
Constraint Modeling
with MiniZinc

Jakub Bulín

Department of Algebra @ CU Prague



Table of contents

1. Intro & the theory part

2. An overview of MinZinc

3. Examples of constraint models

4. Learn more

1



In this class

• What is constraint modeling
• Basic ideas for solving
• MiniZinc: a high-level solver-independent modeling language
• Gecode: an open source yet competitive constraint solver
• Examples: how to model problems in MiniZinc
• Homework: try it yourself

2



Intro & the theory part



What is it

Constraint modeling (aka constraint programming, constraint
optimization) is a generalization of

• Linear programming,
• Convex optimization,
• Integer programming,
• SAT solving.

A constraint model consists of decision variables (each with a
domain) and a list of constraints

The goal: satisfy constraints / find all solutions / maximize a given
objective function

Advantages: Close to real-life problems, easy to model, can exploit
structure (lost when translated to SAT)

3



An example: Sudoku

What are the decision variables, their domains, constraints?

4



How to solve constraint models

• Propagation – use constraints ”actively” to infer other, implicit
constraints

• forbid local assignments which lead to a contradiction
• Arc Consistency, Path Consistency, …

• Search – try constructing a solution, modify variables which fail
some constraints

• backtracking (DFS), backjumping, …
• for optimization: hill climbing, branch & bound, …

• Global constraints – make use of the model’s combinatorial
structure (which is lost when translated to SAT)

• run specialized algorithms for parts of the model
• different solving strategies for different families of constraints
(arithmetics, LP, Boolean, ordering, scheduling, packing, circuit,
DFA...)

5



Gecode

generic
constraint
development
environment

1886 classes, 291202 loc, 87574 lod

6



An overview of MinZinc



MiniZinc

MiniZinc: (Towards a) Standard CP Modelling Language (CP’2007)

“A standard language for modelling CP problems will
encourage ex- perimentation with and comparisons
between different solvers. Although MiniZinc is not
perfect—no standard modelling language will be—we
believe its simplicity, expressiveness, and ease of
implementation make it a practical choice for a standard
language.”

Continuous development and improvement. Many mainstream
Constraint solvers now understand MiniZinc.

7



Data types and operators

Primitive types

• boolean variables: bool: x; bool y = true;
• integers: int: n; int: m = 3;
• floating point: float: z = 2.5;
• strings: only for formatting the output

Operators

• arithmetic: +, -, *, div, mod, abs(), pow(),…
• relational: =, !=, <, <=, …
• logical: /\, \/, ->, <->, not,…

8



Data structures

Arrays, e.g. array[0..100,0..100] of var float: temp;

• array comprehension (similar to Python):
[i + j | i, j in 1..3 where j < i]
evaluates to
[1 + 2, 1 + 3, 2 + 3]
which is
[3, 4, 5]

• aggregation functions: min, max, sum, product,
forall, exists

Sets, e.g. set of int: values = {1, 4, 9, 16};

• set comprehension (similar)
• set functions: in, subset, superset, union, inter,
diff, symdiff

9



A constraint model

Each MiniZinc model has these parts (but the order of statements
does not matter)

• declare parameters, e.g. int n;
• before execution each parameter will have a fixed value
• separate model from data (command-line arguments or a .dzn file)

• declare decision variables, e.g. array[1..10] of var
bool: x;

• the solver will choose values for these

• define constraints, e.g. constraint x+y > z;
• solve statement: solve satisfy; or
solve maximize/minimize <obj-function>;

• (optional) output <array-of-strings>;

10



Examples of constraint models



A few examples

• Sudoku
• Math Software homework: The Unruly riddle
• Math Software homework: Schedule of classes
• Groups on n elements
• Finite projective planes
• RC4
• Graph coloring
• SAT

11



Finite projective planes

N2 + N+ 1 points,
N2 + N+ 1 lines,
N+ 1 points on each line,
N+ 1 lines through each point,
any two points lie on exactly one line,
any two lines intersect at exactly 1 point,
there are four points which do not lie on one line

A finite projective plane exists if N = pk. Is this if and only if? N = 6
ruled out by theory, N = 10 by massive computation, N = 12 open.

12



Stream cipher RC4 – seed generation

input a key k1, . . . ,k2n ∈ 2n
output a seed π ∈ Sym2n
a−1 = 0

π−1 = id
for i = 0 to 2n − 1 do

ai = ai−1 + πi−1(i) + ki (mod 2n)
πi = (i ai) ◦ πi−1

return π2n−1

Goal: compute the key from a known seed.
Idea: Model the whole computation process.

13



Learn more



Advanced topics

• PyMzn – MiniZinc Python wrapper
• convert between MiniZinc and Python data objects
• useful tools for input and output processing
• solver specific commands
• pymzn.minizinc('test.mzn', 'data1.dzn',
parallel=4, output_mode='dict')

• Assertions – data consistency testing
• constraint assert(ammount >= 0, "Invalid input");

• Search annotations – prescribe solving strategy
• branch on my_array, variables with smallest domain first, largest
values first

• solve :: int_search(my_arrray, first_fail,
indomain_max, complete) satisfy;

• Predicates – define your own (analogous to functions)
• predicate even(var int:x) =

let { var int: y } in x = 2 * y;

14



Want to know more?

• MiniZinc website, a PDF tutorial! http://www.minizinc.org/
• Two Coursera courses http://www.coursera.org/

• Basic modeling for discrete optimization
• Advanced modeling for discrete optimization

• Hakan Kjellerstrand’s MiniZinc webpage with lots of example
models http://www.hakank.org/minizinc/

• PyMzn homepage http://paolodragone.com/pymzn/
• Gecode homepage http://www.gecode.org/
• Three courses at MatFyz

• NOPT042 Constraint programming
• NMAG563 Introduction to complexity of CSP
• NMMB536 Optimization and Approximation CSP

15

http://www.minizinc.org/
http://www.coursera.org/
http://www.hakank.org/minizinc/
http://paolodragone.com/pymzn/
http://www.gecode.org/

	Intro & the theory part
	An overview of MinZinc
	Examples of constraint models
	Learn more

