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Problem (Hilbert’s Entscheidungsproblem, 1928)
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The Decision Problem

Problem (Hilbert’s Entscheidungsproblem, 1928)

Is there an effective procedure (an algorithm) which, given a set of
axioms and a mathematical proposition, decides whether it is or is
not provable from the axioms?
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The Decision Problem

Problem (Hilbert’s Entscheidungsproblem, 1928)

Is there an effective procedure (an algorithm) which, given a set of
axioms and a mathematical proposition, decides whether it is or is
not provable from the axioms?

From: David Hilbert and Wilhelm Ackermann,
Foundations of Theoretical Logic (Grundziige der theoretischen
Logik), 1928.
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The Idea Behind

If we have a reasonable mathematical structure, such as the
arithmetics on natural numbers, then:
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The Idea Behind

If we have a reasonable mathematical structure, such as the
arithmetics on natural numbers, then:
1. Give a complete axiomatic description;

2. Use the decision procedure (algorithm) to prove or disprove
mathematical statements mechanically.
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The Idea Behind

If we have a reasonable mathematical structure, such as the
arithmetics on natural numbers, then:

1. Give a complete axiomatic description;
2. Use the decision procedure (algorithm) to prove or disprove
mathematical statements mechanically.

Hilbert & Ackermann:
We want to make it clear that for the solution of the
decision problem a process would be given ..., even
though the difficulties of the process would make practical

use illusory . ..
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Obstacles to Automated Proving

— Incompleteness: For some very basic mathematical
structures, there is no reasonable complete description.
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— Incompleteness: For some very basic mathematical
structures, there is no reasonable complete description.

— Undecidability: There are problems which cannot be solved by
any algorithm.
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— Incompleteness: For some very basic mathematical
structures, there is no reasonable complete description.

— Undecidability: There are problems which cannot be solved by
any algorithm.

— Inefficiency: Even if we have an algorithm, it may be far too
slow.
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— Inefficiency: Even if we have an algorithm, it may be far too
slow.

Remarks.

1. The important results on incompleteness and undecidability
come from 1930’s
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— Incompleteness: For some very basic mathematical
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— Undecidability: There are problems which cannot be solved by
any algorithm.

— Inefficiency: Even if we have an algorithm, it may be far too
slow.

Remarks.

1. The important results on incompleteness and undecidability
come from 1930’s — well before the first real computers were
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Obstacles to Automated Proving

— Incompleteness: For some very basic mathematical
structures, there is no reasonable complete description.
— Undecidability: There are problems which cannot be solved by
any algorithm.
— Inefficiency: Even if we have an algorithm, it may be far too
slow.
Remarks.

1. The important results on incompleteness and undecidability
come from 1930’s — well before the first real computers were
constructed!

2. Despite the problems, there are computer programs designed
for automated proving.
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Example: Peano Arithmetic

An attempt to axiomatically describe natural numbers and their
arithmetics.
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Example: Peano Arithmetic

An attempt to axiomatically describe natural numbers and their
arithmetics.

Axioms:
(P1) not(Ix)(x +1 =0);
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Example: Peano Arithmetic

An attempt to axiomatically describe natural numbers and their
arithmetics.

Axioms:
(P1) not(3Ix)(x +1=0);
P2) x+1=y+1 = x=y;
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Example: Peano Arithmetic

An attempt to axiomatically describe natural numbers and their
arithmetics.

Axioms:

(P1) not(3Ix)(x +1=0);

P2) x+1=y+1 = x=y;
(P3) x+0=x;
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Example: Peano Arithmetic

An attempt to axiomatically describe natural numbers and their

arithmetics.

Axioms:

(P1) not(3x)(x +1 = 0);

P2) x+1=y+1 = x=y;
(P3) x+0=x;

(P4) x+(+1)=(x+y)+1;
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Example: Peano Arithmetic

An attempt to axiomatically describe natural numbers and their

arithmetics.

Axioms:

(P1) not(3Ix)(x +1=0);

P2) x+1=y+1 = x=y,;
(P3) x+0=x;

(P4) x+(+1)=(x+y)+1;
(P5) x-0=0;
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Example: Peano Arithmetic

An attempt to axiomatically describe natural numbers and their
arithmetics.

Axioms:
P1) not(3x)(x +1 =0);

(

(P2) x+1=y+1 = x=y;
(P3) x +0 = x;

(P4) x+(y+1)=(x+y)+1
(P5) x-0=0;

(P6) x-(y+1)=x-y+x;
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Example: Peano Arithmetic

An attempt to axiomatically describe natural numbers and their

arithmetics.

Axioms:

(P1) not(3Ix)(x +1=0);

P2) x+1=y+1 = x=y;

(P3) x+0=x;

(P4) x+(y+1)=(x+y)+1;

(P5) x-0=0;

(P6) x-(y+1)=x-y+x;

(P7) for any formula ¢(x) in Peano Arithmetics, we have an axiom

(»(0)and (VX)(p(x) = ¢(x +1))) = (VX)(¢(x))-
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Example: Peano Arithmetic

An attempt to axiomatically describe natural numbers and their

arithmetics.

Axioms:

(P1) not(3Ix)(x +1=0);

(P2) x+1=y+1 = x=y;

(P3) x+0=x;

(P4) x+(y+1)=(x+y)
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Example: Peano Arithmetic

An attempt to axiomatically describe natural numbers and their

arithmetics.
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— Variables: x,y,z,...
— Constants: 0, 1
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We have the following components:
— Variables: x,y,z,...

— Constants: 0, 1

— Operation symbols: +, -
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We have the following components:

— Variables: x,y,z,...
— Constants: 0, 1
— Operation symbols: +, -

— Terms: 0,1, x, x+ y, x-y.
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Formal Languages

We have the following components:
— Variables: x,y,z,...

— Constants: 0, 1

— Operation symbols: +, -

— Terms: 0,1, x, x+ y, x-y.
If t; and &, are terms, so are t; + b and t; - b.
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Formal Languages

We have the following components:

— Variables: x,y,z,...

— Constants: 0, 1

— Operation symbols: +, -
— Terms: 0,1, x, x+ y, x - y.

If t; and &, are terms, so are t; + b and t; - b.
Therefore, (x +y)-z,(1+x) -y + z,... are terms.
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Formal Languages

We have the following components:
— Variables: x,y,z,...

— Constants: 0, 1

— Operation symbols: +, -

— Terms: 0,1, x, x+ y, x-y.
If t; and &, are terms, so are t; + b and t; - b.
Therefore, (x +y)-z,(1+x) -y + z,... are terms.

— Relation symbol: =
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Formal Languages (continued)

Formulas, sentences:
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Formal Languages (continued)

Formulas, sentences:
— Atomic formulas: t; = b, where 1, t> are terms.
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Formal Languages (continued)

Formulas, sentences:

— Atomic formulas: t; = b, where 1, t> are terms.
Example. o(x,y):x+y=x-y
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Formulas, sentences:

— Atomic formulas: t; = b, where 1, t> are terms.
Example. o(x,y):x+y=x-y

— Logical operators: and, or, not.
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Formal Languages (continued)

Formulas, sentences:

— Atomic formulas: t; = b, where 1, t> are terms.
Example. o(x,y):x+y=x-y

— Logical operators: and, or, not.

— Quantifiers: (Vx), (3x).
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Formal Languages (continued)

Formulas, sentences:
— Atomic formulas: t; = b, where 1, t> are terms.
Example. o(x,y):x+y=x-y
— Logical operators: and, or, not.
— Quantifiers: (Vx), (3x).
Example. ¢(x):not(3y)(3z)(y < xand z< xand x =y - 2)
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Formal Languages (continued)

Formulas, sentences:
— Atomic formulas: t; = b, where 1, t> are terms.
Example. o(x,y):x+y=x-y
— Logical operators: and, or, not.
— Quantifiers: (Vx), (3x).
Example. ¢(x):not(3y)(3z)(y < xand z< xand x =y - 2)

— Sentences: Formulas without free variables.
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Formal Languages (continued)

Formulas, sentences:
— Atomic formulas: t; = b, where 1, t> are terms.
Example. o(x,y):x+y=x-y
— Logical operators: and, or, not.
— Quantifiers: (Vx), (3x).
Example. ¢(x):not(3y)(3z)(y < xand z< xand x =y - 2)

— Sentences: Formulas without free variables.
(vx)(
not(x=0orx=1) =
(3y)(3z)(¥(y)and (z)and x + x = y + 2)
)
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Formal Languages (continued)

Formulas, sentences:
— Atomic formulas: t; = b, where 1, t> are terms.
Example. o(x,y):x+y=x-y
— Logical operators: and, or, not.
— Quantifiers: (Vx), (3x).
Example. ¢(x):not(3y)(3z)(y < xand z< xand x =y - 2)

— Sentences: Formulas without free variables.
(Vx)(
not(x=0orx=1) =
3y)3z)(w(y)and Y(z)and x + x =y + 2)
)

(Goldbach’s Conjecture).
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Theories

A theory is a formal language together with a set of axioms.
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A theory is a formal language together with a set of axioms.

Proofs in a theory:
A proof of a sentence £ in our language is a sequence
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A theory is a formal language together with a set of axioms.
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— an axiom, or
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Theories

A theory is a formal language together with a set of axioms.

Proofs in a theory:
A proof of a sentence £ in our language is a sequence

P g17£2>"'7£k7"'7£n:£

of formulas such that each & is

— an axiom, or
— logically follows from &g, ..., &k 1
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Theories

A theory is a formal language together with a set of axioms.

Proofs in a theory:
A proof of a sentence £ in our language is a sequence

P g17£2>"'7£k7"'7£n:£

of formulas such that each & is

— an axiom, or

— logically follows from &g, ..., &k 1
(using substitution, modus ponens, generalization, logical
axioms).
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Consistency and Completeness

If we have a theory describing some structure, such as the
arithmetics of natural numbers, we would like it to be:

1. Consistent.
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Consistency and Completeness

If we have a theory describing some structure, such as the
arithmetics of natural numbers, we would like it to be:

1. Consistent. If there is a proof in the theory for a sentence &,
there must not be a proof for “not ¢!
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Consistency and Completeness

If we have a theory describing some structure, such as the
arithmetics of natural numbers, we would like it to be:

1. Consistent. If there is a proof in the theory for a sentence &,
there must not be a proof for “not ¢!
We will assume that Peano Arithmetics is consistent
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Consistency and Completeness

If we have a theory describing some structure, such as the
arithmetics of natural numbers, we would like it to be:

1. Consistent. If there is a proof in the theory for a sentence &,
there must not be a proof for “not £”!
We will assume that Peano Arithmetics is consistent (cheating
in a sense!).
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Consistency and Completeness

If we have a theory describing some structure, such as the
arithmetics of natural numbers, we would like it to be:

1. Consistent. If there is a proof in the theory for a sentence &,
there must not be a proof for “not £”!
We will assume that Peano Arithmetics is consistent (cheating
in a sense!).

2. Complete.
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Consistency and Completeness

If we have a theory describing some structure, such as the
arithmetics of natural numbers, we would like it to be:

1. Consistent. If there is a proof in the theory for a sentence &,
there must not be a proof for “not £”!
We will assume that Peano Arithmetics is consistent (cheating
in a sense!).

2. Complete. If ¢ is a sentence, there should be a proof for either
é-or Hnot é-”-

NTNU
Norwegian University of
Science and Technology

www.ntnu.no Jan Stovicek, Axioms & algorithms




Godel’s Incompleteness Theorem

Theorem (Kurt Gédel, 1931)

There is a sentence &, the so called Gddel sentence, in Peano
Arithmetics
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Theorem (Kurt Gédel, 1931)

There is a sentence &, the so called Gddel sentence, in Peano
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Godel’s Incompleteness Theorem

Theorem (Kurt Gédel, 1931)

There is a sentence &, the so called Gddel sentence, in Peano
Arithmetics which cannot be proved, but it is a true statement about
natural numbers.
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Theorem (Kurt Gédel, 1931)

There is a sentence &, the so called Gddel sentence, in Peano
Arithmetics which cannot be proved, but it is a true statement about
natural numbers. In particular, Peano Arithmetics is incomplete.

In fact, any consistent effective axiomatic description of the
arithmetics of natural numbers is incomplete.
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Godel’s Incompleteness Theorem

Theorem (Kurt Gédel, 1931)

There is a sentence &, the so called Gddel sentence, in Peano
Arithmetics which cannot be proved, but it is a true statement about
natural numbers. In particular, Peano Arithmetics is incomplete.

In fact, any consistent effective axiomatic description of the
arithmetics of natural numbers is incomplete.

Effective axiomatic description: There is an algorithm which
determines whether a given formula is an axiom.
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Godel’s Incompleteness Theorem

Theorem (Kurt Gédel, 1931)

There is a sentence &, the so called Gddel sentence, in Peano
Arithmetics which cannot be proved, but it is a true statement about
natural numbers. In particular, Peano Arithmetics is incomplete.

In fact, any consistent effective axiomatic description of the
arithmetics of natural numbers is incomplete.

Effective axiomatic description: There is an algorithm which
determines whether a given formula is an axiom.
Recall: (P7) (¢(0)and (Vx)(¢(x) = ¢(x +1))) = (¥x)(x(X)).
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Idea behind the Theorem

— Every formula ¢(xq, ..., Xp) in Peano Arithmetics can be
represented by a number.
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Godel number of ).
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represented by a number. We will denote this number G, (the
Godel number of ¢). So can be represented proofs.
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— Every formula ¢(xq, ..., Xp) in Peano Arithmetics can be
represented by a number. We will denote this number G, (the
Godel number of ¢). So can be represented proofs.

— Then, roughly said we construct a sentence &, which “says”
that there is no proof for ¢ in Peano Arithmetics
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Idea behind the Theorem

— Every formula ¢(xq, ..., Xp) in Peano Arithmetics can be
represented by a number. We will denote this number G, (the
Godel number of ¢). So can be represented proofs.

— Then, roughly said we construct a sentence &, which “says”
that there is no proof for £ in Peano Arithmetics (Liar Paradox).
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Idea behind the Theorem

— Every formula ¢(xq, ..., Xp) in Peano Arithmetics can be
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Idea behind the Theorem

— Every formula ¢(xq, ..., Xp) in Peano Arithmetics can be
represented by a number. We will denote this number G, (the
Godel number of ¢). So can be represented proofs.

— Then, roughly said we construct a sentence &, which “says”
that there is no proof for £ in Peano Arithmetics (Liar Paradox).

— There can be no proof for £ in Peano Arithmetics, but ¢ is a
true statement about natural numbers.

— The second part is newer with a different proof, it can be
essentially found in a nice book by Alfred Tarski.
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Summary

Any axiomatic description of the arithmetics of natural numbers
which is

1. consistent, and

2. effectively described,

is necessarily incomplete.
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Outline

Undecidability
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The Decision Problem Revisited

Problem (Hilbert’s Entscheidungsproblem)

Is there an algorithm which, given an effectively described theory,
such as Peano Arithmetics, and a sentence & in the theory decides,
whether ¢ is or is not provable from the axioms.

In other words:
— We have given up finding a complete axiomatic description for
natural numbers.

— However, we still want an algorithm for automated proving for
the descriptions we have at our disposal.
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If we want to prove anything about existence of algorithms we need
to have a definition of an algorithm.
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What Precisely is an Algorithm?

If we want to prove anything about existence of algorithms we need
to have a definition of an algorithm.

Different computational models:

1. A program in C, Java, Pascal or similar which gets an input file
and can write its output to an output file.

2. A Turing machine (after Alan Turing).

3. Lambda calculus (by Alonzo Church).

All the models above have the same computational strength.
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Church-Turing Thesis

Transition table

State | Symbol | Acti

=3
1<)
3

State:
A Turing machine: Reading: [O]

NNR
EER - e ol o <

(> [H[E[L]L]O] [W[O[R[L[D]
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Church-Turing Thesis
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Church-Turing Thesis

Transition table

State | Symbol | Action
State: i ;‘ :
A Turing machine: Reading: [O] el 2 |2

(> [H[E[L]L]O] [W[O[R[L[D]

Church-Turing Thesis

The intuitive notion of an “algorithm” is, formally, a Turing machine
which finishes its computation in finite time given any input (= halts
on each input).
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The Halting Problem

Problem (The Halting Problem)

Is there an algorithm (program) Halt(P, F)
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Problem (The Halting Problem)
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The Halting Problem

Problem (The Halting Problem)

Is there an algorithm (program) Halt(P, F) which, given a source
code P of another program and its input file F, decides whether P
halts on the input F?

Theorem (Alan Turing, 1936)

There is no such algorithm.
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The Halting Problem

Problem (The Halting Problem)

Is there an algorithm (program) Halt(P, F) which, given a source
code P of another program and its input file F, decides whether P
halts on the input F?

Theorem (Alan Turing, 1936)

There is no such algorithm. Therefore, the halting problem is
undecidable.
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Idea behind the Theorem

— Suppose we have such a program Halt(P, F).
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Idea behind the Theorem

— Suppose we have such a program Halt(P, F).
— Then define a program
Diag(F) {
x: ifHalt(F, F) then go to x;
}
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Idea behind the Theorem

— Suppose we have such a program Halt(P, F).
— Then define a program

Diag(F) {
x: ifHalt(F, F) then go to x;
}

— What does then Halt(Diag, Diag) return?
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Undecidability

Theorem (Alan Turing, Alonzo Church, 1936)

There is no algorithm which, given a sentence ¢ in Peano
Arithmetics, would decide whether or not £ is provable from the
axioms.
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Undecidability

Theorem (Alan Turing, Alonzo Church, 1936)

There is no algorithm which, given a sentence ¢ in Peano
Arithmetics, would decide whether or not £ is provable from the
axioms.

The same holds for any consistent axiomatic description of the
artihmetics of natural numbers.
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Idea behind the Theorem

— Afunction f : N — N is definable if there is a formula ¢(x, y) in
Peano Arithmetics
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Idea behind the Theorem

— Afunction f : N — N is definable if there is a formula ¢(x, y) in
Peano Arithmetics such that f(n) = k if and only if ¢(n, k) is
provable.
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— Afunction f : N — N is definable if there is a formula ¢(x, y) in
Peano Arithmetics such that f(n) = k if and only if ¢(n, k) is
provable.

— Here,n=1+1+4-.-+1.

n times
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provable.

— Here,n=1+1+4-.-+1.

n times

— Key point: A function f : N — N is definable if and only if it is
computable by a program.

— With similar arguments as in Gddel’s theorem, we show that

Fx) = 1 if x = G, for a provable formula ¢
~ |0 otherwise

is not definable.
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Idea behind the Theorem

— Afunction f : N — N is definable if there is a formula ¢(x, y) in
Peano Arithmetics such that f(n) = k if and only if ¢(n, k) is
provable.

— Here,n=1+1+4-.-+1.

n times

— Key point: A function f : N — N is definable if and only if it is
computable by a program.

— With similar arguments as in Gddel’s theorem, we show that

Fx) = 1 if x = G, for a provable formula ¢
~ |0 otherwise

is not definable. Hence, it is not computable by a program.
— The second part can be found in the book by Tarski.
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