
Homework 2.
deadline: January 31

Suggested systems:
Problems 1,2: Prover9/Mace4 https://www.cs.unm.edu/~mccune/prover9
Problems 2,3,4: MiniZinc compiler & Gecode constraint solver
http://www.minizinc.org/software.html
The easiest option is to install the Bundled binary package, containing the compiler,

an IDE, and several solvers including Gecode. Everything should be up and running out
of the box.

Email solutions to stanovsk@karlin.mff.cuni.cz

Problem 1. (6)
The standard Lukasiewicz calculus for propositional logic is axiomatized by three axi-

oms

a→ (b→ a), (a→ (b→ c))→ ((a→ b)→ (a→ c)), (¬a→ ¬b)→ (b→ a)

and uses modus ponens, i.e. a, a→ b ` b, as its inference rule.
(a) Use an automated theorem prover to show that the following formulas are prova-

ble: a→ a, ¬a→ (a→ b), ¬¬a↔ a,
(b) Use a model builder to show that the axioms are independent, that is, that any

two of them do not imply the third one.
Hint: logical connectives will be function symbols, propositional formulas will be terms,
one unary predicate will stand for provability. If you don’t understand the problem, start
here: https://en.wikipedia.org/wiki/Hilbert_system (or come to see me).

Submit all input and output files.

Problem 2. (6)
Find the smallest non-medial latin quandle, that is, an algebra (A, ∗) with a single

binary operation such that
• the multiplication table is a latin square (i.e., rows and columns are permutations),
• it satisfies the identity x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z),
• it does not satisfy the identity (x ∗ y) ∗ (u ∗ v) = (x ∗ u) ∗ (y ∗ v).

Implement the problem as a CSP instance, and as a model building instance. Compare
the running times.

This is one of my favourite benchmarks. The smallest model is not so small (> 10
elements) and it takes a while to find it (usually a few minutes).

Submit input files and models (e.g., the Mace4 output and the .mzn file) and tell me
the running times.

Problem 3. (6)
1

A magic square is an n× n table filled with positive integers 1, 2, ..., n2 such that each
cell contains a different integer and the sum of the integers in each row, each column,
and both diagonals is equal. The sum is called the magic constant ; n is the order of the
magic square.

The input data consist of the order and a partially filled square. Write a MiniZinc
model that will fill out the rest of the square (if it is possible) and compute the magic
constant. Here is a sample input:

N = 3;
square =
[| 2, _, _
| _, 5, _
| _, 3, _
|];

The output should be something like this:
The magic constant is 15.
The magic square:
2 7 6
9 5 1
4 3 8

You can use the following code to get the output in a nice format (magic constant is
the name of the variable used to compute the magic constant):

output
["The magic constant is \(magic_constant).\n"] ++
["The magic square:\n"] ++
[show_int(floor(log10(int2float(N*N))+1), square[i,j]) ++
if j = N then "\n" else " " endif | i, j in 1..N];

The input configurations are in a separate ZIP file. Submit models for each of the input
files.

Problem 4. (6)
A very hungry hiker is buying provisions for a backpacking trip. He is choosing from

a list of food items. The supply is unlimited. Each item has a certain amount of calories
(in kcal) and a certain weight (in grams). He can only carry food up to a given weight
limit. What is the maximum amount of calories he can take?

Here is a sample input.
LIMIT = 6500;
ITEMS = {apple, beer, bread, carrot, pea, steak, water};
WEIGHT = [88, 564, 892, 415, 8, 410, 500];
KCAL = [40, 385, 615, 290, 1, 245, 5];

The optimal solution is 1 beer, 2 loaves of bread, and 10 carrots which sums up to 4515
kcal. Note that ITEMS is of type enum, declared by ‘enum ITEMS;’.

The input configurations are in a separate ZIP file. Submit models for each of the input
files.

2

