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IDEMPOTENT IDEALS THE TRANSFINITE RADICAL TELESCOPE CONJECTURE

Definition
Let C be a skeletally small additive category. A (2-sided) ideal I

of C is a collection of morphisms such that:

I 10 ∈ I,
I f , g : X → Y in I =⇒ f + g ∈ I,
I f ∈ I =⇒ fg and hf ∈ I (if the compositions are defined).

Notation
For an ideal I, let I(X , Y ) = {f : X → Y | f ∈ I}.

Remark
A category to keep in mind: modΛ for an artin algebra Λ.
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I Let X = {xi | i ∈ I} be a set of morphisms in C.

I Then there is a smallest ideal containing X—the ideal
generated by X .

I It contains exactly morphisms of the form
∑

i hixigi :

· x1 // ·
h1

��=
==

==
==

·

g1

@@������� g2 //

gn ��=
==

==
==

· x2

...

// · h2 // ·

·
xn

// ·
hn

@@�������

I Easy: An ideal generated by a set of identity morphisms is
idempotent.

Is the converse true?
I Often not, but it is true for some non-trivial cases.
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non-isomorphisms between indecomposables.
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Definition
C a Krull-Schmidt category. Then the transfinite radical of C is:

Definition “from inside”: The ideal of all morphisms f such that
there exist an inverse system

(fpr : Xr → Xp | p, r ∈ Q ∩ [0, 1], p ≤ r)

in C such that f = f10 and all fpr ∈ radC .

Definition “from outside”: We can define transfinite powers of
radC :

radC ⊇ rad2
C ⊇ . . . ⊇ radω

C ⊇ (radω
C )2 ⊇ . . .

The decreasing chain above stabilizes and the resulting
ideal is (by definition) the transfinite radical.
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Theorem
Let Λ be an artin algebra. The following are equivalent:

1. Every idempotent ideal of modΛ is generated by a set of
identity morphisms.

2. The transfinite radical of modΛ vanishes.

Sketch of proof.

(1) =⇒ (2). If the transfinite radical is 6= 0, it is a non-trivial
idempotent ideal without identity morphisms.

(2) =⇒ (1).

I Assume I is idempotent.
I Prove for each f ∈ I by transfinite induction on α:

f = gα + hα, gα generated by identity morphisms
from I and hα ∈ radα

Λ.
I By assumption: hα = 0 for α � 0.



IDEMPOTENT IDEALS THE TRANSFINITE RADICAL TELESCOPE CONJECTURE

Theorem
Let Λ be an artin algebra. The following are equivalent:

1. Every idempotent ideal of modΛ is generated by a set of
identity morphisms.

2. The transfinite radical of modΛ vanishes.

Sketch of proof.

(1) =⇒ (2). If the transfinite radical is 6= 0, it is a non-trivial
idempotent ideal without identity morphisms.

(2) =⇒ (1).

I Assume I is idempotent.
I Prove for each f ∈ I by transfinite induction on α:

f = gα + hα, gα generated by identity morphisms
from I and hα ∈ radα

Λ.
I By assumption: hα = 0 for α � 0.



IDEMPOTENT IDEALS THE TRANSFINITE RADICAL TELESCOPE CONJECTURE

Theorem
Let Λ be an artin algebra. The following are equivalent:

1. Every idempotent ideal of modΛ is generated by a set of
identity morphisms.

2. The transfinite radical of modΛ vanishes.

Sketch of proof.

(1) =⇒ (2). If the transfinite radical is 6= 0, it is a non-trivial
idempotent ideal without identity morphisms.

(2) =⇒ (1).

I Assume I is idempotent.
I Prove for each f ∈ I by transfinite induction on α:

f = gα + hα, gα generated by identity morphisms
from I and hα ∈ radα

Λ.
I By assumption: hα = 0 for α � 0.



IDEMPOTENT IDEALS THE TRANSFINITE RADICAL TELESCOPE CONJECTURE

Theorem
Let Λ be an artin algebra. The following are equivalent:

1. Every idempotent ideal of modΛ is generated by a set of
identity morphisms.

2. The transfinite radical of modΛ vanishes.

Sketch of proof.

(1) =⇒ (2). If the transfinite radical is 6= 0, it is a non-trivial
idempotent ideal without identity morphisms.

(2) =⇒ (1).

I Assume I is idempotent.
I Prove for each f ∈ I by transfinite induction on α:

f = gα + hα, gα generated by identity morphisms
from I and hα ∈ radα

Λ.
I By assumption: hα = 0 for α � 0.



IDEMPOTENT IDEALS THE TRANSFINITE RADICAL TELESCOPE CONJECTURE

Theorem
Let Λ be an artin algebra. The following are equivalent:

1. Every idempotent ideal of modΛ is generated by a set of
identity morphisms.

2. The transfinite radical of modΛ vanishes.

Sketch of proof.

(1) =⇒ (2). If the transfinite radical is 6= 0, it is a non-trivial
idempotent ideal without identity morphisms.

(2) =⇒ (1).

I Assume I is idempotent.

I Prove for each f ∈ I by transfinite induction on α:
f = gα + hα, gα generated by identity morphisms
from I and hα ∈ radα

Λ.
I By assumption: hα = 0 for α � 0.



IDEMPOTENT IDEALS THE TRANSFINITE RADICAL TELESCOPE CONJECTURE

Theorem
Let Λ be an artin algebra. The following are equivalent:

1. Every idempotent ideal of modΛ is generated by a set of
identity morphisms.

2. The transfinite radical of modΛ vanishes.

Sketch of proof.

(1) =⇒ (2). If the transfinite radical is 6= 0, it is a non-trivial
idempotent ideal without identity morphisms.

(2) =⇒ (1).

I Assume I is idempotent.
I Prove for each f ∈ I by transfinite induction on α:

f = gα + hα, gα generated by identity morphisms
from I and hα ∈ radα

Λ.
I By assumption: hα = 0 for α � 0.



IDEMPOTENT IDEALS THE TRANSFINITE RADICAL TELESCOPE CONJECTURE

Theorem
Let Λ be an artin algebra. The following are equivalent:

1. Every idempotent ideal of modΛ is generated by a set of
identity morphisms.

2. The transfinite radical of modΛ vanishes.

Sketch of proof.

(1) =⇒ (2). If the transfinite radical is 6= 0, it is a non-trivial
idempotent ideal without identity morphisms.

(2) =⇒ (1).

I Assume I is idempotent.
I Prove for each f ∈ I by transfinite induction on α:

f = gα + hα, gα generated by identity morphisms
from I and hα ∈ radα

Λ.

I By assumption: hα = 0 for α � 0.



IDEMPOTENT IDEALS THE TRANSFINITE RADICAL TELESCOPE CONJECTURE

Theorem
Let Λ be an artin algebra. The following are equivalent:

1. Every idempotent ideal of modΛ is generated by a set of
identity morphisms.

2. The transfinite radical of modΛ vanishes.

Sketch of proof.

(1) =⇒ (2). If the transfinite radical is 6= 0, it is a non-trivial
idempotent ideal without identity morphisms.

(2) =⇒ (1).

I Assume I is idempotent.
I Prove for each f ∈ I by transfinite induction on α:

f = gα + hα, gα generated by identity morphisms
from I and hα ∈ radα

Λ.
I By assumption: hα = 0 for α � 0.



IDEMPOTENT IDEALS THE TRANSFINITE RADICAL TELESCOPE CONJECTURE

Theorem (generalization)
Let C be a Krull-Schmidt category satisfying (∗). The following
are equivalent:

1. Every idempotent ideal of C is generated by a set of
identity morphisms.

2. The transfinite radical of C vanishes.

Condition(∗) onC
C has local d.c.c. on ideals—whenever

I0 ⊇ I1 ⊇ I2 ⊇ . . .

and X , Y ∈ C, the following chain stabilizes:

I0(X , Y ) ⊇ I1(X , Y ) ⊇ I2(X , Y ) ⊇ . . .
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I The transfinite radical of modΛ is often non-zero, for
example for:

I “Gelfand-Ponomarev” algebra
k [x , y ]/(xy = yx = 0, x2 = y3 = 0) [Prest].

I Any wild algebra [Prest].

I But it vanishes for:
I Any algebra of finite representation type.
I Domestic standard self-injective algebras

[Kerner-Skowroński].
I Domestic special biserial algebras [Prest,Schröer].
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Definition
A pair of classes (A,B) in ModΛ is called a hereditary cotorsion
pair if:

I X ∈ A ⇐⇒ Exti(X , Y ) = 0 (∀Y ∈ B)(∀i ≥ 1)

I Y ∈ B ⇐⇒ Exti(X , Y ) = 0 (∀X ∈ A)(∀i ≥ 1)

Fact

I B is always closed under products and direct summands,
but not under direct sums or direct limits in general.

I However, B is closed under direct limits if it is of finite type.
Ie., there is a set S of finitely generated modules such that:

Y ∈ B ⇐⇒ Ext1(X , Y ) = 0 (∀X ∈ S)

Telescope conjecture
Given a hereditary cotorsion pair (A,B) such that B is closed
under direct limits, (A,B) is of finite type.



IDEMPOTENT IDEALS THE TRANSFINITE RADICAL TELESCOPE CONJECTURE

Definition
A pair of classes (A,B) in ModΛ is called a hereditary cotorsion
pair if:

I X ∈ A ⇐⇒ Exti(X , Y ) = 0 (∀Y ∈ B)(∀i ≥ 1)

I Y ∈ B ⇐⇒ Exti(X , Y ) = 0 (∀X ∈ A)(∀i ≥ 1)

Fact

I B is always closed under products and direct summands,
but not under direct sums or direct limits in general.

I However, B is closed under direct limits if it is of finite type.
Ie., there is a set S of finitely generated modules such that:

Y ∈ B ⇐⇒ Ext1(X , Y ) = 0 (∀X ∈ S)

Telescope conjecture
Given a hereditary cotorsion pair (A,B) such that B is closed
under direct limits, (A,B) is of finite type.



IDEMPOTENT IDEALS THE TRANSFINITE RADICAL TELESCOPE CONJECTURE

Definition
A pair of classes (A,B) in ModΛ is called a hereditary cotorsion
pair if:

I X ∈ A ⇐⇒ Exti(X , Y ) = 0 (∀Y ∈ B)(∀i ≥ 1)

I Y ∈ B ⇐⇒ Exti(X , Y ) = 0 (∀X ∈ A)(∀i ≥ 1)

Fact

I B is always closed under products and direct summands,
but not under direct sums or direct limits in general.

I However, B is closed under direct limits if it is of finite type.
Ie., there is a set S of finitely generated modules such that:

Y ∈ B ⇐⇒ Ext1(X , Y ) = 0 (∀X ∈ S)

Telescope conjecture
Given a hereditary cotorsion pair (A,B) such that B is closed
under direct limits, (A,B) is of finite type.



IDEMPOTENT IDEALS THE TRANSFINITE RADICAL TELESCOPE CONJECTURE

Definition
A pair of classes (A,B) in ModΛ is called a hereditary cotorsion
pair if:

I X ∈ A ⇐⇒ Exti(X , Y ) = 0 (∀Y ∈ B)(∀i ≥ 1)

I Y ∈ B ⇐⇒ Exti(X , Y ) = 0 (∀X ∈ A)(∀i ≥ 1)

Fact

I B is always closed under products and direct summands,
but not under direct sums or direct limits in general.

I However, B is closed under direct limits if it is of finite type.
Ie., there is a set S of finitely generated modules such that:

Y ∈ B ⇐⇒ Ext1(X , Y ) = 0 (∀X ∈ S)

Telescope conjecture
Given a hereditary cotorsion pair (A,B) such that B is closed
under direct limits, (A,B) is of finite type.



IDEMPOTENT IDEALS THE TRANSFINITE RADICAL TELESCOPE CONJECTURE

Definition
A pair of classes (A,B) in ModΛ is called a hereditary cotorsion
pair if:

I X ∈ A ⇐⇒ Exti(X , Y ) = 0 (∀Y ∈ B)(∀i ≥ 1)

I Y ∈ B ⇐⇒ Exti(X , Y ) = 0 (∀X ∈ A)(∀i ≥ 1)

Fact

I B is always closed under products and direct summands,
but not under direct sums or direct limits in general.

I However, B is closed under direct limits if it is of finite type.

Ie., there is a set S of finitely generated modules such that:

Y ∈ B ⇐⇒ Ext1(X , Y ) = 0 (∀X ∈ S)

Telescope conjecture
Given a hereditary cotorsion pair (A,B) such that B is closed
under direct limits, (A,B) is of finite type.



IDEMPOTENT IDEALS THE TRANSFINITE RADICAL TELESCOPE CONJECTURE

Definition
A pair of classes (A,B) in ModΛ is called a hereditary cotorsion
pair if:

I X ∈ A ⇐⇒ Exti(X , Y ) = 0 (∀Y ∈ B)(∀i ≥ 1)

I Y ∈ B ⇐⇒ Exti(X , Y ) = 0 (∀X ∈ A)(∀i ≥ 1)

Fact

I B is always closed under products and direct summands,
but not under direct sums or direct limits in general.

I However, B is closed under direct limits if it is of finite type.
Ie., there is a set S of finitely generated modules such that:

Y ∈ B ⇐⇒ Ext1(X , Y ) = 0 (∀X ∈ S)

Telescope conjecture
Given a hereditary cotorsion pair (A,B) such that B is closed
under direct limits, (A,B) is of finite type.



IDEMPOTENT IDEALS THE TRANSFINITE RADICAL TELESCOPE CONJECTURE

Definition
A pair of classes (A,B) in ModΛ is called a hereditary cotorsion
pair if:

I X ∈ A ⇐⇒ Exti(X , Y ) = 0 (∀Y ∈ B)(∀i ≥ 1)

I Y ∈ B ⇐⇒ Exti(X , Y ) = 0 (∀X ∈ A)(∀i ≥ 1)

Fact

I B is always closed under products and direct summands,
but not under direct sums or direct limits in general.

I However, B is closed under direct limits if it is of finite type.
Ie., there is a set S of finitely generated modules such that:

Y ∈ B ⇐⇒ Ext1(X , Y ) = 0 (∀X ∈ S)

Telescope conjecture
Given a hereditary cotorsion pair (A,B) such that B is closed
under direct limits, (A,B) is of finite type.



IDEMPOTENT IDEALS THE TRANSFINITE RADICAL TELESCOPE CONJECTURE

Theorem
Let Λ be an artin algebra such that the transfinite radical of
modΛ vanishes.

Let (A,B) a hereditary cotorsion pair such
that B is closed under direct limits. Then (A,B) is of finite type.



IDEMPOTENT IDEALS THE TRANSFINITE RADICAL TELESCOPE CONJECTURE

Theorem
Let Λ be an artin algebra such that the transfinite radical of
modΛ vanishes. Let (A,B) a hereditary cotorsion pair such
that B is closed under direct limits.

Then (A,B) is of finite type.



IDEMPOTENT IDEALS THE TRANSFINITE RADICAL TELESCOPE CONJECTURE

Theorem
Let Λ be an artin algebra such that the transfinite radical of
modΛ vanishes. Let (A,B) a hereditary cotorsion pair such
that B is closed under direct limits. Then (A,B) is of finite type.



IDEMPOTENT IDEALS THE TRANSFINITE RADICAL TELESCOPE CONJECTURE

Theorem (Šaroch-Š.)
Let Λ be an artin algebra and (A,B) a hereditary cotorsion pair
such that B is closed under direct limits.

Let I be the ideal of modΛ defined as:
I = {f : X → Y | f factors through some (inf. gen.) module fromA}
Then:

1. I is an idempotent ideal.

2. Y ∈ B ⇐⇒ Ext1(f , Y ) = 0 (∀f ∈ I).

Sketch of proof.

I First show that B is of countable type (set-theoretic
methods, properties of cotosion pairs and inverse limits).

I Prove 1. using Mittag-Leffler inverse systems and
properties of (infinite) filtrations.

I Statement 2. is a consequence of approximation theory
and model theory of modules.
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Theorem
Let Λ be an artin algebra such that the transfinite radical of
modΛ vanishes. Let (A,B) a hereditary cotorsion pair such
that B is closed under direct limits. Then (A,B) is of finite type.

Proof.

I I is generated by a set of identity morphisms {1X | X ∈ S}.

I By the former theorem:

Y ∈ B ⇐⇒ Ext1(f , Y ) = 0 (∀f ∈ I)

⇐⇒ Ext1(1X , Y ) = 0 (∀X ∈ S)

⇐⇒ Ext1(X , Y ) = 0 (∀X ∈ S)

I Hence, B is of finite type.
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