Idempotent ideals in a module category and the Telescope conjecture

Jan Šťovíček

Department of Mathematical Sciences Norwegian University of Science and Technology, Trondheim

> ICRA XII, Toruń, Poland August 20–24, 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

Let C be a skeletally small additive category. A (2-sided) ideal \Im of C is a collection of morphisms such that:

Definition

Let C be a skeletally small additive category. A (2-sided) ideal \Im of C is a collection of morphisms such that:

Definition

Let C be a skeletally small additive category. A (2-sided) ideal \Im of C is a collection of morphisms such that:

• $f, g: X \to Y$ in $\mathfrak{I} \implies f + g \in \mathfrak{I}$,

◆□▶ ◆圖▶ ★ヨ▶ ★ヨ▶ - ヨー のへぐ

Definition

Let C be a skeletally small additive category. A (2-sided) ideal \Im of C is a collection of morphisms such that:

- ▶ $\mathbf{1}_0 \in \mathfrak{I}$,
- $\blacktriangleright \ f,g:X\to Y \text{ in } \mathfrak{I} \implies f+g\in \mathfrak{I},$
- $f \in \mathfrak{I} \implies fg$ and $hf \in \mathfrak{I}$ (if the compositions are defined).

(日) (二) (二) (二) (二) (二) (二) (二)

Definition

Let C be a skeletally small additive category. A (2-sided) ideal \Im of C is a collection of morphisms such that:

- ▶ $\mathbf{1}_0 \in \mathfrak{I}$,
- $\blacktriangleright \ f,g:X\to Y \text{ in } \mathfrak{I} \implies f+g\in \mathfrak{I},$
- $f \in \mathfrak{I} \implies fg$ and $hf \in \mathfrak{I}$ (if the compositions are defined).

Notation

For an ideal \mathfrak{I} , let $\mathfrak{I}(X, Y) = \{f : X \to Y \mid f \in \mathfrak{I}\}.$

Definition

Let C be a skeletally small additive category. A (2-sided) ideal \mathfrak{I} of C is a collection of morphisms such that:

- ▶ **1**₀ ∈ ℑ,
- $\blacktriangleright \ f,g:X\to Y \text{ in } \mathfrak{I} \implies f+g\in \mathfrak{I},$
- $f \in \mathfrak{I} \implies fg$ and $hf \in \mathfrak{I}$ (if the compositions are defined).

Definition

An ideal \mathfrak{I} is idempotent if $\mathfrak{I}^2 = \mathfrak{I}$.

(日) (二) (二) (二) (二) (二) (二) (二)

Definition

Let C be a skeletally small additive category. A (2-sided) ideal \mathfrak{I} of C is a collection of morphisms such that:

- ▶ **1**₀ ∈ ℑ,
- $f, g: X \to Y$ in $\mathfrak{I} \implies f + g \in \mathfrak{I}$,
- $f \in \mathfrak{I} \implies fg$ and $hf \in \mathfrak{I}$ (if the compositions are defined).

Definition

An ideal \Im is idempotent if $\Im^2 = \Im$. Equivalently:

$$(\forall f \in \mathfrak{I})(\exists g, h \in \mathfrak{I}) \quad f = gh$$

▲□▶ ▲圖▶ ▲圖▶ ★圖▶ - 圖 - のへ⊙

• Let $\mathcal{X} = \{x_i \mid i \in I\}$ be a set of morphisms in \mathcal{C} .

- Let $\mathcal{X} = \{x_i \mid i \in I\}$ be a set of morphisms in \mathcal{C} .
- Then there is a smallest ideal containing X—the ideal generated by X.

- Let $\mathcal{X} = \{x_i \mid i \in I\}$ be a set of morphisms in \mathcal{C} .
- Then there is a smallest ideal containing X—the ideal generated by X.
- It contains exactly morphisms of the form $\sum_i h_i x_i g_i$:

- Let $\mathcal{X} = \{x_i \mid i \in I\}$ be a set of morphisms in \mathcal{C} .
- Then there is a smallest ideal containing X—the ideal generated by X.
- It contains exactly morphisms of the form $\sum_i h_i x_i g_i$:

- Let $\mathcal{X} = \{x_i \mid i \in I\}$ be a set of morphisms in \mathcal{C} .
- Then there is a smallest ideal containing X—the ideal generated by X.
- It contains exactly morphisms of the form $\sum_i h_i x_i g_i$:

- Let $\mathcal{X} = \{x_i \mid i \in I\}$ be a set of morphisms in \mathcal{C} .
- Then there is a smallest ideal containing X—the ideal generated by X.
- It contains exactly morphisms of the form $\sum_i h_i x_i g_i$:

- Let $\mathcal{X} = \{x_i \mid i \in I\}$ be a set of morphisms in \mathcal{C} .
- Then there is a smallest ideal containing X—the ideal generated by X.
- It contains exactly morphisms of the form $\sum_i h_i x_i g_i$:

(日) (二) (二) (二) (二) (二) (二) (二)

- Let $\mathcal{X} = \{x_i \mid i \in I\}$ be a set of morphisms in \mathcal{C} .
- Then there is a smallest ideal containing X—the ideal generated by X.
- It contains exactly morphisms of the form $\sum_i h_i x_i g_i$:

Easy: An ideal generated by a set of identity morphisms is idempotent. Is the converse true?

- Let $\mathcal{X} = \{x_i \mid i \in I\}$ be a set of morphisms in \mathcal{C} .
- Then there is a smallest ideal containing X—the ideal generated by X.
- It contains exactly morphisms of the form $\sum_i h_i x_i g_i$:

- Easy: An ideal generated by a set of identity morphisms is idempotent. Is the converse true?
- Often not, but it is true for some non-trivial cases.

▲□▶ ▲圖▶ ▲圖▶ ★圖▶ - 圖 - のへ⊙

 Assume C is a Krull-Schmidt category (eg. C = mod Λ for an artin algebra Λ).

- Assume C is a Krull-Schmidt category (eg. C = mod Λ for an artin algebra Λ).
- Recall: the radical of C is the ideal generated by non-isomorphisms between indecomposables.

- Assume C is a Krull-Schmidt category (eg. C = mod Λ for an artin algebra Λ).
- Recall: the radical of C is the ideal generated by non-isomorphisms between indecomposables.
- ► Notation: rad_C

Definition C a Krull-Schmidt category. Then the transfinite radical of C is:

Definition C a Krull-Schmidt category. Then the transfinite radical of C is:

Definition "from inside": The ideal of all morphisms *f* such that there exist an inverse system

$$(f_{\rho r}: X_r \rightarrow X_{\rho} \mid \rho, r \in \mathbb{Q} \cap [0, 1], \rho \leq r)$$

in C such that $f = f_{10}$ and all $f_{pr} \in rad_{C}$.

Definition C a Krull-Schmidt category. Then the transfinite radical of C is:

Definition "from inside": The ideal of all morphisms *f* such that there exist an inverse system

$$(f_{\it pr}:X_r o X_{\it p} \mid {\it p},r \in \mathbb{Q} \cap [0,1], {\it p} \leq r)$$

in C such that $f = f_{10}$ and all $f_{pr} \in rad_C$.

Definition "from outside": We can define transfinite powers of $rad_{\mathcal{C}}$:

$$\text{rad}_{\mathcal{C}}\supseteq\text{rad}_{\mathcal{C}}^{2}\supseteq\ldots$$

Definition C a Krull-Schmidt category. Then the transfinite radical of C is:

Definition "from inside": The ideal of all morphisms *f* such that there exist an inverse system

$$(f_{\rho r}: X_r \rightarrow X_{\rho} \mid \rho, r \in \mathbb{Q} \cap [0, 1], \rho \leq r)$$

in C such that $f = f_{10}$ and all $f_{pr} \in rad_C$.

Definition "from outside": We can define transfinite powers of $rad_{\mathcal{C}}$:

$$\mathsf{rad}_{\mathcal{C}} \supseteq \mathsf{rad}_{\mathcal{C}}^2 \supseteq \ldots \supseteq \mathsf{rad}_{\mathcal{C}}^\omega \supseteq (\mathsf{rad}_{\mathcal{C}}^\omega)^2 \supseteq \ldots$$

Definition C a Krull-Schmidt category. Then the transfinite radical of C is:

Definition "from inside": The ideal of all morphisms *f* such that there exist an inverse system

$$(f_{\rho r}: X_r \rightarrow X_{\rho} \mid \rho, r \in \mathbb{Q} \cap [0, 1], \rho \leq r)$$

in C such that $f = f_{10}$ and all $f_{pr} \in rad_C$.

Definition "from outside": We can define transfinite powers of $rad_{\mathcal{C}}$:

$$\mathsf{rad}_{\mathcal{C}} \supseteq \mathsf{rad}_{\mathcal{C}}^2 \supseteq \ldots \supseteq \mathsf{rad}_{\mathcal{C}}^\omega \supseteq (\mathsf{rad}_{\mathcal{C}}^\omega)^2 \supseteq \ldots$$

The decreasing chain above stabilizes

Definition C a Krull-Schmidt category. Then the transfinite radical of C is:

Definition "from inside": The ideal of all morphisms *f* such that there exist an inverse system

$$(f_{\rho r}: X_r \rightarrow X_{\rho} \mid \rho, r \in \mathbb{Q} \cap [0, 1], \rho \leq r)$$

in C such that $f = f_{10}$ and all $f_{pr} \in rad_{C}$.

Definition "from outside": We can define transfinite powers of $rad_{\mathcal{C}}$:

$$\mathsf{rad}_{\mathcal{C}} \supseteq \mathsf{rad}_{\mathcal{C}}^2 \supseteq \ldots \supseteq \mathsf{rad}_{\mathcal{C}}^{\omega} \supseteq (\mathsf{rad}_{\mathcal{C}}^{\omega})^2 \supseteq \ldots$$

The decreasing chain above stabilizes and the resulting ideal is (by definition) the transfinite radical.

▲□▶ ▲圖▶ ▲圖▶ ★圖▶ - 圖 - のへ⊙

Theorem Let Λ be an artin algebra. The following are equivalent:

イロト (得) (日) (日) (日) (日)

Theorem

Let Λ be an artin algebra. The following are equivalent:

1. Every idempotent ideal of mod ∧ is generated by a set of identity morphisms.

Theorem

Let Λ be an artin algebra. The following are equivalent:

- 1. Every idempotent ideal of mod ∧ is generated by a set of identity morphisms.
- 2. The transfinite radical of $mod \wedge vanishes$.

Theorem

Let Λ be an artin algebra. The following are equivalent:

- 1. Every idempotent ideal of mod ∧ is generated by a set of identity morphisms.
- 2. The transfinite radical of $mod \Lambda$ vanishes.

Sketch of proof.

(1) \implies (2). If the transfinite radical is \neq 0, it is a non-trivial idempotent ideal without identity morphisms.

Theorem

Let Λ be an artin algebra. The following are equivalent:

- 1. Every idempotent ideal of mod ∧ is generated by a set of identity morphisms.
- 2. The transfinite radical of $mod \land vanishes$.

Sketch of proof.

- (1) \implies (2). If the transfinite radical is \neq 0, it is a non-trivial idempotent ideal without identity morphisms.
- $(2) \implies (1).$
 - Assume 3 is idempotent.

Theorem

Let Λ be an artin algebra. The following are equivalent:

- 1. Every idempotent ideal of mod ∧ is generated by a set of identity morphisms.
- 2. The transfinite radical of $mod \Lambda$ vanishes.

Sketch of proof.

- (1) \implies (2). If the transfinite radical is \neq 0, it is a non-trivial idempotent ideal without identity morphisms.
- $(2)\implies (1).$
 - Assume 3 is idempotent.
 - Prove for each $f \in \mathfrak{I}$ by transfinite induction on α :

Theorem

Let Λ be an artin algebra. The following are equivalent:

- 1. Every idempotent ideal of mod ∧ is generated by a set of identity morphisms.
- 2. The transfinite radical of $mod \Lambda$ vanishes.

Sketch of proof.

(1) \implies (2). If the transfinite radical is \neq 0, it is a non-trivial idempotent ideal without identity morphisms.

 $(2) \implies (1).$

- Assume 3 is idempotent.
- Prove for each *f* ∈ ℑ by transfinite induction on *α*: *f* = *g*_α + *h*_α, *g*_α generated by identity morphisms from ℑ and *h*_α ∈ rad^α_Λ.

Theorem

Let Λ be an artin algebra. The following are equivalent:

- 1. Every idempotent ideal of mod ∧ is generated by a set of identity morphisms.
- 2. The transfinite radical of $mod \land vanishes$.

Sketch of proof.

(1) \implies (2). If the transfinite radical is \neq 0, it is a non-trivial idempotent ideal without identity morphisms.

 $(2) \implies (1).$

- Assume 3 is idempotent.
- Prove for each *f* ∈ ℑ by transfinite induction on *α*: *f* = *g*_α + *h*_α, *g*_α generated by identity morphisms from ℑ and *h*_α ∈ rad^α_Λ.
- By assumption: $h_{\alpha} = 0$ for $\alpha \gg 0$.

Theorem (generalization) Let *C* be a Krull-Schmidt category satisfying (*). The following are equivalent:

Theorem (generalization)

Let C be a Krull-Schmidt category satisfying (*). The following are equivalent:

1. Every idempotent ideal of *C* is generated by a set of identity morphisms.

Theorem (generalization)

Let C be a Krull-Schmidt category satisfying (*). The following are equivalent:

- 1. Every idempotent ideal of *C* is generated by a set of identity morphisms.
- 2. The transfinite radical of C vanishes.

Theorem (generalization)

Let C be a Krull-Schmidt category satisfying (*). The following are equivalent:

- 1. Every idempotent ideal of *C* is generated by a set of identity morphisms.
- 2. The transfinite radical of C vanishes.

Condition (*) on C

 $\ensuremath{\mathcal{C}}$ has local d.c.c. on ideals—whenever

 $\mathfrak{I}_0\supseteq\mathfrak{I}_1\supseteq\mathfrak{I}_2\supseteq\ldots$

and $X, Y \in \mathcal{C}$,

Theorem (generalization)

Let C be a Krull-Schmidt category satisfying (*). The following are equivalent:

- 1. Every idempotent ideal of *C* is generated by a set of identity morphisms.
- 2. The transfinite radical of C vanishes.

Condition (*) on C

 $\ensuremath{\mathcal{C}}$ has local d.c.c. on ideals—whenever

 $\mathfrak{I}_0\supseteq\mathfrak{I}_1\supseteq\mathfrak{I}_2\supseteq\ldots$

and $X, Y \in C$, the following chain stabilizes:

 $\mathfrak{I}_0(X, Y) \supseteq \mathfrak{I}_1(X, Y) \supseteq \mathfrak{I}_2(X, Y) \supseteq \dots$

▲□▶ ▲圖▶ ▲圖▶ ★圖▶ - 圖 - のへ⊙

- The transfinite radical of mod A is often non-zero, for example for:
 - ► "Gelfand-Ponomarev" algebra k[x, y]/(xy = yx = 0, x² = y³ = 0) [Prest].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- The transfinite radical of mod A is often non-zero, for example for:
 - ► "Gelfand-Ponomarev" algebra k[x, y]/(xy = yx = 0, x² = y³ = 0) [Prest].
 - Any wild algebra [Prest].

- The transfinite radical of mod A is often non-zero, for example for:
 - ► "Gelfand-Ponomarev" algebra k[x, y]/(xy = yx = 0, x² = y³ = 0) [Prest].
 - Any wild algebra [Prest].
- But it vanishes for:
 - Any algebra of finite representation type.

- The transfinite radical of mod A is often non-zero, for example for:
 - ► "Gelfand-Ponomarev" algebra k[x, y]/(xy = yx = 0, x² = y³ = 0) [Prest].
 - Any wild algebra [Prest].
- But it vanishes for:
 - Any algebra of finite representation type.
 - Domestic standard self-injective algebras [Kerner-Skowroński].

- The transfinite radical of mod A is often non-zero, for example for:
 - ► "Gelfand-Ponomarev" algebra k[x, y]/(xy = yx = 0, x² = y³ = 0) [Prest].
 - Any wild algebra [Prest].
- But it vanishes for:
 - Any algebra of finite representation type.
 - Domestic standard self-injective algebras [Kerner-Skowroński].
 - Domestic special biserial algebras [Prest,Schröer].

Telescope conjecture for module categories (TCMC) is a conjecture related to:

 Localization of triangulated categories, an open problem in algebraic topology.

Telescope conjecture for module categories (TCMC) is a conjecture related to:

- Localization of triangulated categories, an open problem in algebraic topology.
- Approximation theory for modules over general rings (constructing left and right approximations related to Ext).

Telescope conjecture for module categories (TCMC) is a conjecture related to:

- Localization of triangulated categories, an open problem in algebraic topology.
- Approximation theory for modules over general rings (constructing left and right approximations related to Ext).

There is a direct translation between the two settings for self-injective artin algebras [Krause-Solberg] and [Angeleri-Šaroch-Trlifaj].

Definition

A pair of classes $(\mathcal{A}, \mathcal{B})$ in Mod A is called a hereditary cotorsion pair if:

Definition

A pair of classes $(\mathcal{A}, \mathcal{B})$ in Mod A is called a hereditary cotorsion pair if:

• $X \in \mathcal{A} \iff \operatorname{Ext}^{i}(X, Y) = 0 \quad (\forall Y \in \mathcal{B})(\forall i \ge 1)$

Definition

A pair of classes $(\mathcal{A}, \mathcal{B})$ in Mod A is called a hereditary cotorsion pair if:

- $X \in \mathcal{A} \iff \operatorname{Ext}^{i}(X, Y) = 0 \quad (\forall Y \in \mathcal{B})(\forall i \ge 1)$
- $Y \in \mathcal{B} \iff \operatorname{Ext}^{i}(X, Y) = 0 \quad (\forall X \in \mathcal{A})(\forall i \geq 1)$

Definition

A pair of classes $(\mathcal{A}, \mathcal{B})$ in Mod A is called a hereditary cotorsion pair if:

- $X \in \mathcal{A} \iff \operatorname{Ext}^{i}(X, Y) = 0 \quad (\forall Y \in \mathcal{B})(\forall i \ge 1)$
- ► $Y \in \mathcal{B} \iff \mathsf{Ext}^i(X, Y) = 0 \quad (\forall X \in \mathcal{A})(\forall i \ge 1)$

Fact

 B is always closed under products and direct summands, but not under direct sums or direct limits in general.

Definition

A pair of classes $(\mathcal{A}, \mathcal{B})$ in Mod A is called a hereditary cotorsion pair if:

- $X \in \mathcal{A} \iff \operatorname{Ext}^{i}(X, Y) = 0 \quad (\forall Y \in \mathcal{B})(\forall i \ge 1)$
- ► $Y \in \mathcal{B} \iff \mathsf{Ext}^i(X, Y) = 0 \quad (\forall X \in \mathcal{A})(\forall i \ge 1)$

Fact

- B is always closed under products and direct summands, but not under direct sums or direct limits in general.
- However, B is closed under direct limits if it is of finite type.

Definition

A pair of classes $(\mathcal{A}, \mathcal{B})$ in Mod A is called a hereditary cotorsion pair if:

- $X \in \mathcal{A} \iff \operatorname{Ext}^{i}(X, Y) = 0 \quad (\forall Y \in \mathcal{B})(\forall i \ge 1)$
- ► $Y \in \mathcal{B} \iff \mathsf{Ext}^i(X, Y) = 0 \quad (\forall X \in \mathcal{A})(\forall i \ge 1)$

Fact

- B is always closed under products and direct summands, but not under direct sums or direct limits in general.
- However, B is closed under direct limits if it is of finite type. le., there is a set S of finitely generated modules such that:

$$Y \in \mathcal{B} \iff \mathsf{Ext}^1(X, Y) = \mathsf{0} \ (\forall X \in \mathcal{S})$$

Definition

A pair of classes $(\mathcal{A}, \mathcal{B})$ in Mod A is called a hereditary cotorsion pair if:

- $X \in \mathcal{A} \iff \operatorname{Ext}^{i}(X, Y) = 0 \quad (\forall Y \in \mathcal{B})(\forall i \ge 1)$
- ► $Y \in \mathcal{B} \iff \mathsf{Ext}^i(X, Y) = 0 \quad (\forall X \in \mathcal{A})(\forall i \ge 1)$

Fact

- B is always closed under products and direct summands, but not under direct sums or direct limits in general.
- However, B is closed under direct limits if it is of finite type. le., there is a set S of finitely generated modules such that:

$$Y \in \mathcal{B} \iff \mathsf{Ext}^1(X, Y) = \mathsf{0} \quad (\forall X \in \mathcal{S})$$

Telescope conjecture

Given a hereditary cotorsion pair $(\mathcal{A}, \mathcal{B})$ such that \mathcal{B} is closed under direct limits, $(\mathcal{A}, \mathcal{B})$ is of finite type.

▲□▶ ▲圖▶ ▲圖▶ ★圖▶ - 圖 - のへ⊙

Theorem

Let Λ be an artin algebra such that the transfinite radical of $\text{mod } \Lambda$ vanishes.

Theorem

Let Λ be an artin algebra such that the transfinite radical of $\mod \Lambda$ vanishes. Let $(\mathcal{A}, \mathcal{B})$ a hereditary cotorsion pair such that \mathcal{B} is closed under direct limits.

Theorem

Let Λ be an artin algebra such that the transfinite radical of $\mod \Lambda$ vanishes. Let $(\mathcal{A}, \mathcal{B})$ a hereditary cotorsion pair such that \mathcal{B} is closed under direct limits. Then $(\mathcal{A}, \mathcal{B})$ is of finite type.

Theorem (Šaroch-Š.)

Let Λ be an artin algebra and $(\mathcal{A}, \mathcal{B})$ a hereditary cotorsion pair such that \mathcal{B} is closed under direct limits.

Theorem (Šaroch-Š.)

Let Λ be an artin algebra and $(\mathcal{A}, \mathcal{B})$ a hereditary cotorsion pair such that \mathcal{B} is closed under direct limits. Let \mathfrak{I} be the ideal of mod Λ defined as:

 $\mathfrak{I} = \{f : X \to Y \mid f \text{ factors through some (inf. gen.) module from } \mathcal{A}\}$

Theorem (Šaroch-Š.)

Let Λ be an artin algebra and $(\mathcal{A}, \mathcal{B})$ a hereditary cotorsion pair such that \mathcal{B} is closed under direct limits. Let \mathfrak{I} be the ideal of mod Λ defined as: $\mathfrak{I} = \{f : X \to Y \mid f \text{ factors through some (inf. gen.) module from } \mathcal{A}\}$ Then:

1. \Im is an idempotent ideal.

Theorem (Šaroch-Š.)

Let Λ be an artin algebra and $(\mathcal{A}, \mathcal{B})$ a hereditary cotorsion pair such that \mathcal{B} is closed under direct limits. Let \mathfrak{I} be the ideal of mod Λ defined as: $\mathfrak{I} = \{f : X \to Y \mid f \text{ factors through some (inf. gen.) module from } \mathcal{A}\}$ Then:

- 1. \Im is an idempotent ideal.
- 2. $Y \in \mathcal{B} \iff \operatorname{Ext}^1(f, Y) = 0 \quad (\forall f \in \mathfrak{I}).$

Theorem (Šaroch-Š.)

Let Λ be an artin algebra and $(\mathcal{A}, \mathcal{B})$ a hereditary cotorsion pair such that \mathcal{B} is closed under direct limits. Let \mathfrak{I} be the ideal of mod Λ defined as: $\mathfrak{I} = \{f : X \to Y \mid f \text{ factors through some (inf. gen.) module from } \mathcal{A}\}$ Then:

- 1. \Im is an idempotent ideal.
- 2. $Y \in \mathcal{B} \iff \operatorname{Ext}^1(f, Y) = 0 \quad (\forall f \in \mathfrak{I}).$

Sketch of proof.

 First show that B is of countable type (set-theoretic methods, properties of cotosion pairs and inverse limits).

(日) (二) (二) (二) (二) (二) (二) (二)

Theorem (Šaroch-Š.)

Let Λ be an artin algebra and $(\mathcal{A}, \mathcal{B})$ a hereditary cotorsion pair such that \mathcal{B} is closed under direct limits. Let \mathfrak{I} be the ideal of mod Λ defined as: $\mathfrak{I} = \{f : X \to Y \mid f \text{ factors through some (inf. gen.) module from } \mathcal{A}\}$ Then:

- 1. \Im is an idempotent ideal.
- 2. $Y \in \mathcal{B} \iff \operatorname{Ext}^1(f, Y) = 0 \quad (\forall f \in \mathfrak{I}).$

Sketch of proof.

- First show that B is of countable type (set-theoretic methods, properties of cotosion pairs and inverse limits).
- Prove 1. using Mittag-Leffler inverse systems and properties of (infinite) filtrations.

Theorem (Šaroch-Š.)

Let Λ be an artin algebra and $(\mathcal{A}, \mathcal{B})$ a hereditary cotorsion pair such that \mathcal{B} is closed under direct limits. Let \mathfrak{I} be the ideal of mod Λ defined as: $\mathfrak{I} = \{f : X \to Y \mid f \text{ factors through some (inf. gen.) module from } \mathcal{A}\}$ Then:

- 1. \Im is an idempotent ideal.
- 2. $Y \in \mathcal{B} \iff \operatorname{Ext}^1(f, Y) = 0 \quad (\forall f \in \mathfrak{I}).$

Sketch of proof.

- First show that B is of countable type (set-theoretic methods, properties of cotosion pairs and inverse limits).
- Prove 1. using Mittag-Leffler inverse systems and properties of (infinite) filtrations.
- Statement 2. is a consequence of approximation theory and model theory of modules.

Theorem

Let Λ be an artin algebra such that the transfinite radical of $\mod \Lambda$ vanishes. Let $(\mathcal{A}, \mathcal{B})$ a hereditary cotorsion pair such that \mathcal{B} is closed under direct limits. Then $(\mathcal{A}, \mathcal{B})$ is of finite type.

Theorem

Let Λ be an artin algebra such that the transfinite radical of $\mod \Lambda$ vanishes. Let $(\mathcal{A}, \mathcal{B})$ a hereditary cotorsion pair such that \mathcal{B} is closed under direct limits. Then $(\mathcal{A}, \mathcal{B})$ is of finite type.

Proof.

• \mathfrak{I} is generated by a set of identity morphisms $\{\mathbf{1}_X \mid X \in \mathcal{S}\}$.

Theorem

Let Λ be an artin algebra such that the transfinite radical of $\mod \Lambda$ vanishes. Let $(\mathcal{A}, \mathcal{B})$ a hereditary cotorsion pair such that \mathcal{B} is closed under direct limits. Then $(\mathcal{A}, \mathcal{B})$ is of finite type.

Proof.

- \mathfrak{I} is generated by a set of identity morphisms $\{\mathbf{1}_X \mid X \in \mathcal{S}\}$.
- By the former theorem:

$$\mathsf{Y} \in \mathcal{B} \quad \iff \quad \mathsf{Ext}^1(f, \, \mathsf{Y}) = \mathbf{0} \qquad (\forall f \in \mathfrak{I})$$

Theorem

Let Λ be an artin algebra such that the transfinite radical of $\mod \Lambda$ vanishes. Let $(\mathcal{A}, \mathcal{B})$ a hereditary cotorsion pair such that \mathcal{B} is closed under direct limits. Then $(\mathcal{A}, \mathcal{B})$ is of finite type.

Proof.

- \mathfrak{I} is generated by a set of identity morphisms $\{\mathbf{1}_X \mid X \in \mathcal{S}\}$.
- By the former theorem:

$$Y \in \mathcal{B} \quad \iff \quad \mathsf{Ext}^1(f, Y) = 0 \qquad (\forall f \in \mathfrak{I})$$

 $\iff \quad \mathsf{Ext}^1(\mathbf{1}_X, Y) = 0 \qquad (\forall X \in \mathcal{S})$

Theorem

Let Λ be an artin algebra such that the transfinite radical of $\mod \Lambda$ vanishes. Let $(\mathcal{A}, \mathcal{B})$ a hereditary cotorsion pair such that \mathcal{B} is closed under direct limits. Then $(\mathcal{A}, \mathcal{B})$ is of finite type.

Proof.

- ▶ \mathfrak{I} is generated by a set of identity morphisms {**1**_{*X*} | *X* ∈ S}.
- By the former theorem:

$$\begin{array}{ll} \forall \in \mathcal{B} & \iff & \mathsf{Ext}^1(f, \, \mathsf{Y}) = \mathbf{0} & (\forall f \in \mathfrak{I}) \\ & \iff & \mathsf{Ext}^1(\mathbf{1}_X, \, \mathsf{Y}) = \mathbf{0} & (\forall X \in \mathcal{S}) \\ & \iff & \mathsf{Ext}^1(X, \, \mathsf{Y}) = \mathbf{0} & (\forall X \in \mathcal{S}) \end{array}$$

Hence, B is of finite type.