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Abstract

In this paper we compare the performance of various autahthémrem provers on nearly all of
the theorems in loop theory known to have been obtained Wélassistance of automated theorem
provers. Our analysis yields some surprising results, thgtheorem prover most often used by loop
theorists doesn’t necessarily yield the best performance.

1 Introduction

Automated reasoning tools have had great impact on loop theory overshdgmde, both in finding
proofs and in constructing examples. Itis widely believed that these arhes have transformed loop
theory, both as a collection of deep results, as well as the mode of inquify Asgomated reasoning
tools are now standard in loop theory.

To date, all automated proofs in loop theory have been obtained by Bridwe€05] or its predeces-
sor Otter [McCO03], and all models have been generated by SEM [ZZEeMEVIcCO05], and recently the
Loops package for GAP [NV] which G. Nagy used to help find the firstMoufang, finite simple Bol
loop (definitions to follow in section 2), thus solving one of the oldest opehlpms in loop theory. The
present paper is devoted to automated theorem proving. For model buitdiagms that GAP/Loops is
far better than general purpose automated reasoning tools, especiatyaim of the more well known
varieties of loops, as it exploits the underlying group theory with its fastekgos. (Also, most interest-
ing problems about finding finite loops either include properties that cdeeasily formalized in first
order theory (such as simplicity), or are known to have lower bound st $emeral hundred elements.)

While [Phi03] is an introduction to automated reasoning for loop theorists,rdsept paper is in-
tended as its complement: for computer scientists as an introduction to one ak#eia algebra,
namely loop theory, in which automated reasoning tools have had perhaps#test impact. The paper
is self-contained in that we don’t assume the reader is familiar with loop theory

Our goals are twofold. Firstly, we catalogue the loop theory results to datbdke been obtained
with the assistance of automated theorem provers. Secondly, we lay tinedgrark for developing
benchmarks for automated theorem provers on genuine researdbmsdioom mathematics. Toward
that end, we create a library called QPTP (Quasigroup Problems fordiderovers) and test the prob-
lems on selected automated theorem provers. Note that we don't intend to therdPTP library
[SS98]. Rather, we select a representative subset of problems tttanmadicians approached by auto-
mated reasoning in their research.

We now give a brief outline of the paper.

Section 2 contains a brief introduction to loop theory, with an emphasis on fakefiaitions (as
opposed to motivation, history, applications, etc.). We think this self-cortdameoduction to loop
theory is the right approach for our intended audience: computer steintisrested in applications of
automated reasoning in mathematics. For a more rigorous introduction to the dfitsmps see [Bel67],
[Bru71], or [Pfl90].

Section 3 contains a catalogue of all the theorems from loop theory thatedeim®ur analysis.
Taken together, the papers that contain these theorems—and we gieédtitins for all of them—
constitute a complete list of those results in loop theory that have been attoaate with the assistance
of automated theorem provers.

*This work is a part of the research project MSM 0021620839 finarhxyeMéMT CR. The second author was partly
supported by the GER grant #201/08/P056.
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Section 4 is devoted to the tests of selected theorem provers on these results

Section 5 contains final thoughts as well as suggested directions foe futuk.

Additional information on our library, the problem files and the output files tm@yound on the
website

http://www.karlin.mff.cuni.cz/"stanovsk/qptp

2 Basic Loop Theory

We call a set with a single binary operation and with a 2-sided identity elementdgana There are
two natural paths from magmas to groups, as illustrated in Figure 1.

magmas
monoids loops

groups

Figure 1: Two paths from magmas to groups.

One path leads through timonoids—these are the associative magmas, familiar to every computer
scientist. The other path leads through lingps—these are magmas in which every equation

X-y=2

has a unique solution whenever two of the elementg z are specified. Since groups are precisely
loops that are also monoids, loops are known colloquially as “nonassec@tups”, and via this di-
agram, they may be thought of as dual to monoids. Many results in loop themyyby regarded as a
generalization of results about groups.

As with the class of monoids, the class of loops is too large and general tawéeig of its secrets to
algebraic inquiry that doesn’t focus on narrower subclasses., Mersimply catalog a few of the most
important of these subclasses (the abundant evidence arguing fantpeitance may be found in many
loop theory sources).

First, a comment about notation: we use a multiplication symbol for the binarpipe. We usually
write xy instead ofx-y, and reserve to have lower priority than juxtaposition among factors to be
multiplied, for instancey(x-yz) stands fory- (x- (y-z)). We use binary operations / of left andright
divisionto denote the unique solutions of the equatiey = z, ie.,y = x\zandx = z/y. Loops can thus
be axiomatized by the following six identities:

X-1=x, 1-Xx=x,

X\(xy) =Y, x(X\y)=Y, (yx)/X=Y, (¥/x)x=Y.
Loops without the unit element 1 are refered togassigroups in the finite case, they correspond to
Latin squares, via their multiplication table.
2.1 Weakening associativity

A left Bol loopis a loop satisfying the identity

X(y-X2) = (X-yx)z (IBol)
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right Bol loopssatisfy the mirror identity, namely
Z(xy- X) = (zx-y)x. (rBol)

In the sequel, if we don’t specify right or left, and simply write “Bol loogie mean a left Bol loop.
A left Bol loop that is also a right Bol loop is callddoufang loop Moufang loops are often axiom-
atized as loops that satisfy any one of the following four equivalent (ipdpmentities:

X(y-X2) = (Xy-X)z, z(X-yX) = (zX-y)X, Xy-zZX=X(yz-X), Xy-ZX= (X-Yy2Z)X.

Generalizing from the features common to both the Bol and the Moufang idenétiedentityp = ¢
is said to be oBol-Moufang typéf: (i) the only operation appearing i = ( is multiplication, (ii) the
number of distinct variables appearingdn @ is 3, (iii) the number of variables appearinggn @ is
4, (iv) the order in which the variables appeanjircoincides with the order in which they appearnin
Such identities can be regarded as “weak associativity”. For instanaddlition to the Bol and Moufang
identities, examples of identities of Bol-Moufang type includedhktra law

X(Y-zX) = (Xy- 2)X, (extra)
and theC-law
X(y-y2) = (xy-y)z (©)

There are many others, as we shall see. Some varieties of Bol-Moufa@agutg presented in Figure 2
(for a complete picture, see [PV05]).

LIP + LAP RIP + RAP

IBol RC

Moufang
extra

groups
Figure 2: Some varieties of weakly associative loops.
For loops in which each element has a 2-sided inverse, we Use denote this 2-sided inverse of

X. In other words,
X Ix=xx1=1.

In Bol loops (hence, also in Moufang loops), all elements have 2-sidesises. In Moufang loops,
inverses are especially well behaved; they satisfiatiteautomorphic inverse property

(xy) t=yx (AAIP)
a familiar law from the theory of groups. Bol loops don't necessarily fsatiee AAIP; in fact, the ones
that do (left or right), are Moufang. Dual to the AAIP is taetomorphic inverse property

(xy) t=x1y . (AIP)
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Bol N AIP

Moufang Bruck

groups commutative Moufang

abelian groups

Figure 3: The role of AIP.

Not every Bol loop satisfies the AIP, but those that do are c@ledtk loops Bruck loops are thus dual
to Moufang loops, with respect to these two inverse properties, in theafl&@ss loops.

A loop is power associativéf each singleton generates an associative subloop. Bol loops are powe
associative. Moufang loops satisfy ttexiblelaw

X YX= Xy X. (flex)
Flexible Bol loops, either left or right, are Moufang. Left Bol loops dattsoth theleft inverse property
xl.xy=y (LIP)
and theleft alternative property
X- Xy = XX-Y. (LAP)

The right inverse property(RIP) and theright alternative propertyRAP) are defined in the obvious
ways. Thenverse propertIP) thus means both the RIP and the LIP, and a loop is caltednativeif

it is both RAP and LAP. Moufang loops and C-loops are alternative ane thee inverse property. The
weak inverse propertig given by

(YX)\1=x\(Y\1). (WIP)

2.2 Translations
In aloopQ, the left and right translations byc Q are defined by
L(X) :y+— Xy, R(y) : X+ Xy.

Themultiplication group MIt(Q), of a loopQ is the subgroup of the group of all bijections Qrgener-
ated by right and left translations:

MIt(Q) = (R(X),L(x) : x € Q).

Theinner mapping groups the subgroup M Q) fixing the unit element 1. M{{Q) is generated by
the following three families of mappings, thus rendering the definition equétiand fit for automated
theorem provers:

T(X) =L 'R(X),
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If Qis a group, then Mif(Q) is the group of inner automorphisms @f In general, though, MI{Q)
need not consist of automorphisms. But in those cases in which it doelsoinés called am-loop.
Groups and commutative Moufang loops are examples of A-loops.
A subloop invariant to the action of MEQ) (or, equivalently, closed undér(x), R(X,y), L(x,y))
is callednormal Normal subloops are kernels of homomorphisms, and are thus analtmgpnasmal
subgroups in group theory. (In loops, there is no counterpart ofabet cefinition of a normal subgroup.)
A loop is calledleft conjugacy closed the conjugate of each left translation by a left translation is
again a left translation. This can be expressed equationally as

z-yx=((2y)/2) - 2% (LcC)
The definition ofright conjugacy closeik now obvious, and is given equationally as
Xy-z=xz-(2\(y2). (RCC)

A conjugacy closed looffCC-loop) is a loop that is both LCC and RCC.
We end this section by defining two classes of loops that are closely relabedhtdloufang loops
and A-loops.RIF loopsare inverse property loops that satisfy
Xy- (z-xy) = (X-yz)X-V. (RIF)
ARIF loopsare flexible loops that satisfy

zXx: (yx-y) = z(Xy-X) -y. (ARIF)

2.3 Important subsets and subloops

ThecommutantC(Q), of a loopQ is the set of those elements which commute with each element in the
loop. That is,
C(Q) = {c:Vxe Q,cx= Xxc}.

The commutant of a loop need not be a subloop. Even in those cases wtamitmutant is a subloop
(for instance, in Moufang loops), it need not be normal (of coursgectimmutant in a group is normal,
and in group theory it is called the center, as we shall see).

Theleft nucleusof a loopQ is the subloop given by

NA(Q) = {a:a-xy=ax-y,¥x,y € Q}.

The middle nucleus and the right nuclebg,(Q) andN, (Q) respectively, are defined analogously; both
are subloops. Theucleusthen, is the subloop given by

N(Q) = Nx (Q) NNu(Q)NN,(Q).

Thecenteris the normal subloop given by

Z(Q) =N(Q)NC(Q),

thus coinciding with the language from grou@Q) need not have any relationship wit{Q); that is,
C(Q)NN(Q) = Z(Q) can be trivial. The situation in Bol loops is strikingly different. In a (left) Bmbp
Q, N\ (Q) = Ni(Q), and this subloop need not have any relationship WgQ), i.e., the intersection
can be trivial. Thus, in a Moufang loop, all nuclei coincide, &(@®) is a normal subloop. Moreover, if
Qs Bruck, therN, (Q) < C(Q).
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Thecommutator [x,y] of x andy, in a loopQ is given by

Xy = yX- [X,y].
Theassociator [x,y, 7] of X, y, andz, is given by

Xy-Z= (X~yZ) ’ [X,y,Z].

The point is that the lack of associativity in loops provides a structurahéss, part of which can
be captured equationally, thus rendering loops excellent algebraid®bjaavestigate with automated
theorem provers.

3 The Theorems

The present section catalogues all papers in loop theory to date witdts rigere obtained with the
assistance of an automated theorem prover. All proofs were obtainBdolgr9 or Otter. The proofs
were always translated to human language and usually simplified (none pafiees presents a raw
output from a prover), hence none of the results relies on soundh@dter/Prover9. As far as we know,
no automatically generated proof was found to be incorrect during ttaorsla

In some cases, the main results weren't obtained directly with automatedrthpooeers. Instead,
provers were used to prove key technical lemmas, or even just spasésd,avhich in turn helped mathe-
maticians find proofs of the main results. This is explained in more detail bedewesy., our description
of [AKPO06].

We list the papers in chronological order. From each paper, we ehgoso five theorems for the
QPTP library.

[Kun96a]. Thisis animportant paper, because it was the first to use automated th@orers in loop
theory and, in fact, one of the first noneasy results in mathematics obtait@datically. The theorem
says that a quasigroup satisfying any one of the four Moufang laws facina loop, i.e., has a unit
element. We analyze this result for each of the four Moufang identites. tNateéhe proof for the third
and the fourth Moufang identities can by done relatively easily by hanie wte proof for the first and
the second one was only discovered by Otter.

[Kun96b]. This is a sequel to the previous paper. The main result is the determinatidnatf f the
Bol-Moufang identities, implies, in a quasigroup, the existence of a unit eleriém analyze three of
these identities.

[Kun00]. There are many results in this paper proved by automated theorem pradveemnalyze the
following two: (1) If G is conjugacy closed, with,b € G andab= 1, thenbais in the nucleus o6. (2)
If Gis conjugacy closed, the commutant®fs contained in the nucleus.

[KKP02a]. The main result in this paper is that inverse property A-loops are Moufarganalyze
this result. This was one of the major long-standing open problems in loop/tleea perhaps the most
important automated theorem proving success in loop theory. And it marksithteat which the number
of loop theorists using automated theorem provers in their work jumped frentoothree.

[KKPO2b]. There are many results in this paper proved by automated theorem preeerslude the
following four: (1) 2-divisible ARIF loops are Moufang, (2) flexible I6eps are ARIF, (3) Moufang
loops are RIF, (4) RIF loops are ARIF.
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[KKO4]. There are many results in this paper in which automated theorem proveesihelg., finite
nonassociative extra loops have nontrivial centers. We analyze ltbeiftg result: In an extra loofx
commutes withx, y,t] if and only ift commutes withx,y, Z] if and only if [x,y, Z[X, y,t] = [X, Y, zt].

[KKPO4]. There are many results in this paper proved by automated theorem pradiensclude the
following one: in CC-loops, associators are in the center of the nucleus.

[KPO4]. The main result in this paper is that commutants of Bol loops of odd orderirafact,
subloops. Obviously, this is not a first order statement, however its pediet on several lemmas
proved by a theorem prover. We analyze the following on&) i§ a Bol loop, and ifa,b € C(Q), then
so too area?, b~1 anda?b.

[KPO5]. The main result in this paper is to give a basis for the variety of rectanguas levhich
consists of 7 identities, thus improving Kragepre-existing basis of 12 axioms [Kra00].réctangular
loopis a direct product of a loop and a rectangular bande@&angular bands a semigroup which is

a direct product of a left zero semigroup and right zero semigrouleftAright, resp.)zero semigroup

is a semigroup satisfying-y = x (X-y =Y, resp.). We analyze part of this result by showing that the
identities

X\(XX) =X, (XX) /X=X, X (X\y) =X\(Xy), (X/y)-y=(Xy)/y, X\(X(Y\Y)) = ((X/X)y)/¥,
X\WA((X\Y) - (zU) = (X\(x2)) -u, ((xy) - (z/u))/(z/u) = x- ((yu)/u)

imply each of the following identities (in algebras with three binary operatiopsand/):
AW\ ((X\Y)2) =X\(x2), (x/Y\((X/¥)2) = X\(x2), X(Y\(Y2)) = Xz, ((xy)/y)z= Xz,
(x-y2)/(y2) = (x2)/z, (x(¥\2))/(Y\2) = (x9)/z, (X(y/2))/(y/2) = (x2)/z

[PVO5]. The main result of this paper is the systematic classification of all varieties jpé$ laxioma-
tized by a single identity of Bol-Moufang type, achieved to a large extentaatioally. We include a
typical result from [PVO05]: in loops, the following two identities are eqléve (and thus both axiomatize
the so-called variety of LC-loopsx(y-yz) = (X-yy)zandxx-yz= (X-Xy)z

[AKP0O6]. One of the main results in this paper is that in a Bruck loop, elements of ordewerp
of two commute with elements of odd order. Obviously, automated theoremrproag’t prove this
result directly, as it is a result about infinitely many positive integers. Orther hand, one may use
automated theorem provers to generate proofs adqmedificintegers, and then use these proofs to help
construct the proof of the general result. The three specific casaralgze here: in a (left) Bruck loop,
elements of order2commute with elements of oder 3, elements of ordec@nmute with elements of
order ¥, and elements of ordef Zommute with elements of ordef.3The three different cases give rise
to clear performance differences between the automated theoremgraseve shall see. We note that
this property was used in [AKPO06] in a proof of a deep decomposition ¢éimedor Bruck loops. That is,
this also was an important success for automated theorem provers in loop the

[KKO6]. There are many results in this paper proved by automated theorem prive@nalyze the
following results: for eack in a power associative conjugacy closed looiis WIP (i.e.,c3(xc)~t =x1
for everyx), c® is extra (i.e.c8(x- yc®) = (c®-y)c® for everyx,y) andc'? is in the nucleus. (Initially, the
last property wasn't obtained directly by Prover9. Interestingly, gpihevers can do it.)

7



Automated Theorem Proving in Loop Theory Phillips, Stangvsk

[Phi06]. The main result in this paper is that the variety of power associative, WiRigacy closed
loops is axiomatized, in loops, by the identitiey- X) - xz= X- ((yx-X)z) andzx: (X-yx) = (z(X- xy)) - X.
We analyze this result.

[PV06]. There are many results in this paper proved by automated theorem proveranalyze the
following two: (1) in C-loops, the nucleus is normal, and (2) in a commutativead; if a has order 4
andb has order 9, thea- bx = ab- x (this is one of the cases that led to a proof of the decomposition
theorem for commutative torsion C-loops).

[KKPO7]. An F-gquasigroupis a quasigroup that satisfies the following two equatioxsyz = xy-
(x\x)z andzy- x = z(x/x) - yx. The main result of the paper is that evéryguasigroup is isotopic to
a Moufang loop. This was a long-standing open problem—it was the fiest ppoblem listed in Be-
lousov’'s 1967 book [Bel67]. We analyze this result.

[KPVO7]. There are many results in this paper proved by automated theorem pré¥eenalyze the
following one: a C-loop of exponent four with central squares is flexible

[KPV08]. There are many results in this paper proved by automated theorem pré¥esisclude the
following one: in a Bol loop, ift is a commutant element, thefiis in the left nucleus if and only i is
in the right nucleus.

[PV08]. The purpose of this paper is to find group-like axiomatizations for the vasiefiéoops of
Bol-Moufang type. We include the following typical result: a magma with 2-sidedrses satisfying
the C-law is a loop.

[CDKxx]. A Buchsteiner loops a loop that satisfies the following identity\ (xy- z) = (y- zX)/x.
These loops are closely related to conjugacy closed loops, and arly clelaged to loops of so-called
Bol-Moufang type [DJxx]. The result from [CDKxx] that we analyzeré is that in Buchsteiner loops,
fourth powers are nuclear (i.e¢ € N(Q) for everyx € Q).

[KKPxx]. The main result in this paper is that in a strongly right alternative ring (withittelement),
the set of units is a Bol loop under ring multiplication, and the set of quadaegilements is a Bol
loop under “circle” multiplication. Aright alternative ringis a set,R, with two binary operations+
and-, such that unde#-, R is an abelian group, underR is a right alternative magma, and such that
- distributes overt-. A right alternative ring isstrongly right alternativeif - is a right Bol loop. A
unit in an alternative ring is an element that has a two-sided inverse. The diretatn is given by
xoy = X+Yy+xy. And finally, an element igjuasiregularif it has a two-sided inverse under circle,
e.g. xoX =X ox=0. We analyze the following technical result: dfhas a 2-sided inverse, then
R(a!) =R(a)"tandL(a) = R(a)L(a })R(a™).

[KVxx]. There are many results in this paper proved by automated theorem privermsnalyze the
following one: in a commutative RIF loop, all squares are Moufang elemermisall cubes are C-
elements. An elemertis aMoufang elemerif for all x andy, a(xy-a) = ax-ya. And it is aC-element
if for all x andy, x(a-ay) = ((xa- a)y.
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file/prover E 0.999-006 Prover9 1207 Spass 3.0 Vampire 8.0 Waldmeister|806
AKPO6.T 0 1T 459 [} 0
AKP06.2 16 1110 74
AKP06.3

CDKxx_1a

CDKxx-1b

CDKxx_1c

KK04_1 29919
KK04_2 29387
KKO04_3 10322
KKO06-1a 57 507 59
KK06-1b 922 592
KKO06_1c 46277 570
KK06_1d 53534 560
KK06_1e 46687 554
KKP0O2al 3023 26735 X
KKP02alaltl 848 36852 553 205
KKP02alalt2 848 35016 500 208
KKP02alalt3 1001 24832 550 213
KKP02alalt4 1018 24242 584 202
KKPO2h.1 4 120 99 97 X
KKPO02h 1altl 9 205 488 8
KKPO2h.1alt2 3 147 413 484 8
KKPO02h.1alt3 9 208 56918 491 9
KKPO02h lalt4 9 190 53195 485 9
KKP02h.2 0 0 475 10 1
KKP02h.3 0 0 0 0 2
KKP02h4a 31 1462 138 4
KKP02h.4b 0 0 0 0 0
KKP04_1la

KKP04_1b

KKP04.1c

KKP04.2 2856 580
KKPO7-1 2265
KKPxx-1 2 0 3 8 0
KKPxx_2a

KKPxx_2b

KP04.1 0 0 0 0 0
KP04.2 0 0 0 0 0
KP04.3 7 73 72463 270 2
KP05.1a 0 0 0 0 0
KP05.1b 0 0 0 0 0
KPO05.1c 0 0 0 0 0
KP05.1d 0 0 0 0 0
KPV07.1 0 0 0 0 0
KPV08.1 0 0 0 0 0
KPV08.2 0 0 0 0 0
Kun00.1a 352 7088 12482 705
Kun00.1b 353 7536 15412 736
Kun0Q.1c 353 3264 19762 706
Kun00.1altl 38587 690
Kun00.2 0 0 0 0 0
Kun96al 56 75 258 X
Kun96alaltl 128 112 218 3
Kun96alalt2 9 68 238 3
Kun96a2 57 1256 285 X
Kun96a2altl 8 398 284 3
Kun96az2alt2 51 1282 164 3
Kun96a3 0 0 0 0 X
Kun96a4 0 0 0 0 X
Kun96h1 0 0 1 0 X
Kun96h2 0 1 9 0 X
Kun96h3 0 19 161 5 X
Kun96h3altl 0 7 125 28 0
Kun96h3alt2 0 5 148 43 0
KVxx_1 357 1692 49
KVxx_2 1705 3172 95
PhiO6.1la 72 29 14 21
Phi06.1b 46 2 8632 6 17
Phi062a 0 118 41 1 0
Phi06.2b 0 1 0 473 0
Phi06&.2c 0 0 0 0 X
Phi063 0 41 857 9 0
PV05.1 0 1 19 6 0
PV052 9 5 1 0
PV06.1a 0 0 0 0 0
PV06.1b 0 0 0 0 0
PV06.1c 0 0 0 0 0
PV06.2 34 17 4 0
PV08.1la 0 0 1 0 X
PV08.1b 0 0 0 10 X

Figure 4: Detailed results.

Phillips, Stangvsk

A remark on TPTP. The intersection of the TPTP and QPTP libraries is empty (by now). The only
loop theory problem in TPTP is the equivalence of the four Moufang idesitf&RP200 — GRP206).
This result is included in the book [MP96], which demonstrates the poweitter in selected areas of

mathematics (the other loop theory problems in the book are several singhesaxio

4 Benchmark tests

In the present section, we analyze the problems in the QPTP library byngutirem on selected auto-
mated theorem provers. Based on the results of the CASC competition in yeees [SS06], we chose
the following five provers: E [Sch02], Prover9 [McCO05], Spass Mimpire [RV02] and Waldmeister

9
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prover E 0.999 Prover9 1207 Spass3.0 Vampire 8.0 Waldmeister 806
proofs in 360s 53 46 31 44 46
proofs in 3600s 59 53 35 57 56
proofs in 86400 62 61 39 60 59
timeouts 18 19 41 20 9

Figure 5: Summary.

[Hil03].

We ran each prover on each file twice: with 3600 and 86400 seconds timelitmiuf and 1 day).
The problems from the library were translated to the TPTP syntax, and tbefitgs for the provers
were generated by the tptp2X tool. We ran the provers with their default sgtind we didn’t tune any
of the input files for a particular prover, thus obtaining conditions similar ta&A8C competition.

Our results are presented in Figure 3. The names of the problems startevitbdé of the paper in
the bibliography followed by the code of the selected result. In the case thkee is no single obvious
way to formalize the statement in first order theory, alternative axiomatizagi@ngiven. (For details,
see the QPTP website.) Running time (i.e., the time it took to find a proof) is displayedinded
seconds; a blank space means timeout, cross means that the problengisatioinal and thus ineligible
for Waldmeister. Running times over 360s (the time limit of the last CASC) are gisglan bold,
running times over 1 hour in italic.

The total number of problems in QPTP is 80, of which 68 are equational. dllgmns were solved
by at least one prover, 38 by all of them. The overall performancesgftbvers is summarized in Figure
4,

In our study, Waldmeister performed better than the other four proveegjoational problems. The
performances of E, Prover9 and Vampire seem to be similar (incomparable strict sense), although
E can be quite fast on some difficult problems. Spass seems to be well iediotther provers.

In order to minimize bias in our study, we ignored basic parameter settings. ‘¥mile provers
work fully automatically (e.g., Vampire), other actually havedefault setting (e.g., Waldmeister). In
our case, “default” is defined by the output of tptp2X. In particular, thismsethe set(auto) mode for
Prover9 and some explicit term ordering for Waldmeister.

In fact, term ordering is perhaps the most influential parameter. Waldnigidefault ordering is
KBO with weights 1, while Prover9’s default is LPO. If Prover9 is manuaiigat to KBO, it proves
six additional files, but fails for two files that were proved with LPO; this wRrover9’s performance
becomes closer to Waldmeister's. Another influential parameter is symbaiimgd Prover9 chooses a
relatively smart one (inverse left/right division > multiplication), while Waldmeister gets from tptp2X
an alphabetical one (inverseleft division > multiplication> right division). When reset to the smarter
choice, it's on average much faster, although it fails to prove any addifiwoblems. (Note that perhaps
the smartest choice is divisian inverse> multiplication.) Indeed, parameter setting deserves much
greater attention, but this is beyond the scope of the present study.

Finally, the reader may wonder about those theorems on which all preeeesunsuccessful (these
are indicated by blank entries in Figure 3). After all, these are theoremwérnatfirst proved with the
assistance of an automated theorem prover (which was the sole critarinalésion in our study). Why
were none of the provers able to find proofs in our study? Firstly, we'tdigime the input files. And,
perhaps more importantly, we didn’t use any advanced techniques itualyr(g.g., Prover9's powerful
hints strategy), which is often the way to obtain a new mathematical result.

10
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5 Conclusions

While we hope our results are interesting to automated reasoning regegespecially since they in-
volve problems from an active area of mathematical research), they mag sorprisingto these same
researchers, informed as these researchers are by the CASC ossulthe past ten years. Our re-
sults, though, might surprise loop theorists, who are less familiar with mosegfrtvers in our study.
But again, we stress that some of these loop theory results were origibtdiped using advanced Ot-
ter/Prover9 techniques such as the hints strategy, or sketches [V&0uld these be implemented in
other provers?

Since the various automated theorem provers have different stremgtigeaknesses, loop theorists
could profit by using a suite of theorem provers in their investigationsinstance, the result in [KKP07]
was originally derived as a series of results, a number of steps everlrading to the main theorem.
In our study, Waldmeister proved it from scratch in 40 minutes. To state thieus some theorems
will be missed if one uses only one automated theorem prover. On the oty the actual proofs
themselves are, of course, of great importance, and the various autdimeteem provers differ greatly
in this regard. Some provers don't even give the proof, they simply italiteat they've found one,
while others, notably Prover9, produce relatively readable proofs,eaen include tools to simplify
them further.

There are clearly many opportunities for future work. We intend to keepatalogue of loop theory
results as up-to-date as possible. We eventually hope to test our files eautomated theorem provers;
in particular, on some instantiation based ones, to check the hypothesisotettie weak on algebraic
problems (that always require a lot of computation with equality). Anotheiools direction for future
work is to analyze results in other domains, for instance quasigroupsaadnmnassociative algebras.

It would be immensely useful to compare the various provers’ performayesing input files and
techniques designed to obtain the best performance for each particoler.pIn particular, and for
example, what are the best first order descriptions of properties l#stéace of a unit” (the formula
IXvy(xy =y & yx=X), or the identitiegx/x)y = y,y(x/X) =y, or the identitiegx\x)y =y, y(X\x) =),
or of the Moufang property (in what ways might the fact that the foumdaji identities of this variety
are equivalent impact “best performance” strategies amongst theiggmiovers?).

A possible new direction of exploiting automated reasoning to prove newelmsoabout loops
could be, first, to create a knowledge base of definitions and theoremspithleory (those that can be
expressed within the first order theory of loops) and then to apply tooigé&soning in large theories.
Particularly, such a knowledge base would substantially differ from o#eent projects such as the
MPTP [Urb04]. The QPTP library can be viewed as the zeroth step tevgach a library.

Acknowledgement.We thank Michael Kinyon and Bob Veroff for carefully reading, andithemment-
ing on, an earlier version of this paper.
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