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Definition
Let C be a skeletally small additive category. A (2-sided) ideal J
of C is a collection of morphisms such that:

> 10 €7,

» f.g: X=>YInNJ = f+gey,

» f € 7 — fg and hf € 7 (if the compositions are defined).

Definition
An ideal J is idempotent if 32 = 3. Equivalently:

(vf € 3)(3g,h €3) f=gh
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» Let ¥ = {x; | i € |} be a set of morphisms in C.

» Then there is a smallest ideal containing X—the ideal
generated by X.

» It contains exactly morphisms of the form >, hix;g;:

1x, 1x,

b b
. gz -lXZ.TrZ . l/2 .lxzu h2 .
AN ZA N4

1x, 1x,

» Easy: An ideal generated by a set of identity morphisms is
idempotent. Is the converse true?

» Often not, but it is true for some non-trivial cases.
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Definition

C a Krull-Schmidt category. Then the transfinite radical of C is:

Definition “from inside”: The ideal of all morphisms f such that
there exist an inverse system

(for : Xr = Xp | P,r €QN[0,1],p <)

in C such that f = 1o and all fo; € radc.

Definition “from outside”: We can define transfinite powers of
rade:

radc Drad3 D ... Drads D (rads)? D ...

The decreasing chain above stabilizes and the resulting
ideal is (by definition) the transfinite radical.



Theorem

Let A be an artin algebra. The following are equivalent:




THE TRANSFINITE RADICAL

Theorem
Let A be an artin algebra. The following are equivalent:

1. Every idempotent ideal of modA is generated by a set of
identity morphisms.



THE TRANSFINITE RADICAL

Theorem
Let A be an artin algebra. The following are equivalent:

1. Every idempotent ideal of modA is generated by a set of
identity morphisms.

2. The transfinite radical of modA vanishes.



THE TRANSFINITE RADICAL

Theorem
Let A be an artin algebra. The following are equivalent:

1. Every idempotent ideal of modA is generated by a set of
identity morphisms.

2. The transfinite radical of modA vanishes.

Sketch of proof.

(1) = (2). If the transfinite radical is # 0, it is a non-trivial
idempotent ideal without identity morphisms.



THE TRANSFINITE RADICAL

Theorem
Let A be an artin algebra. The following are equivalent:

1. Every idempotent ideal of modA is generated by a set of
identity morphisms.

2. The transfinite radical of modA vanishes.

Sketch of proof.

(1) = (2). If the transfinite radical is # 0, it is a non-trivial
idempotent ideal without identity morphisms.

(2) = ().

» Assume J is idempotent.



THE TRANSFINITE RADICAL

Theorem
Let A be an artin algebra. The following are equivalent:

1. Every idempotent ideal of modA is generated by a set of
identity morphisms.

2. The transfinite radical of modA vanishes.

Sketch of proof.

(1) = (2). If the transfinite radical is # 0, it is a non-trivial
idempotent ideal without identity morphisms.

(2) = ().

» Assume J is idempotent.
» Prove for each f € J by transfinite induction on «:



THE TRANSFINITE RADICAL

Theorem
Let A be an artin algebra. The following are equivalent:

1. Every idempotent ideal of modA is generated by a set of
identity morphisms.
2. The transfinite radical of modA vanishes.

Sketch of proof.

(1) = (2). If the transfinite radical is # 0, it is a non-trivial
idempotent ideal without identity morphisms.

(2) = ().

» Assume J is idempotent.
» Prove for each f € J by transfinite induction on «:

f = g + ha, 9o generated by identity morphisms
from J and h,, € rady.
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Theorem
Let A be an artin algebra. The following are equivalent:

1. Every idempotent ideal of modA is generated by a set of
identity morphisms.

2. The transfinite radical of modA vanishes.

Sketch of proof.

(1) = (2). If the transfinite radical is # 0, it is a non-trivial
idempotent ideal without identity morphisms.
(2) = (D).

» Assume J is idempotent.

» Prove for each f € J by transfinite induction on «:
f = g + ha, 9o generated by identity morphisms
from J and h,, € rady.

» By assumption: h, = 0 for o > 0.
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Theorem (generalization)
Let C be a Krull-Schmidt category satisfying (). The following
are equivalent:

1. Every idempotent ideal of C is generated by a set of
identity morphisms.

2. The transfinite radical of C vanishes.

Condition(x) onC
C has local d.c.c. on ideals—whenever

Q2
o

27127022...
and X,Y € C, the following chain stabilizes:

Jo(X,Y) DT (X,Y) D2 Tp(X,Y) D ...
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» The transfinite radical of modA is often non-zero, for
example for:

» “Gelfand-Ponomarev” algebra
K[x,y]/(xy = yx = 0,x2 = y3 = 0) [Prest].
» Any wild algebra [Prest].

» But it vanishes for:

» Any algebra of finite representation type.

» Domestic standard self-injective algebras
[Kerner-Skowronski].

» Domestic special biserial algebras [Prest,Schroer].
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Telescope conjecture for module categories (TCMC) is a
conjecture related to:

» Localization of triangulated categories, an open problem in
algebraic topology.

» Approximation theory for modules over general rings
(constructing left and right approximations related to Ext).

There is a direct translation between the two settings for
self-injective artin algebras [Krause-Solberg] and
[Angeleri-Saroch-Trlifaj].
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Definition
A pair of classes (A, B) in ModA is called a hereditary cotorsion
pair if:
»Xed <= Ext(X,Y)=0 (VY eB)(vi>1)
»YeB «— Ext(X,Y)=0 (VX e A)Vi>1)

Fact
» B is always closed under products and direct summands,
but not under direct sums or direct limits in general.
» However, B is closed under direct limits if it is of finite type.
le., there is a set S of finitely generated modules such that:

YeB +«— Ext}(X,Y)=0 (VX ¢eS)

Telescope conjecture
Given a hereditary cotorsion pair (A, B) such that B is closed
under direct limits, (A, B) is of finite type.
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Theorem (Saroch-S.)

Let A be an artin algebra and (.4, B) a hereditary cotorsion pair
such that B is closed under direct limits.
Let J be the ideal of modA defined as:

J={f : X =Y | f factors through some (inf. gen.) module froth
Then:

1. Jis an idempotent ideal.

2.YeB <« Ext{(f,Y)=0 (vfe2).

Sketch of proof.

» First show that B is of countable type (set-theoretic
methods, properties of cotosion pairs and inverse limits).

» Prove 1. using Mittag-Leffler inverse systems and
properties of (infinite) filtrations.

» Statement 2. is a consequence of approximation theory
and model theory of modules.
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Theorem

Let A be an artin algebra such that the transfinite radical of
modA vanishes. Let (A, B) a hereditary cotorsion pair such
that B is closed under direct limits. Then (A, B) is of finite type.

Proof.

» Jis generated by a set of identity morphisms {1x | X € S}.
» By the former theorem:

YeB <« Ext}(f,Y)=0 (vf €7)
— Ext}(1lx,Y)=0 (VX €38)
— Ext}(X,Y)=0 (VX € 8)
» Hence, B is of finite type.
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