t2, where t1, t2 are terms.

Example. ϕ(x , y) : x + y = x · y
— Logical operators: and , or , not .
— Quantifiers: (∀x), (∃x).

Example. ψ(x) : not (∃y)(∃z)(y < x and z < x and x = y · z)

— Sentences: Formulas without free variables.
(∀x)(

not (x = 0 or x = 1) =⇒
(∃y)(∃z)(ψ(y) and ψ(z) and x + x = y + z)

)

(Goldbach’s Conjecture).

www.ntnu.no Jan Stovicek, Axioms & algorithms



10

Formal Languages (continued)
Formulas, sentences:
— Atomic formulas: t1 = t2, where t1, t2 are terms.

Example. ϕ(x , y) : x + y = x · y
— Logical operators: and , or , not .
— Quantifiers: (∀x), (∃x).

Example. ψ(x) : not (∃y)(∃z)(y < x and z < x and x = y · z)

— Sentences: Formulas without free variables.
(∀x)(

not (x = 0 or x = 1) =⇒
(∃y)(∃z)(ψ(y) and ψ(z) and x + x = y + z)

)

(Goldbach’s Conjecture).

www.ntnu.no Jan Stovicek, Axioms & algorithms



11

Theories
A theory is a formal language together with a set of axioms.

Proofs in a theory:
A proof of a sentence ξ in our language is a sequence

P : ξ1, ξ2, . . . , ξk , . . . , ξn = ξ

of formulas such that each ξk is

— an axiom, or
— logically follows from ξ0, . . . , ξk−1

(using substitution, modus ponens, generalization, logical
axioms).

www.ntnu.no Jan Stovicek, Axioms & algorithms



11

Theories
A theory is a formal language together with a set of axioms.

Proofs in a theory:

A proof of a sentence ξ in our language is a sequence

P : ξ1, ξ2, . . . , ξk , . . . , ξn = ξ

of formulas such that each ξk is

— an axiom, or
— logically follows from ξ0, . . . , ξk−1

(using substitution, modus ponens, generalization, logical
axioms).

www.ntnu.no Jan Stovicek, Axioms & algorithms



11

Theories
A theory is a formal language together with a set of axioms.

Proofs in a theory:
A proof of a sentence ξ in our language is a sequence

P : ξ1, ξ2, . . . , ξk , . . . , ξn = ξ

of formulas

such that each ξk is

— an axiom, or
— logically follows from ξ0, . . . , ξk−1

(using substitution, modus ponens, generalization, logical
axioms).

www.ntnu.no Jan Stovicek, Axioms & algorithms



11

Theories
A theory is a formal language together with a set of axioms.

Proofs in a theory:
A proof of a sentence ξ in our language is a sequence

P : ξ1, ξ2, . . . , ξk , . . . , ξn = ξ

of formulas such that each ξk is

— an axiom, or

— logically follows from ξ0, . . . , ξk−1
(using substitution, modus ponens, generalization, logical
axioms).

www.ntnu.no Jan Stovicek, Axioms & algorithms



11

Theories
A theory is a formal language together with a set of axioms.

Proofs in a theory:
A proof of a sentence ξ in our language is a sequence

P : ξ1, ξ2, . . . , ξk , . . . , ξn = ξ

of formulas such that each ξk is

— an axiom, or
— logically follows from ξ0, . . . , ξk−1

(using substitution, modus ponens, generalization, logical
axioms).

www.ntnu.no Jan Stovicek, Axioms & algorithms



11

Theories
A theory is a formal language together with a set of axioms.

Proofs in a theory:
A proof of a sentence ξ in our language is a sequence

P : ξ1, ξ2, . . . , ξk , . . . , ξn = ξ

of formulas such that each ξk is

— an axiom, or
— logically follows from ξ0, . . . , ξk−1

(using substitution, modus ponens, generalization, logical
axioms).

www.ntnu.no Jan Stovicek, Axioms & algorithms



12

Outline

The Decision Problem

Formal Languages and Theories

Incompleteness

Undecidability

www.ntnu.no Jan Stovicek, Axioms & algorithms



13

Consistency and Completeness

If we have a theory describing some structure,

such as the
arithmetics of natural numbers, we would like it to be:

1. Consistent. If there is a proof in the theory for a sentence ξ,
there must not be a proof for “not ξ”!
We will assume that Peano Arithmetics is consistent (cheating
in a sense!).

2. Complete. If ξ is a sentence, there should be a proof for either
ξ or “not ξ”.

www.ntnu.no Jan Stovicek, Axioms & algorithms



13

Consistency and Completeness

If we have a theory describing some structure, such as the
arithmetics of natural numbers,

we would like it to be:

1. Consistent. If there is a proof in the theory for a sentence ξ,
there must not be a proof for “not ξ”!
We will assume that Peano Arithmetics is consistent (cheating
in a sense!).

2. Complete. If ξ is a sentence, there should be a proof for either
ξ or “not ξ”.

www.ntnu.no Jan Stovicek, Axioms & algorithms



13

Consistency and Completeness

If we have a theory describing some structure, such as the
arithmetics of natural numbers, we would like it to be:

1. Consistent. If there is a proof in the theory for a sentence ξ,
there must not be a proof for “not ξ”!
We will assume that Peano Arithmetics is consistent (cheating
in a sense!).

2. Complete. If ξ is a sentence, there should be a proof for either
ξ or “not ξ”.

www.ntnu.no Jan Stovicek, Axioms & algorithms



13

Consistency and Completeness

If we have a theory describing some structure, such as the
arithmetics of natural numbers, we would like it to be:

1. Consistent.

If there is a proof in the theory for a sentence ξ,
there must not be a proof for “not ξ”!
We will assume that Peano Arithmetics is consistent (cheating
in a sense!).

2. Complete. If ξ is a sentence, there should be a proof for either
ξ or “not ξ”.

www.ntnu.no Jan Stovicek, Axioms & algorithms



13

Consistency and Completeness

If we have a theory describing some structure, such as the
arithmetics of natural numbers, we would like it to be:

1. Consistent. If there is a proof in the theory for a sentence ξ,

there must not be a proof for “not ξ”!
We will assume that Peano Arithmetics is consistent (cheating
in a sense!).

2. Complete. If ξ is a sentence, there should be a proof for either
ξ or “not ξ”.

www.ntnu.no Jan Stovicek, Axioms & algorithms



13

Consistency and Completeness

If we have a theory describing some structure, such as the
arithmetics of natural numbers, we would like it to be:

1. Consistent. If there is a proof in the theory for a sentence ξ,
there must not be a proof for “not ξ”!

We will assume that Peano Arithmetics is consistent (cheating
in a sense!).

2. Complete. If ξ is a sentence, there should be a proof for either
ξ or “not ξ”.

www.ntnu.no Jan Stovicek, Axioms & algorithms



13

Consistency and Completeness

If we have a theory describing some structure, such as the
arithmetics of natural numbers, we would like it to be:

1. Consistent. If there is a proof in the theory for a sentence ξ,
there must not be a proof for “not ξ”!
We will assume that Peano Arithmetics is consistent

(cheating
in a sense!).

2. Complete. If ξ is a sentence, there should be a proof for either
ξ or “not ξ”.

www.ntnu.no Jan Stovicek, Axioms & algorithms



13

Consistency and Completeness

If we have a theory describing some structure, such as the
arithmetics of natural numbers, we would like it to be:

1. Consistent. If there is a proof in the theory for a sentence ξ,
there must not be a proof for “not ξ”!
We will assume that Peano Arithmetics is consistent (cheating
in a sense!).

2. Complete. If ξ is a sentence, there should be a proof for either
ξ or “not ξ”.

www.ntnu.no Jan Stovicek, Axioms & algorithms



13

Consistency and Completeness

If we have a theory describing some structure, such as the
arithmetics of natural numbers, we would like it to be:

1. Consistent. If there is a proof in the theory for a sentence ξ,
there must not be a proof for “not ξ”!
We will assume that Peano Arithmetics is consistent (cheating
in a sense!).

2. Complete.

If ξ is a sentence, there should be a proof for either
ξ or “not ξ”.

www.ntnu.no Jan Stovicek, Axioms & algorithms



13

Consistency and Completeness

If we have a theory describing some structure, such as the
arithmetics of natural numbers, we would like it to be:

1. Consistent. If there is a proof in the theory for a sentence ξ,
there must not be a proof for “not ξ”!
We will assume that Peano Arithmetics is consistent (cheating
in a sense!).

2. Complete. If ξ is a sentence, there should be a proof for either
ξ or “not ξ”.

www.ntnu.no Jan Stovicek, Axioms & algorithms



14

Gödel’s Incompleteness Theorem

Theorem (Kurt Gödel, 1931)

There is a sentence ξ, the so called Gödel sentence, in Peano
Arithmetics

which cannot be proved, but it is a true statement about
natural numbers. In particular, Peano Arithmetics is incomplete.

In fact, any consistent effective axiomatic description of the
arithmetics of natural numbers is incomplete.

Effective axiomatic description: There is an algorithm which
determines whether a given formula is an axiom.
Recall: (P7) (ϕ(0) and (∀x)(ϕ(x) =⇒ ϕ(x + 1))) =⇒ (∀x)(ϕ(x)).

www.ntnu.no Jan Stovicek, Axioms & algorithms



14

Gödel’s Incompleteness Theorem

Theorem (Kurt Gödel, 1931)

There is a sentence ξ, the so called Gödel sentence, in Peano
Arithmetics which cannot be proved,

but it is a true statement about
natural numbers. In particular, Peano Arithmetics is incomplete.

In fact, any consistent effective axiomatic description of the
arithmetics of natural numbers is incomplete.

Effective axiomatic description: There is an algorithm which
determines whether a given formula is an axiom.
Recall: (P7) (ϕ(0) and (∀x)(ϕ(x) =⇒ ϕ(x + 1))) =⇒ (∀x)(ϕ(x)).

www.ntnu.no Jan Stovicek, Axioms & algorithms



14

Gödel’s Incompleteness Theorem

Theorem (Kurt Gödel, 1931)

There is a sentence ξ, the so called Gödel sentence, in Peano
Arithmetics which cannot be proved, but it is a true statement about
natural numbers.

In particular, Peano Arithmetics is incomplete.

In fact, any consistent effective axiomatic description of the
arithmetics of natural numbers is incomplete.

Effective axiomatic description: There is an algorithm which
determines whether a given formula is an axiom.
Recall: (P7) (ϕ(0) and (∀x)(ϕ(x) =⇒ ϕ(x + 1))) =⇒ (∀x)(ϕ(x)).

www.ntnu.no Jan Stovicek, Axioms & algorithms



14

Gödel’s Incompleteness Theorem

Theorem (Kurt Gödel, 1931)

There is a sentence ξ, the so called Gödel sentence, in Peano
Arithmetics which cannot be proved, but it is a true statement about
natural numbers. In particular, Peano Arithmetics is incomplete.

In fact, any consistent effective axiomatic description of the
arithmetics of natural numbers is incomplete.

Effective axiomatic description: There is an algorithm which
determines whether a given formula is an axiom.
Recall: (P7) (ϕ(0) and (∀x)(ϕ(x) =⇒ ϕ(x + 1))) =⇒ (∀x)(ϕ(x)).

www.ntnu.no Jan Stovicek, Axioms & algorithms



14

Gödel’s Incompleteness Theorem

Theorem (Kurt Gödel, 1931)

There is a sentence ξ, the so called Gödel sentence, in Peano
Arithmetics which cannot be proved, but it is a true statement about
natural numbers. In particular, Peano Arithmetics is incomplete.

In fact, any consistent effective axiomatic description of the
arithmetics of natural numbers is incomplete.

Effective axiomatic description: There is an algorithm which
determines whether a given formula is an axiom.
Recall: (P7) (ϕ(0) and (∀x)(ϕ(x) =⇒ ϕ(x + 1))) =⇒ (∀x)(ϕ(x)).

www.ntnu.no Jan Stovicek, Axioms & algorithms



14

Gödel’s Incompleteness Theorem

Theorem (Kurt Gödel, 1931)

There is a sentence ξ, the so called Gödel sentence, in Peano
Arithmetics which cannot be proved, but it is a true statement about
natural numbers. In particular, Peano Arithmetics is incomplete.

In fact, any consistent effective axiomatic description of the
arithmetics of natural numbers is incomplete.

Effective axiomatic description: There is an algorithm which
determines whether a given formula is an axiom.

Recall: (P7) (ϕ(0) and (∀x)(ϕ(x) =⇒ ϕ(x + 1))) =⇒ (∀x)(ϕ(x)).

www.ntnu.no Jan Stovicek, Axioms & algorithms



14

Gödel’s Incompleteness Theorem

Theorem (Kurt Gödel, 1931)

There is a sentence ξ, the so called Gödel sentence, in Peano
Arithmetics which cannot be proved, but it is a true statement about
natural numbers. In particular, Peano Arithmetics is incomplete.

In fact, any consistent effective axiomatic description of the
arithmetics of natural numbers is incomplete.

Effective axiomatic description: There is an algorithm which
determines whether a given formula is an axiom.
Recall: (P7) (ϕ(0) and (∀x)(ϕ(x) =⇒ ϕ(x + 1))) =⇒ (∀x)(ϕ(x)).

www.ntnu.no Jan Stovicek, Axioms & algorithms



15

Idea behind the Theorem

— Every formula ϕ(x1, . . . , xn) in Peano Arithmetics can be
represented by a number.

We will denote this number Gϕ (the
Gödel number of ϕ). So can be represented proofs.

— Then, roughly said we construct a sentence ξ, which “says”
that there is no proof for ξ in Peano Arithmetics (Liar Paradox).

— There can be no proof for ξ in Peano Arithmetics, but ξ is a
true statement about natural numbers.

— The second part is newer with a different proof, it can be
essentially found in a nice book by Alfred Tarski.

www.ntnu.no Jan Stovicek, Axioms & algorithms



15

Idea behind the Theorem

— Every formula ϕ(x1, . . . , xn) in Peano Arithmetics can be
represented by a number. We will denote this number Gϕ

(the
Gödel number of ϕ). So can be represented proofs.

— Then, roughly said we construct a sentence ξ, which “says”
that there is no proof for ξ in Peano Arithmetics (Liar Paradox).

— There can be no proof for ξ in Peano Arithmetics, but ξ is a
true statement about natural numbers.

— The second part is newer with a different proof, it can be
essentially found in a nice book by Alfred Tarski.

www.ntnu.no Jan Stovicek, Axioms & algorithms



15

Idea behind the Theorem

— Every formula ϕ(x1, . . . , xn) in Peano Arithmetics can be
represented by a number. We will denote this number Gϕ (the
Gödel number of ϕ).

So can be represented proofs.
— Then, roughly said we construct a sentence ξ, which “says”

that there is no proof for ξ in Peano Arithmetics (Liar Paradox).
— There can be no proof for ξ in Peano Arithmetics, but ξ is a

true statement about natural numbers.
— The second part is newer with a different proof, it can be

essentially found in a nice book by Alfred Tarski.

www.ntnu.no Jan Stovicek, Axioms & algorithms



15

Idea behind the Theorem

— Every formula ϕ(x1, . . . , xn) in Peano Arithmetics can be
represented by a number. We will denote this number Gϕ (the
Gödel number of ϕ). So can be represented proofs.

— Then, roughly said we construct a sentence ξ, which “says”
that there is no proof for ξ in Peano Arithmetics (Liar Paradox).

— There can be no proof for ξ in Peano Arithmetics, but ξ is a
true statement about natural numbers.

— The second part is newer with a different proof, it can be
essentially found in a nice book by Alfred Tarski.

www.ntnu.no Jan Stovicek, Axioms & algorithms



15

Idea behind the Theorem

— Every formula ϕ(x1, . . . , xn) in Peano Arithmetics can be
represented by a number. We will denote this number Gϕ (the
Gödel number of ϕ). So can be represented proofs.

— Then, roughly said we construct a sentence ξ,

which “says”
that there is no proof for ξ in Peano Arithmetics (Liar Paradox).

— There can be no proof for ξ in Peano Arithmetics, but ξ is a
true statement about natural numbers.

— The second part is newer with a different proof, it can be
essentially found in a nice book by Alfred Tarski.

www.ntnu.no Jan Stovicek, Axioms & algorithms



15

Idea behind the Theorem

— Every formula ϕ(x1, . . . , xn) in Peano Arithmetics can be
represented by a number. We will denote this number Gϕ (the
Gödel number of ϕ). So can be represented proofs.

— Then, roughly said we construct a sentence ξ, which “says”
that there is no proof for ξ in Peano Arithmetics

(Liar Paradox).
— There can be no proof for ξ in Peano Arithmetics, but ξ is a

true statement about natural numbers.
— The second part is newer with a different proof, it can be

essentially found in a nice book by Alfred Tarski.

www.ntnu.no Jan Stovicek, Axioms & algorithms



15

Idea behind the Theorem

— Every formula ϕ(x1, . . . , xn) in Peano Arithmetics can be
represented by a number. We will denote this number Gϕ (the
Gödel number of ϕ). So can be represented proofs.

— Then, roughly said we construct a sentence ξ, which “says”
that there is no proof for ξ in Peano Arithmetics (Liar Paradox).

— There can be no proof for ξ in Peano Arithmetics, but ξ is a
true statement about natural numbers.

— The second part is newer with a different proof, it can be
essentially found in a nice book by Alfred Tarski.

www.ntnu.no Jan Stovicek, Axioms & algorithms



15

Idea behind the Theorem

— Every formula ϕ(x1, . . . , xn) in Peano Arithmetics can be
represented by a number. We will denote this number Gϕ (the
Gödel number of ϕ). So can be represented proofs.

— Then, roughly said we construct a sentence ξ, which “says”
that there is no proof for ξ in Peano Arithmetics (Liar Paradox).

— There can be no proof for ξ in Peano Arithmetics,

but ξ is a
true statement about natural numbers.

— The second part is newer with a different proof, it can be
essentially found in a nice book by Alfred Tarski.

www.ntnu.no Jan Stovicek, Axioms & algorithms



15

Idea behind the Theorem

— Every formula ϕ(x1, . . . , xn) in Peano Arithmetics can be
represented by a number. We will denote this number Gϕ (the
Gödel number of ϕ). So can be represented proofs.

— Then, roughly said we construct a sentence ξ, which “says”
that there is no proof for ξ in Peano Arithmetics (Liar Paradox).

— There can be no proof for ξ in Peano Arithmetics, but ξ is a
true statement about natural numbers.

— The second part is newer with a different proof, it can be
essentially found in a nice book by Alfred Tarski.

www.ntnu.no Jan Stovicek, Axioms & algorithms



15

Idea behind the Theorem

— Every formula ϕ(x1, . . . , xn) in Peano Arithmetics can be
represented by a number. We will denote this number Gϕ (the
Gödel number of ϕ). So can be represented proofs.

— Then, roughly said we construct a sentence ξ, which “says”
that there is no proof for ξ in Peano Arithmetics (Liar Paradox).

— There can be no proof for ξ in Peano Arithmetics, but ξ is a
true statement about natural numbers.

— The second part is newer with a different proof, it can be
essentially found in a nice book by Alfred Tarski.

www.ntnu.no Jan Stovicek, Axioms & algorithms



16

Summary

Any axiomatic description of the arithmetics of natural numbers
which is

1. consistent, and
2. effectively described,

is necessarily incomplete.

www.ntnu.no Jan Stovicek, Axioms & algorithms



16

Summary

Any axiomatic description of the arithmetics of natural numbers
which is

1. consistent,

and
2. effectively described,

is necessarily incomplete.

www.ntnu.no Jan Stovicek, Axioms & algorithms



16

Summary

Any axiomatic description of the arithmetics of natural numbers
which is

1. consistent, and
2. effectively described,

is necessarily incomplete.

www.ntnu.no Jan Stovicek, Axioms & algorithms



16

Summary

Any axiomatic description of the arithmetics of natural numbers
which is

1. consistent, and
2. effectively described,

is necessarily incomplete.

www.ntnu.no Jan Stovicek, Axioms & algorithms



17

Outline

The Decision Problem

Formal Languages and Theories

Incompleteness

Undecidability

www.ntnu.no Jan Stovicek, Axioms & algorithms



18

The Decision Problem Revisited

Problem (Hilbert’s Entscheidungsproblem)

Is there an algorithm which, given an effectively described theory,

such as Peano Arithmetics, and a sentence ξ in the theory decides,
whether ξ is or is not provable from the axioms.

In other words:

— We have given up finding a complete axiomatic description for
natural numbers.

— However, we still want an algorithm for automated proving for
the descriptions we have at our disposal.

www.ntnu.no Jan Stovicek, Axioms & algorithms



18

The Decision Problem Revisited

Problem (Hilbert’s Entscheidungsproblem)

Is there an algorithm which, given an effectively described theory,
such as Peano Arithmetics,

and a sentence ξ in the theory decides,
whether ξ is or is not provable from the axioms.

In other words:

— We have given up finding a complete axiomatic description for
natural numbers.

— However, we still want an algorithm for automated proving for
the descriptions we have at our disposal.

www.ntnu.no Jan Stovicek, Axioms & algorithms



18

The Decision Problem Revisited

Problem (Hilbert’s Entscheidungsproblem)

Is there an algorithm which, given an effectively described theory,
such as Peano Arithmetics, and a sentence ξ in the theory

decides,
whether ξ is or is not provable from the axioms.

In other words:

— We have given up finding a complete axiomatic description for
natural numbers.

— However, we still want an algorithm for automated proving for
the descriptions we have at our disposal.

www.ntnu.no Jan Stovicek, Axioms & algorithms



18

The Decision Problem Revisited

Problem (Hilbert’s Entscheidungsproblem)

Is there an algorithm which, given an effectively described theory,
such as Peano Arithmetics, and a sentence ξ in the theory decides,
whether ξ is or is not provable from the axioms.

In other words:

— We have given up finding a complete axiomatic description for
natural numbers.

— However, we still want an algorithm for automated proving for
the descriptions we have at our disposal.

www.ntnu.no Jan Stovicek, Axioms & algorithms



18

The Decision Problem Revisited

Problem (Hilbert’s Entscheidungsproblem)

Is there an algorithm which, given an effectively described theory,
such as Peano Arithmetics, and a sentence ξ in the theory decides,
whether ξ is or is not provable from the axioms.

In other words:

— We have given up finding a complete axiomatic description for
natural numbers.

— However, we still want an algorithm for automated proving for
the descriptions we have at our disposal.

www.ntnu.no Jan Stovicek, Axioms & algorithms



18

The Decision Problem Revisited

Problem (Hilbert’s Entscheidungsproblem)

Is there an algorithm which, given an effectively described theory,
such as Peano Arithmetics, and a sentence ξ in the theory decides,
whether ξ is or is not provable from the axioms.

In other words:

— We have given up finding a complete axiomatic description for
natural numbers.

— However, we still want an algorithm for automated proving for
the descriptions we have at our disposal.

www.ntnu.no Jan Stovicek, Axioms & algorithms



19

What Precisely is an Algorithm?

If we want to prove anything about existence of algorithms

we need
to have a definition of an algorithm.

Different computational models:

1. A program in C, Java, Pascal or similar which gets an input file
and can write its output to an output file.

2. A Turing machine (after Alan Turing).
3. Lambda calculus (by Alonzo Church).

All the models above have the same computational strength.

www.ntnu.no Jan Stovicek, Axioms & algorithms



19

What Precisely is an Algorithm?

If we want to prove anything about existence of algorithms we need
to have a definition of an algorithm.

Different computational models:

1. A program in C, Java, Pascal or similar which gets an input file
and can write its output to an output file.

2. A Turing machine (after Alan Turing).
3. Lambda calculus (by Alonzo Church).

All the models above have the same computational strength.

www.ntnu.no Jan Stovicek, Axioms & algorithms



19

What Precisely is an Algorithm?

If we want to prove anything about existence of algorithms we need
to have a definition of an algorithm.

Different computational models:

1. A program in C, Java, Pascal or similar which gets an input file
and can write its output to an output file.

2. A Turing machine (after Alan Turing).
3. Lambda calculus (by Alonzo Church).

All the models above have the same computational strength.

www.ntnu.no Jan Stovicek, Axioms & algorithms



19

What Precisely is an Algorithm?

If we want to prove anything about existence of algorithms we need
to have a definition of an algorithm.

Different computational models:

1. A program in C, Java, Pascal or similar

which gets an input file
and can write its output to an output file.

2. A Turing machine (after Alan Turing).
3. Lambda calculus (by Alonzo Church).

All the models above have the same computational strength.

www.ntnu.no Jan Stovicek, Axioms & algorithms



19

What Precisely is an Algorithm?

If we want to prove anything about existence of algorithms we need
to have a definition of an algorithm.

Different computational models:

1. A program in C, Java, Pascal or similar which gets an input file
and can write its output to an output file.

2. A Turing machine (after Alan Turing).
3. Lambda calculus (by Alonzo Church).

All the models above have the same computational strength.

www.ntnu.no Jan Stovicek, Axioms & algorithms



19

What Precisely is an Algorithm?

If we want to prove anything about existence of algorithms we need
to have a definition of an algorithm.

Different computational models:

1. A program in C, Java, Pascal or similar which gets an input file
and can write its output to an output file.

2. A Turing machine (after Alan Turing).

3. Lambda calculus (by Alonzo Church).

All the models above have the same computational strength.

www.ntnu.no Jan Stovicek, Axioms & algorithms



19

What Precisely is an Algorithm?

If we want to prove anything about existence of algorithms we need
to have a definition of an algorithm.

Different computational models:

1. A program in C, Java, Pascal or similar which gets an input file
and can write its output to an output file.

2. A Turing machine (after Alan Turing).
3. Lambda calculus (by Alonzo Church).

All the models above have the same computational strength.

www.ntnu.no Jan Stovicek, Axioms & algorithms



19

What Precisely is an Algorithm?

If we want to prove anything about existence of algorithms we need
to have a definition of an algorithm.

Different computational models:

1. A program in C, Java, Pascal or similar which gets an input file
and can write its output to an output file.

2. A Turing machine (after Alan Turing).
3. Lambda calculus (by Alonzo Church).

All the models above have the same computational strength.

www.ntnu.no Jan Stovicek, Axioms & algorithms



20

Church-Turing Thesis

A Turing machine:

Church-Turing Thesis

The intuitive notion of an “algorithm” is, formally, a Turing machine
which finishes its computation in finite time given any input (= halts
on each input).

www.ntnu.no Jan Stovicek, Axioms & algorithms



20

Church-Turing Thesis

A Turing machine:

Church-Turing Thesis

The intuitive notion of an “algorithm” is, formally, a Turing machine

which finishes its computation in finite time given any input (= halts
on each input).

www.ntnu.no Jan Stovicek, Axioms & algorithms



20

Church-Turing Thesis

A Turing machine:

Church-Turing Thesis

The intuitive notion of an “algorithm” is, formally, a Turing machine
which finishes its computation in finite time given any input

(= halts
on each input).

www.ntnu.no Jan Stovicek, Axioms & algorithms



20

Church-Turing Thesis

A Turing machine:

Church-Turing Thesis

The intuitive notion of an “algorithm” is, formally, a Turing machine
which finishes its computation in finite time given any input (= halts
on each input).

www.ntnu.no Jan Stovicek, Axioms & algorithms



21

The Halting Problem

Problem (The Halting Problem)

Is there an algorithm (program) Halt(P,F )

which, given a source
code P of another program and its input file F , decides whether P
halts on the input F?

Theorem (Alan Turing, 1936)

There is no such algorithm. Therefore, the halting problem is
undecidable.

www.ntnu.no Jan Stovicek, Axioms & algorithms



21

The Halting Problem

Problem (The Halting Problem)

Is there an algorithm (program) Halt(P,F ) which, given a source
code P of another program and its input file F ,

decides whether P
halts on the input F?

Theorem (Alan Turing, 1936)

There is no such algorithm. Therefore, the halting problem is
undecidable.

www.ntnu.no Jan Stovicek, Axioms & algorithms



21

The Halting Problem

Problem (The Halting Problem)

Is there an algorithm (program) Halt(P,F ) which, given a source
code P of another program and its input file F , decides whether P
halts on the input F?

Theorem (Alan Turing, 1936)

There is no such algorithm. Therefore, the halting problem is
undecidable.

www.ntnu.no Jan Stovicek, Axioms & algorithms



21

The Halting Problem

Problem (The Halting Problem)

Is there an algorithm (program) Halt(P,F ) which, given a source
code P of another program and its input file F , decides whether P
halts on the input F?

Theorem (Alan Turing, 1936)

There is no such algorithm.

Therefore, the halting problem is
undecidable.

www.ntnu.no Jan Stovicek, Axioms & algorithms



21

The Halting Problem

Problem (The Halting Problem)

Is there an algorithm (program) Halt(P,F ) which, given a source
code P of another program and its input file F , decides whether P
halts on the input F?

Theorem (Alan Turing, 1936)

There is no such algorithm. Therefore, the halting problem is
undecidable.

www.ntnu.no Jan Stovicek, Axioms & algorithms



22

Idea behind the Theorem

— Suppose we have such a program Halt(P,F ).

— Then define a program

Diag(F ) {
x : if Halt(F ,F ) then go to x;
}

— What does then Halt(Diag,Diag) return?

www.ntnu.no Jan Stovicek, Axioms & algorithms



22

Idea behind the Theorem

— Suppose we have such a program Halt(P,F ).
— Then define a program

Diag(F ) {
x : if Halt(F ,F ) then go to x;
}

— What does then Halt(Diag,Diag) return?

www.ntnu.no Jan Stovicek, Axioms & algorithms



22

Idea behind the Theorem

— Suppose we have such a program Halt(P,F ).
— Then define a program

Diag(F ) {
x : if Halt(F ,F ) then go to x;
}

— What does then Halt(Diag,Diag) return?

www.ntnu.no Jan Stovicek, Axioms & algorithms



23

Undecidability

Theorem (Alan Turing, Alonzo Church, 1936)

There is no algorithm which, given a sentence ξ in Peano
Arithmetics, would decide whether or not ξ is provable from the
axioms.

The same holds for any consistent axiomatic description of the
artihmetics of natural numbers.

www.ntnu.no Jan Stovicek, Axioms & algorithms



23

Undecidability

Theorem (Alan Turing, Alonzo Church, 1936)

There is no algorithm which, given a sentence ξ in Peano
Arithmetics, would decide whether or not ξ is provable from the
axioms.

The same holds for any consistent axiomatic description of the
artihmetics of natural numbers.

www.ntnu.no Jan Stovicek, Axioms & algorithms



24

Idea behind the Theorem
— A function f : N→ N is definable if there is a formula ϕ(x , y) in

Peano Arithmetics

such that f (n) = k if and only if ϕ(n,k) is
provable.

— Here, n = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

— Key point: A function f : N→ N is definable if and only if it is
computable by a program.

— With similar arguments as in Gödel’s theorem, we show that

f (x) =

{
1 if x = Gϕ for a provable formula ϕ
0 otherwise

is not definable. Hence, it is not computable by a program.
— The second part can be found in the book by Tarski.

www.ntnu.no Jan Stovicek, Axioms & algorithms



24

Idea behind the Theorem
— A function f : N→ N is definable if there is a formula ϕ(x , y) in

Peano Arithmetics such that f (n) = k if and only if ϕ(n,k) is
provable.

— Here, n = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

— Key point: A function f : N→ N is definable if and only if it is
computable by a program.

— With similar arguments as in Gödel’s theorem, we show that

f (x) =

{
1 if x = Gϕ for a provable formula ϕ
0 otherwise

is not definable. Hence, it is not computable by a program.
— The second part can be found in the book by Tarski.

www.ntnu.no Jan Stovicek, Axioms & algorithms



24

Idea behind the Theorem
— A function f : N→ N is definable if there is a formula ϕ(x , y) in

Peano Arithmetics such that f (n) = k if and only if ϕ(n,k) is
provable.

— Here, n = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

— Key point: A function f : N→ N is definable if and only if it is
computable by a program.

— With similar arguments as in Gödel’s theorem, we show that

f (x) =

{
1 if x = Gϕ for a provable formula ϕ
0 otherwise

is not definable. Hence, it is not computable by a program.
— The second part can be found in the book by Tarski.

www.ntnu.no Jan Stovicek, Axioms & algorithms



24

Idea behind the Theorem
— A function f : N→ N is definable if there is a formula ϕ(x , y) in

Peano Arithmetics such that f (n) = k if and only if ϕ(n,k) is
provable.

— Here, n = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

— Key point: A function f : N→ N is definable if and only if it is
computable by a program.

— With similar arguments as in Gödel’s theorem, we show that

f (x) =

{
1 if x = Gϕ for a provable formula ϕ
0 otherwise

is not definable. Hence, it is not computable by a program.
— The second part can be found in the book by Tarski.

www.ntnu.no Jan Stovicek, Axioms & algorithms



24

Idea behind the Theorem
— A function f : N→ N is definable if there is a formula ϕ(x , y) in

Peano Arithmetics such that f (n) = k if and only if ϕ(n,k) is
provable.

— Here, n = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

— Key point: A function f : N→ N is definable if and only if it is
computable by a program.

— With similar arguments as in Gödel’s theorem, we show that

f (x) =

{
1 if x = Gϕ for a provable formula ϕ
0 otherwise

is not definable.

Hence, it is not computable by a program.
— The second part can be found in the book by Tarski.

www.ntnu.no Jan Stovicek, Axioms & algorithms



24

Idea behind the Theorem
— A function f : N→ N is definable if there is a formula ϕ(x , y) in

Peano Arithmetics such that f (n) = k if and only if ϕ(n,k) is
provable.

— Here, n = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

— Key point: A function f : N→ N is definable if and only if it is
computable by a program.

— With similar arguments as in Gödel’s theorem, we show that

f (x) =

{
1 if x = Gϕ for a provable formula ϕ
0 otherwise

is not definable. Hence, it is not computable by a program.

— The second part can be found in the book by Tarski.

www.ntnu.no Jan Stovicek, Axioms & algorithms



24

Idea behind the Theorem
— A function f : N→ N is definable if there is a formula ϕ(x , y) in

Peano Arithmetics such that f (n) = k if and only if ϕ(n,k) is
provable.

— Here, n = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

— Key point: A function f : N→ N is definable if and only if it is
computable by a program.

— With similar arguments as in Gödel’s theorem, we show that

f (x) =

{
1 if x = Gϕ for a provable formula ϕ
0 otherwise

is not definable. Hence, it is not computable by a program.
— The second part can be found in the book by Tarski.

www.ntnu.no Jan Stovicek, Axioms & algorithms


	The Decision Problem
	Formal Languages and Theories
	Incompleteness
	Undecidability

